The practice and science of natural medicine


Since 2002, Integrative Healthcare & Applied Nutrition magazine (formerly known as CAM magazine) has kept professional practitioners in-the-loop every month with its mix of news, views and fully referenced features.
June 2023


 “WeightWatchers to Acquire Sequence, a Digital Health Platform for Clinical Weight Management”:

Mayo Clinic study (senior author Dr Andres Acosta, Precision Medicine for Obesity Program at the Mayo Clinic): poster presentation PO4.099 at the European Congress on Obesity (ECO) May 10-13. The material has been peer-reviewed by the congress selection committee. No paper published yet.

Selection of Antiobesity Medications Based on Phenotypes Enhances Weight Loss: A Pragmatic Trial in an Obesity Clinic. Obesity (Silver Spring) 2021 Apr; 29(4): 662–671. Published online Mar 23:

Integrating Nutrient Biomarkers, Cognitive Function, and Structural MRI Data to Build Multivariate Phenotypes of Healthy AgingThe Journal of Nutrition 2023, May;153(5):1338-1346.


Efficacy of vitamin D3 supplementation on cancer mortality: Systematic review and individual patient data meta-analysis of randomised controlled trials. Ageing Res Rev 2023, June; 87:101923.

Mitochondria: it is all about energy.
Front Physiol 2023,
Sec. Mitochondrial Research, 14:

KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer’s disease-related pathology. JCI Insight 2023, May 2;8(10):e162454.

Excess dietary sugar alters colonocyte metabolism and impairs the proliferative response to damage. Cellular and Molecular Gastroenterology and Hepatology 2023, May 4, pre-publication proof:


Daily folate consumption is associated with reduced all-cause and cardiovascular disease mortality among US adults with diabetes, prediabetes, or insulin resistance. Nutr Res 2023, Apr 26;114:71-80. Online ahead of print.

Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease
Front. Cell. Infect. Microbiol 2023, May 1, Sec. Molecular Bacterial Pathogenesis, 13:

Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response.
Nat Commun 2023 Mar 30;14(1):1772.

Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelinationJournal of Clinical Investigation 2023, DOI: 10.1172/JCI164118.



Higher Intake Of Dietary Flavonols, Specifically Dietary Quercetin, Is Associated With Lower Odds Of Frailty Onset Over 12-Years Of Follow-Up Among Adults In The Framingham Heart Study. American Journal of Clinical Nutrition 2023, Apr 13, In Press, corrected proof:

Low 25(OH) vitamin D levels are associated with Long COVID syndrome in COVID-19 survivors was a poster presentation given on May 13 at the European Congress of Endocrinology at the Halic Congress Centre in Istanbul. The study has also been published in the  Journal of Clinical Endocrinology 2023, online ahead of print at

Heart failure
The Greater Glasgow & Clyde Population Study was presented during the session ‘Late breaking clinical trials: epidemiology and registries’.
The struggle towards a Universal Definition of Heart Failure-how to proceed? Eur Heart J. 2021;42:2331–2343.
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failureEur Heart J. 2021;42:3599–3726.
Prevalence of markers of heart failure in patients with atrial fibrillation and the effects of ximelagatran compared to warfarin on the incidence of morbid and fatal events: a report from the SPORTIF III and V trials. Eur J Heart Fail. 2007;9:730–739.
Use of diuretics and outcomes in patients with type 2 diabetes: findings from the EMPA-REG OUTCOME trialEur J Heart Fail. 2021;23:1085–1093.
Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–580.

Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends in Food Science & Technology 2023, 135: 57, doi: 10.1016/j.tifs.2023.03.014.

Ultra-Processed Foods and Drinks Consumption Is Associated with Psychosocial Functioning in AdolescentsNutrients. 2022 Nov 15;14(22):4831.

Food-Grade Metal Oxide Nanoparticles Exposure Alters Intestinal Microbial Populations, Brush Border Membrane Functionality and Morphology, In Vivo (Gallus gallus). Antioxidants 2023, 12(2), 431:




  1. Robles-Alonso V., Guarner F. Progress in the knowledge of the instestinal human mucrobiota. Nutricion Hospitalaria. 2013:553–557. doi: 10.3305/nh.2013.28.3.6601. [PubMed] [CrossRef] [Google Scholar]
  2. Jethwani P., Grover K. Gut Microbiota in Health and Diseases—A Review. Int. J. Curr. Microbiol. App. Sci. 2019;8:1586–1599. doi: 10.20546/ijcmas.2019.808.187. [CrossRef] [Google Scholar]
  3. Gomaa E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek. 2020;113:2019–2040. doi: 10.1007/s10482-020-01474-7. [PubMed] [CrossRef] [Google Scholar]
  4. Corazza G.R., Menozzi M.G., Strocchi A., Rasciti L., Vaira D., Lecchini R., Avanzini P., Chezzi C., Gasbarrini G. The Diagnosis of Small Bowel Bacterial Overgrowth. Gastroenterology. 1990;98:302–309. doi: 10.1016/0016-5085(90)90818-L. [PubMed] [CrossRef] [Google Scholar]
  5. Adike A., DiBaise J.K. Small Intestinal Bacterial Overgrowth. Gastroenterol. Clin. N. Am. 2018;47:193–208. doi: 10.1016/j.gtc.2017.09.008. [PubMed] [CrossRef] [Google Scholar]
  6. Enko D., Kriegshäuser G. Functional 13C-Urea and Glucose Hydrogen/Methane Breath Tests Reveal Significant Association of Small Intestinal Bacterial Overgrowth in Individuals with Active Helicobacter PyloriInfection. Clin. Biochem. 2017;50:46–49. doi: 10.1016/j.clinbiochem.2016.08.017. [PubMed] [CrossRef] [Google Scholar]
  7. Pimentel M., Chow E.J., Lin H.C. Normalization of Lactulose Breath Testing Correlates with Symptom Improvement in Irritable Bowel Syndrome: A Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Gastroenterol. 2003;98:412–419. doi: 10.1111/j.1572-0241.2003.07234.x. [PubMed] [CrossRef] [Google Scholar]
  8. Pimentel M. A Link between Irritable Bowel Syndrome and Fibromyalgia May Be Related to Findings on Lactulose Breath Testing. Ann. Rheum. Dis. 2004;63:450–452. doi: 10.1136/ard.2003.011502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  9. Walters B., Vanner S.J. Detection of Bacterial Overgrowth in IBS Using the Lactulose H2 Breath Test: Comparison with 14C-d-Xylose and Healthy Controls. Am. J. Gastroenterol. 2005;100:1566–1570. doi: 10.1111/j.1572-0241.2005.40795.x. [PubMed] [CrossRef] [Google Scholar]
  10. Lupascu A., Gabrielli M., Lauritano E.C., Scarpellini E., Santoliquido A., Cammarota G., Flore R., Tondi P., Pola P., Gasbarrini G., et al. Hydrogen Glucose Breath Test to Detect Small Intestinal Bacterial Overgrowth: A Prevalence Case-Control Study in Irritable Bowel Syndrome. Aliment. Pharm. 2005;22:1157–1160. doi: 10.1111/j.1365-2036.2005.02690.x. [PubMed] [CrossRef] [Google Scholar]
  11. Posserud I., Stotzer P.-O., Björnsson E.S., Abrahamsson H., Simrén M. Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome. Gut. 2007;56:802–808. doi: 10.1136/gut.2006.108712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  12. Bratten J.R., Spanier J., Jones M.P. Lactulose Breath Testing Does Not Discriminate Patients with Irritable Bowel Syndrome from Healthy Controls. Am. J. Gastroenterol. 2008;103:958–963. doi: 10.1111/j.1572-0241.2008.01785.x. [PubMed] [CrossRef] [Google Scholar]
  13. Park J.H., Park D.I., Kim H.J., Cho Y.K., Sohn C.I., Jeon W.K., Kim B.I., Won K.H., Park S.M. The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome. Gut Liver. 2009;3:174–179. doi: 10.5009/gnl.2009.3.3.174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  14. Parodi A., Dulbecco P., Savarino E., Giannini E.G., Bodini G., Corbo M., Isola L., De Conca S., Marabotto E., Savarino V. Positive Glucose Breath Testing Is More Prevalent in Patients with IBS-like Symptoms Compared with Controls of Similar Age and Gender Distribution. J. Clin. Gastroenterol. 2009;43:962–966. doi: 10.1097/MCG.0b013e3181a099a5. [PubMed] [CrossRef] [Google Scholar]
  15. Ghoshal U.C., Kumar S., Mehrotra M., Lakshmi C., Misra A. Frequency of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome and Chronic Non-Specific Diarrhea. J. Neurogastroenterol. Motil. 2010;16:40–46. doi: 10.5056/jnm.2010.16.1.40. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  16. Rana S.V., Sharma S., Kaur J., Sinha S.K., Singh K. Comparison of Lactulose and Glucose Breath Test for Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome. Digestion. 2012;85:243–247. doi: 10.1159/000336174. [PubMed] [CrossRef] [Google Scholar]
  17. Sachdeva S., Rawat A.K., Reddy R.S., Puri A.S. Small Intestinal Bacterial Overgrowth (SIBO) in Irritable Bowel Syndrome: Frequency and Predictors: SIBO in IBS: Frequency and Predictors. J. Gastroenterol. Hepatol. 2011;26:135–138. doi: 10.1111/j.1440-1746.2011.06654.x. [PubMed] [CrossRef] [Google Scholar]
  18. Ghoshal U.C., Srivastava D., Ghoshal U., Misra A. Breath Tests in the Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome in Comparison with Quantitative Upper Gut Aspirate Culture. Eur. J. Gastroenterol. Hepatol. 2014;26:753–760. doi: 10.1097/MEG.0000000000000122. [PubMed] [CrossRef] [Google Scholar]
  19. Abbasi M.H., Zahedi M., Darvish Moghadam S., Shafieipour S., HayatBakhsh Abbasi M. Small Bowel Bacterial Overgrowth in Patients with Irritable Bowel Syndrome: The First Study in Iran. Middle East J. Dig. Dis. 2015;7:36–40. [PMC free article] [PubMed] [Google Scholar]
  20. Zhao J., Zheng X., Chu H., Zhao J., Cong Y., Fried M., Fox M., Dai N. A Study of the Methodological and Clinical Validity of the Combined Lactulose Hydrogen Breath Test with Scintigraphic Oro-Cecal Transit Test for Diagnosing Small Intestinal Bacterial Overgrowth in IBS Patients. Neurogastroenterol. Motil. 2014;26:794–802. doi: 10.1111/nmo.12331. [PubMed] [CrossRef] [Google Scholar]
  21. Rutgeerts P., Ghoos Y., Vantrappen G., Eyssen H. IIeal Dysfunction and Bacterial Overgrowth in Patients with Crohn’s Disease. Eur. J. Clin. Investig. 1981;11:199–206. doi: 10.1111/j.1365-2362.1981.tb01841.x. [PubMed] [CrossRef] [Google Scholar]
  22. Castiglione F., Del Vecchio Blanco G., Rispo A., Petrelli G., Amalfi G., Cozzolino A., Cuccaro I., Mazzacca G. Orocecal Transit Time and Bacterial Overgrowth in Patients with Crohn’s Disease. J. Clin. Gastroenterol. 2000;31:63–66. doi: 10.1097/00004836-200007000-00015. [PubMed] [CrossRef] [Google Scholar]
  23. Klaus J., Spaniol U., Adler G., Mason R.A., Reinshagen M., von Tirpitz C.C. Small Intestinal Bacterial Overgrowth Mimicking Acute Flare as a Pitfall in Patients with Crohn’s Disease. BMC Gastroenterol. 2009;9:61. doi: 10.1186/1471-230X-9-61. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  24. Greco A., Caviglia G.P., Brignolo P., Ribaldone D.G., Reggiani S., Sguazzini C., Smedile A., Pellicano R., Resegotti A., Astegiano M., et al. Glucose Breath Test and Crohn’s Disease: Diagnosis of Small Intestinal Bacterial Overgrowth and Evaluation of Therapeutic Response. Scand. J. Gastroenterol. 2015;50:1376–1381. doi: 10.3109/00365521.2015.1050691. [PubMed] [CrossRef] [Google Scholar]
  25. Ricci J.E.R., Chebli L.A., Ribeiro T.C.d.R., Castro A.C.S., Gaburri P.D., Pace F.H.d.L., Barbosa K.V.B.D., Ferreira L.E.V.V.d.C., Passos M.d.C.F., Malaguti C., et al. Small-Intestinal Bacterial Overgrowth Is Associated with Concurrent Intestinal Inflammation but Not with Systemic Inflammation in Crohn’s Disease Patients. J. Clin. Gastroenterol. 2018;52:530–536. doi: 10.1097/MCG.0000000000000803. [PubMed] [CrossRef] [Google Scholar]
  26. Rana S.V., Sharma S., Kaur J., Prasad K.K., Sinha S.K., Kochhar R., Malik A., Morya R.K. Relationship of Cytokines, Oxidative Stress and GI Motility with Bacterial Overgrowth in Ulcerative Colitis Patients. J. Crohn’s Colitis. 2014;8:859–865. doi: 10.1016/j.crohns.2014.01.007. [PubMed] [CrossRef] [Google Scholar]
  27. Yang C., Zhang X., Wang S., Huo X., Wang J. Small Intestinal Bacterial Overgrowth and Evaluation of Intestinal Barrier Function in Patients with Ulcerative Colitis. Am. J. Transl. Res. 2021;13:6605–6610. [PMC free article] [PubMed] [Google Scholar]
  28. Rana S.V., Sharma S., Malik A., Kaur J., Prasad K.K., Sinha S.K., Singh K. Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Inflammatory Bowel Disease. Dig. Dis. Sci. 2013;58:2594–2598. doi: 10.1007/s10620-013-2694-x. [PubMed] [CrossRef] [Google Scholar]
  29. Lee J.M., Lee K.-M., Chung Y.Y., Lee Y.W., Kim D.B., Sung H.J., Chung W.C., Paik C.-N. Clinical Significance of the Glucose Breath Test in Patients with Inflammatory Bowel Disease. J. Gastroenterol. Hepatol. 2015;30:990–994. doi: 10.1111/jgh.12908. [PubMed] [CrossRef] [Google Scholar]
  30. Andrei M., Gologan Ş. Small Intestinal Bacterial Overgrowth Syndrome Prevalence in Romanian Patients with Inflammatory Bowel Disease. Curr. Health Sci. J. 2016:151–156. doi: 10.12865/CHSJ.42.02.06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  31. Ghoshal U.C., Yadav A., Fatima B., Agrahari A.P., Misra A. Small Intestinal Bacterial Overgrowth in Patients with Inflammatory Bowel Disease: A Case-Control Study. Indian, J. Gastroenterol. 2022;41:96–103. doi: 10.1007/s12664-021-01211-6. [PubMed] [CrossRef] [Google Scholar]
  32. Prizont R., Hersh T., Floch M.H. Jejunal Bacterial Flora in Chronic Small Bowel Disease. Am. J. Clin. Nutr. 1970;23:1602–1607. doi: 10.1093/ajcn/23.12.1602. [PubMed] [CrossRef] [Google Scholar]
  33. Tursi A., Brandimarte G., Giorgetti G. High Prevalence of Small Intestinal Bacterial Overgrowth in Celiac Patients with Persistence of Gastrointestinal Symptoms after Gluten Withdrawal. Am. J. Gastroenterol. 2003;98:839–843. doi: 10.1111/j.1572-0241.2003.07379.x. [PubMed] [CrossRef] [Google Scholar]
  34. Ghoshal U.C., Ghoshal U., Misra A., Choudhuri G. Partially Responsive Celiac Disease Resulting from Small Intestinal Bacterial Overgrowth and Lactose Intolerance. BMC Gastroenterol. 2004;4:10. doi: 10.1186/1471-230X-4-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  35. Rana S.V., Sinha S.K., Lal S., Sikander A., Singh K. Small Intestinal Bacterial Overgrowth in North Indian Patients with Celiac Disease. Trop. Gastroenterol. 2007;28:159–161. [PubMed] [Google Scholar]
  36. Rubio-Tapia A., Barton S.H., Rosenblatt J.E., Murray J.A. Prevalence of Small Intestine Bacterial Overgrowth Diagnosed by Quantitative Culture of Intestinal Aspirate in Celiac Disease. J. Clin. Gastroenterol. 2009;43:157–161. doi: 10.1097/MCG.0b013e3181557e67. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  37. Chang M.S., Minaya M.T., Cheng J., Connor B.A., Lewis S.K., Green P.H.R. Double-Blind Randomized Controlled Trial of Rifaximin for Persistent Symptoms in Patients with Celiac Disease. Dig. Dis. Sci. 2011;56:2939–2946. doi: 10.1007/s10620-011-1719-6. [PubMed] [CrossRef] [Google Scholar]
  38. Lasa J.S., Zubiaurre I., Fanjul I., Olivera P., Soifer L. Small Intestinal Bacterial Overgrowth Prevalence in Celiac Disease Patients Is Similar in Healthy Subjects and Lower in Irritable Bowel Syndrome Patients. Rev. Gastroenterol. México (Engl. Ed.) 2015;80:171–174. doi: 10.1016/j.rgmxen.2015.06.003. [PubMed] [CrossRef] [Google Scholar]
  39. Paik C.N., Choi M.-G., Lim C.H., Park J.M., Chung W.C., Lee K.-M., Jun K.-H., Song K.Y., Jeon H.M., Chin H.-M., et al. The Role of Small Intestinal Bacterial Overgrowth in Postgastrectomy Patients: Bacterial Overgrowth and Gastrectomy. Neurogastroenterol. Motil. 2011;23:e191–e196. doi: 10.1111/j.1365-2982.2011.01686.x. [PubMed] [CrossRef] [Google Scholar]
  40. Heneghan H.M., Zaborowski A., Fanning M., McHugh A., Doyle S., Moore J., Ravi N., Reynolds J.V. Prospective Study of Malabsorption and Malnutrition After Esophageal and Gastric Cancer Surgery. Ann. Surg. 2015;262:803–808. doi: 10.1097/SLA.0000000000001445. [PubMed] [CrossRef] [Google Scholar]
  41. Sabate J.-M., Coupaye M., Ledoux S., Castel B., Msika S., Coffin B., Jouet P. Consequences of Small Intestinal Bacterial Overgrowth in Obese Patients Before and After Bariatric Surgery. Obes. Surg. 2017;27:599–605. doi: 10.1007/s11695-016-2343-5. [PubMed] [CrossRef] [Google Scholar]
  42. Kim D.B., Paik C.-N., Kim Y.J., Lee J.M., Jun K.-H., Chung W.C., Lee K.-M., Yang J.-M., Choi M.-G. Positive Glucose Breath Tests in Patients with Hysterectomy, Gastrectomy, and Cholecystectomy. Gut Liver. 2017;11:237–242. doi: 10.5009/gnl16132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  43. Rao S.S.C., Tan G., Abdulla H., Yu S., Larion S., Leelasinjaroen P. Does Colectomy Predispose to Small Intestinal Bacterial (SIBO) and Fungal Overgrowth (SIFO)? Clin. Transl. Gastroenterol. 2018;9:e146. doi: 10.1038/s41424-018-0011-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  44. Mouillot T., Rhyman N., Gauthier C., Paris J., Lang A.-S., Lepers-Tassy S., Manfredi S., Lepage C., Leloup C., Jacquin-Piques A., et al. Study of Small Intestinal Bacterial Overgrowth in a Cohort of Patients with Abdominal Symptoms Who Underwent Bariatric Surgery. Obes. Surg. 2020;30:2331–2337. doi: 10.1007/s11695-020-04477-5. [PubMed] [CrossRef] [Google Scholar]
  45. Sabaté J.-M., Jouët P., Harnois F., Mechler C., Msika S., Grossin M., Coffin B. High Prevalence of Small Intestinal Bacterial Overgrowth in Patients with Morbid Obesity: A Contributor to Severe Hepatic Steatosis. Obes. Surg. 2008;18:371–377. doi: 10.1007/s11695-007-9398-2. [PubMed] [CrossRef] [Google Scholar]
  46. Madrid A.M., Poniachik J., Quera R., Defilippi C. Small Intestinal Clustered Contractions and Bacterial Overgrowth: A Frequent Finding in Obese Patients. Dig. Dis. Sci. 2011;56:155–160. doi: 10.1007/s10620-010-1239-9. [PubMed] [CrossRef] [Google Scholar]
  47. Fialho A., Fialho A., Thota P., McCullough A., Shen B. Higher Visceral to Subcutaneous Fat Ratio Is Associated with Small Intestinal Bacterial Overgrowth. Nutr. Metab. Cardiovasc. Dis. 2016;26:773–777. doi: 10.1016/j.numecd.2016.04.007. [PubMed] [CrossRef] [Google Scholar]
  48. Roland B.C., Lee D., Miller L.S., Vegesna A., Yolken R., Severance E., Prandovszky E., Zheng X.E., Mullin G.E. Obesity Increases the Risk of Small Intestinal Bacterial Overgrowth (SIBO) Neurogastroenterol. Motil. 2018;30:e13199. doi: 10.1111/nmo.13199. [PubMed] [CrossRef] [Google Scholar]
  49. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., Cummins A.G. The Role of Small Intestinal Bacterial Overgrowth, Intestinal Permeability, Endotoxaemia, and Tumour Necrosis Factor Alpha in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut. 2001;48:206–211. doi: 10.1136/gut.48.2.206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  50. Sajjad A., Mottershead M., Syn W.K., Jones R., Smith S., Nwokolo C.U. Ciprofloxacin Suppresses Bacterial Overgrowth, Increases Fasting Insulin but Does Not Correct Low Acylated Ghrelin Concentration in Non-Alcoholic Steatohepatitis. Aliment. Pharm. 2005;22:291–299. doi: 10.1111/j.1365-2036.2005.02562.x. [PubMed] [CrossRef] [Google Scholar]
  51. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., et al. Increased Intestinal Permeability and Tight Junction Alterations in Nonalcoholic Fatty Liver Disease. Hepatology. 2009;49:1877–1887. doi: 10.1002/hep.22848. [PubMed] [CrossRef] [Google Scholar]
  52. Shanab A.A., Scully P., Crosbie O., Buckley M., O’Mahony L., Shanahan F., Gazareen S., Murphy E., Quigley E.M.M. Small Intestinal Bacterial Overgrowth in Nonalcoholic Steatohepatitis: Association with Toll-Like Receptor 4 Expression and Plasma Levels of Interleukin 8. Dig. Dis. Sci. 2011;56:1524–1534. doi: 10.1007/s10620-010-1447-3. [PubMed] [CrossRef] [Google Scholar]
  53. Fialho A., Fialho A., Thota P., McCullough A.J., Shen B. Small Intestinal Bacterial Overgrowth Is Associated with Non- Alcoholic Fatty Liver Disease. JGLD. 2016;25:159–165. doi: 10.15403/jgld.2014.1121.252.iwg. [PubMed] [CrossRef] [Google Scholar]
  54. Ghoshal U.C., Baba C.S., Ghoshal U., Alexander G., Misra A., Saraswat V.A., Choudhuri G. Low-Grade Small Intestinal Bacterial Overgrowth Is Common in Patients with Non-Alcoholic Steatohepatitis on Quantitative Jejunal Aspirate Culture. Indian J. Gastroenterol. 2017;36:390–399. doi: 10.1007/s12664-017-0797-6. [PubMed] [CrossRef] [Google Scholar]
  55. Mikolasevic I., Delija B., Mijic A., Stevanovic T., Skenderevic N., Sosa I., Krznaric-Zrnic I., Abram M., Krznaric Z., Domislovic V., et al. Small Intestinal Bacterial Overgrowth and Non-Alcoholic Fatty Liver Disease Diagnosed by Transient Elastography and Liver Biopsy. Int. J. Clin. Pract. 2021;75:e13947. doi: 10.1111/ijcp.13947. [PubMed] [CrossRef] [Google Scholar]
  56. Shi H., Mao L., Wang L., Quan X., Xu X., Cheng Y., Zhu S., Dai F. Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Nonalcoholic Fatty Liver Disease. Eur. J. Gastroenterol. Hepatol. 2021;33:e535–e539. doi: 10.1097/MEG.0000000000002157. [PubMed] [CrossRef] [Google Scholar]
  57. Chesta J., Silva M., Thompson L., del Canto E., Defilippi C. Bacterial overgrowth in small intestine in patients with liver cirrhosis. Rev. Med. Chil. 1991;119:626–632. [PubMed] [Google Scholar]
  58. Casafont Morencos F., de las Heras Castano G., Martín Ramos L., López Arias M.J., Ledesma F., Pons Romero F. Small Bowel Bacterial Overgrowth in Patients with Alcoholic Cirrhosis. Dig. Dis. Sci. 1995;40:1252–1256. doi: 10.1007/BF02065533. [PubMed] [CrossRef] [Google Scholar]
  59. Madrid A.M., Cumsille F., Defilippi C. Altered Small Bowel Motility in Patients with Liver Cirrhosis Depends on Severity of Liver Disease. Dig. Dis. Sci. 1997;42:738–742. doi: 10.1023/A:1018899611006. [PubMed] [CrossRef] [Google Scholar]
  60. Yang C.-Y., Chang C.-S., Chen G.-H. Small- Intestinal Bacterial Overgrowth in Patients with Liver Cirrhosis, Diagnosed with Glu- Cose H2 or CH4 Breath Tests. Scand. J. Gastroenterol. 1998;33:867–871. doi: 10.1080/00365529850171549. [PubMed] [CrossRef] [Google Scholar]
  61. Bauer T.M., Schwacha H., Steinbrückner B., Brinkmann F.E., Ditzen A.K., Kist M., Blum H.E. Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Cirrhosis of the Liver: Poor Performance of the Glucose Breath Hydrogen Test. J. Hepatol. 2000;33:382–386. doi: 10.1016/S0168-8278(00)80273-1. [PubMed] [CrossRef] [Google Scholar]
  62. Gunnarsdottir S.A., Sadik R., Shev S., Simren M., Sjovall H., Stotzer P.-O., Abrahamsson H., Olsson R., Bjornsson E.S. Small Intestinal Motility Disturbances and Bacterial Overgrowth in Patients with Liver Cirrhosis and Portal Hypertension. Am. J. Gastroenterol. 2003;98:1362–1370. doi: 10.1111/j.1572-0241.2003.07475.x. [PubMed] [CrossRef] [Google Scholar]
  63. Nancey S., Moussata D., Roman S., Benmansour H., Claudel S., Flourié B. A Positive Breath Hydrogen Test Does Not Predict the Occurrence of a Spontaneous Bacterial Peritonitis in Cirrhotic Patients with Ascites. Digestion. 2009;79:252–258. doi: 10.1159/000215617. [PubMed] [CrossRef] [Google Scholar]
  64. Pande C., Kumar A., Sarin S.K. Small-Intestinal Bacterial Overgrowth in Cirrhosis Is Related to the Severity of Liver Disease. Aliment. Pharmacol. Ther. 2009;29:1273–1281. doi: 10.1111/j.1365-2036.2009.03994.x. [PubMed] [CrossRef] [Google Scholar]
  65. Jun D.W., Kim K.T., Lee O.Y., Chae J.D., Son B.K., Kim S.H., Jo Y.J., Park Y.S. Association Between Small Intestinal Bacterial Overgrowth and Peripheral Bacterial DNA in Cirrhotic Patients. Dig. Dis. Sci. 2010;55:1465–1471. doi: 10.1007/s10620-009-0870-9. [PubMed] [CrossRef] [Google Scholar]
  66. Gupta A., Dhiman R.K., Kumari S., Rana S., Agarwal R., Duseja A., Chawla Y. Role of Small Intestinal Bacterial Overgrowth and Delayed Gastrointestinal Transit Time in Cirrhotic Patients with Minimal Hepatic Encephalopathy. J. Hepatol. 2010;53:849–855. doi: 10.1016/j.jhep.2010.05.017. [PubMed] [CrossRef] [Google Scholar]
  67. Zhang Y., Feng Y., Cao B., Tian Q. The Effect of Small Intestinal Bacterial Overgrowth on Minimal Hepatic Encephalopathy in Patients with Cirrhosis. Arch. Med. Sci. 2016;12:592–596. doi: 10.5114/aoms.2015.55675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  68. Kaur J., Rana S.V., Gupta R., Gupta V., Sharma S.K., Dhawan D.K. Prolonged Orocecal Transit Time Enhances Serum Bile Acids Through Bacterial Overgrowth, Contributing Factor to Gallstone Disease. J. Clin. Gastroenterol. 2014;48:365–369. doi: 10.1097/MCG.0b013e3182a14fba. [PubMed] [CrossRef] [Google Scholar]
  69. Kim D.B., Paik C.-N., Song D.S., Kim Y.J., Lee J.M. The Characteristics of Small Intestinal Bacterial Overgrowth in Patients with Gallstone Diseases: Gallstone Diseases and SIBO. J. Gastroenterol. Hepatol. 2018;33:1477–1484. doi: 10.1111/jgh.14113. [PubMed] [CrossRef] [Google Scholar]
  70. Casellas F., Guarner L., Vaquero E., Antolín M., de Gracia X., Malagelada J.R. Hydrogen Breath Test with Glucose in Exocrine Pancreatic Insufficiency. Pancreas. 1998;16:481–486. doi: 10.1097/00006676-199805000-00004. [PubMed] [CrossRef] [Google Scholar]
  71. Trespi E., Ferrieri A. Intestinal Bacterial Overgrowth During Chronic Pancreatitis. Curr. Med. Res. Opin. 1999;15:47–52. doi: 10.1185/03007999909115173. [PubMed] [CrossRef] [Google Scholar]
  72. Signoretti M., Stigliano S., Valente R., Piciucchi M., Fave G.D., Capurso G. Small Intestinal Bacterial Overgrowth in Patients With Chronic Pancreatitis. J. Clin. Gastroenterol. 2014;48:S52–S55. doi: 10.1097/MCG.0000000000000238. [PubMed] [CrossRef] [Google Scholar]
  73. Kumar K., Ghoshal U.C., Srivastava D., Misra A., Mohindra S. Small Intestinal Bacterial Overgrowth Is Common Both among Patients with Alcoholic and Idiopathic Chronic Pancreatitis. Pancreatology. 2014;14:280–283. doi: 10.1016/j.pan.2014.05.792. [PubMed] [CrossRef] [Google Scholar]
  74. Kim D.B., Paik C.-N., Sung H.J., Chung W.C., Lee K.-M., Yang J.-M., Choi M.-G. Breath Hydrogen and Methane Are Associated with Intestinal Symptoms in Patients with Chronic Pancreatitis. Pancreatology. 2015;15:514–518. doi: 10.1016/j.pan.2015.07.005. [PubMed] [CrossRef] [Google Scholar]
  75. Ní Chonchubhair H.M., Bashir Y., Dobson M., Ryan B.M., Duggan S.N., Conlon K.C. The Prevalence of Small Intestinal Bacterial Overgrowth in Non-Surgical Patients with Chronic Pancreatitis and Pancreatic Exocrine Insufficiency (PEI) Pancreatology. 2018;18:379–385. doi: 10.1016/j.pan.2018.02.010. [PubMed] [CrossRef] [Google Scholar]
  76. Lee A.A., Baker J.R., Wamsteker E.J., Saad R., DiMagno M.J. Small Intestinal Bacterial Overgrowth Is Common in Chronic Pancreatitis and Associates with Diabetes, Chronic Pancreatitis Severity, Low Zinc Levels, and Opiate Use. Am. J. Gastroenterol. 2019;114:1163–1171. doi: 10.14309/ajg.0000000000000200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  77. Zhang M., Zhu H.-M., He F., Li B.-Y., Li X.-C. Association between Acute Pancreatitis and Small Intestinal Bacterial Overgrowth Assessed by Hydrogen Breath Test. WJG. 2017;23:8591–8596. doi: 10.3748/wjg.v23.i48.8591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  78. Kim D.B., Paik C.-N., Lee J.M., Kim Y.-J. Association between Increased Breath Hydrogen Methane Concentration and Prevalence of Glucose Intolerance in Acute Pancreatitis. J. Breath Res. 2020;14:026006. doi: 10.1088/1752-7163/ab5460. [PubMed] [CrossRef] [Google Scholar]
  79. Lisowska A., Wójtowicz J., Walkowiak J. Small Intestine Bacterial Overgrowth Is Frequent in Cystic Fibrosis: Combined Hydrogen and Methane Measurements Are Required for Its Detection. Acta Biochim. Pol. 2009;56:631–634. doi: 10.18388/abp.2009_2495. [PubMed] [CrossRef] [Google Scholar]
  80. Dorsey J., Gonska T. Bacterial Overgrowth, Dysbiosis, Inflammation, and Dysmotility in the Cystic Fibrosis Intestine. J. Cyst. Fibros. 2017;16:S14–S23. doi: 10.1016/j.jcf.2017.07.014. [PubMed] [CrossRef] [Google Scholar]
  81. Furnari M., De Alessandri A., Cresta F., Haupt M., Bassi M., Calvi A., Haupt R., Bodini G., Ahmed I., Bagnasco F., et al. The Role of Small Intestinal Bacterial Overgrowth in Cystic Fibrosis: A Randomized Case-Controlled Clinical Trial with Rifaximin. J. Gastroenterol. 2019;54:261–270. doi: 10.1007/s00535-018-1509-4. [PubMed] [CrossRef] [Google Scholar]
  82. Pasini E., Aquilani R., Testa C., Baiardi P., Angioletti S., Boschi F., Verri M., Dioguardi F. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC Heart Fail. 2016;4:220–227. doi: 10.1016/j.jchf.2015.10.009. [PubMed] [CrossRef] [Google Scholar]
  83. Song Y., Liu Y., Qi B., Cui X., Dong X., Wang Y., Han X., Li F., Shen D., Zhang X., et al. Association of Small Intestinal Bacterial Overgrowth with Heart Failure and Its Prediction for Short-Term Outcomes. JAHA. 2021 doi: 10.1161/JAHA.119.015292. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  84. Ponziani F.R., Pompili M., Di Stasio E., Zocco M.A., Gasbarrini A., Flore R. Subclinical Atherosclerosis Is Linked to Small Intestinal Bacterial Overgrowth viaVitamin K2-Dependent Mechanisms. WJG. 2017;23:1241. doi: 10.3748/wjg.v23.i7.1241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  85. Fialho A., Fialho A., Kochhar G., Schenone A.L., Thota P., McCullough A.J., Shen B. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary Artery Disease. Dig. Dis. Sci. 2018;63:412–421. doi: 10.1007/s10620-017-4828-z. [PubMed] [CrossRef] [Google Scholar]
  86. Fialho A., Fialho A., Schenone A., Thota P., McCullough A., Shen B. Association between Small Intestinal Bacterial Overgrowth and Deep Vein Thrombosis. Gastroenterol. Rep. 2016;4:299–303. doi: 10.1093/gastro/gow004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  87. Cheng X., Zhang L., Xie N.-C., Xu H.-L., Lian Y.-J. Association between Small-intestinal Bacterial Overgrowth and Deep Vein Thrombosis in Patients with Spinal Cord Injuries. J. Thromb. Haemost. 2017;15:304–311. doi: 10.1111/jth.13583. [PubMed] [CrossRef] [Google Scholar]
  88. Ojetti V., Pitocco D., Scarpellini E., Zaccardi F., Scaldaferri F., Gigante G., Gasbarrini G., Ghirlanda G., Gasbarrini A. Small Bowel Bacterial Overgrowth and Type 1 Diabetes. Eur. Rev. Med. Pharm. Sci. 2009;13:419–423. [PubMed] [Google Scholar]
  89. Faria M., Pavin E.J., Parisi M.C.R., Lorena S.L.S., Brunetto S.Q., Ramos C.D., Pavan C.R., Mesquita M.A. Delayed Small Intestinal Transit in Patients with Long-Standing Type 1 Diabetes Mellitus: Investigation of the Relationships with Clinical Features, Gastric Emptying, Psychological Distress, and Nutritional Parameters. Diabetes. Technol. Ther. 2013;15:32–38. doi: 10.1089/dia.2012.0158. [PubMed] [CrossRef] [Google Scholar]
  90. Malik A., Morya R.K., Bhadada S.K., Rana S. Type 1 Diabetes Mellitus: Complex Interplay of Oxidative Stress, Cytokines, Gastrointestinal Motility and Small Intestinal Bacterial Overgrowth. Eur. J. Clin. Investig. 2018;48:e13021. doi: 10.1111/eci.13021. [PubMed] [CrossRef] [Google Scholar]
  91. Rana S., Bhansali A., Bhadada S., Sharma S., Kaur J., Singh K. Orocecal Transit Time and Small Intestinal Bacterial Overgrowth in Type 2 Diabetes Patients from North India. Diabetes Technol. Ther. 2011;13:1115–1120. doi: 10.1089/dia.2011.0078. [PubMed] [CrossRef] [Google Scholar]
  92. Rana S.V., Malik A., Bhadada S.K., Sachdeva N., Morya R.K., Sharma G. Malabsorption, Orocecal Transit Time and Small Intestinal Bacterial Overgrowth in Type 2 Diabetic Patients: A Connection. Ind. J. Clin. Biochem. 2017;32:84–89. doi: 10.1007/s12291-016-0569-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  93. Zietz B., Lock G., Straub R.H., Braun B., Scholmerich J., Palitzsch K.D. Small-Bowel Bacterial Overgrowth in Diabetic Subjects Is Associated with Cardiovascular Autonomic Neuropathy. Diabetes Care. 2000;23:1200–1201. doi: 10.2337/diacare.23.8.1200. [PubMed] [CrossRef] [Google Scholar]
  94. Lauritano E.C., Bilotta A.L., Gabrielli M., Scarpellini E., Lupascu A., Laginestra A., Novi M., Sottili S., Serricchio M., Cammarota G., et al. Association between Hypothyroidism and Small Intestinal Bacterial Overgrowth. J. Clin. Endocrinol. Metab. 2007;92:4180–4184. doi: 10.1210/jc.2007-0606. [PubMed] [CrossRef] [Google Scholar]
  95. Brechmann T., Sperlbaum A., Schmiegel W. Levothyroxine Therapy and Impaired Clearance Are the Strongest Contributors to Small Intestinal Bacterial Overgrowth: Results of a Retrospective Cohort Study. WJG. 2017;23:842. doi: 10.3748/wjg.v23.i5.842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  96. Konrad P., Chojnacki J., Kaczka A., Pawłowicz M., Rudnicki C., Chojnacki C. Thyroid dysfunction in patients with small intestinal bacterial overgrowth. Pol. Merkur. Lek. 2018;44:15–18. [PubMed] [Google Scholar]
  97. Gabrielli M., Bonazzi P., Scarpellini E., Bendia E., Lauritano E.C., Fasano A., Ceravolo M.G., Capecci M., Rita Bentivoglio A., Provinciali L., et al. Prevalence of Small Intestinal Bacterial Overgrowth in Parkinson’s Disease. Mov. Disord. 2011;26:889–892. doi: 10.1002/mds.23566. [PubMed] [CrossRef] [Google Scholar]
  98. Dobbs R., Charlett A., Dobbs S.M., Weller C., Ibrahim M.A.A., Iguodala O., Smee C., Plant J., Lawson A.J., Taylor D., et al. Leukocyte-Subset Counts in Idiopathic Parkinsonism Provide Clues to a Pathogenic Pathway Involving Small Intestinal Bacterial Overgrowth. A Surveillance Study. Gut Pathog. 2012;4:12. doi: 10.1186/1757-4749-4-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  99. Fasano A., Visanji N.P., Liu L.W.C., Lang A.E., Pfeiffer R.F. Gastrointestinal Dysfunction in Parkinson’s Disease. Lancet Neurol. 2015;14:625–639. doi: 10.1016/S1474-4422(15)00007-1. [PubMed] [CrossRef] [Google Scholar]
  100. Tan A.H., Mahadeva S., Thalha A.M., Gibson P.R., Kiew C.K., Yeat C.M., Ng S.W., Ang S.P., Chow S.K., Tan C.T., et al. Small Intestinal Bacterial Overgrowth in Parkinson’s Disease. Park. Relat. Disord. 2014;20:535–540. doi: 10.1016/j.parkreldis.2014.02.019. [PubMed] [CrossRef] [Google Scholar]
  101. Niu X.-L., Liu L., Song Z.-X., Li Q., Wang Z.-H., Zhang J.-L., Li H.-H. Prevalence of Small Intestinal Bacterial Overgrowth in Chinese Patients with Parkinson’s Disease. J. Neural. Transm. 2016;123:1381–1386. doi: 10.1007/s00702-016-1612-8. [PubMed] [CrossRef] [Google Scholar]
  102. Su A., Gandhy R., Barlow C., Triadafilopoulos G. Utility of the Wireless Motility Capsule and Lactulose Breath Testing in the Evaluation of Patients with Parkinson’s Disease Who Present with Functional Gastrointestinal Symptoms. BMJ Open Gastroenterol. 2017;4:e000132. doi: 10.1136/bmjgast-2017-000132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  103. Hasuike Y., Endo T., Koroyasu M., Matsui M., Mori C., Yamadera M., Fujimura H., Sakoda S. Bile Acid Abnormality Induced by Intestinal Dysbiosis Might Explain Lipid Metabolism in Parkinson’s Disease. Med. Hypotheses. 2020;134:109436. doi: 10.1016/j.mehy.2019.109436. [PubMed] [CrossRef] [Google Scholar]
  104. Wang L., Yu Y.-M., Zhang Y., Zhang J., Lu N., Liu N. Hydrogen Breath Test to Detect Small Intestinal Bacterial Overgrowth: A Prevalence Case–Control Study in Autism. Eur. Child Adolesc. Psychiatry. 2018;27:233–240. doi: 10.1007/s00787-017-1039-2. [PubMed] [CrossRef] [Google Scholar]
  105. Rao S.S.C., Rehman A., Yu S., Andino N.M. de Brain Fogginess, Gas and Bloating: A Link between SIBO, Probiotics and Metabolic Acidosis. Clin. Transl. Gastroenterol. 2018;9:162. doi: 10.1038/s41424-018-0030-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  106. Parodi A., Sessarego M., Greco A., Bazzica M., Filaci G., Setti M., Savarino E., Indiveri F., Savarino V., Ghio M. Small Intestinal Bacterial Overgrowth in Patients Suffering from Scleroderma: Clinical Effectiveness of Its Eradication. Am. J. Gastroenterol. 2008;103:1257–1262. doi: 10.1111/j.1572-0241.2007.01758.x. [PubMed] [CrossRef] [Google Scholar]
  107. Marie I., Ducrotte P., Denis P., Menard J.-F., Levesque H. Small Intestinal Bacterial Overgrowth in Systemic Sclerosis. Rheumatology. 2009;48:1314–1319. doi: 10.1093/rheumatology/kep226. [PubMed] [CrossRef] [Google Scholar]
  108. Fynne L., Worsøe J., Gregersen T., Schlageter V., Laurberg S., Krogh K. Gastrointestinal Transit in Patients with Systemic Sclerosis. Scand. J. Gastroenterol. 2011;46:1187–1193. doi: 10.3109/00365521.2011.603158. [PubMed] [CrossRef] [Google Scholar]
  109. Savarino E., Mei F., Parodi A., Ghio M., Furnari M., Gentile A., Berdini M., Di Sario A., Bendia E., Bonazzi P., et al. Gastrointestinal Motility Disorder Assessment in Systemic Sclerosis. Rheumatology. 2013;52:1095–1100. doi: 10.1093/rheumatology/kes429. [PubMed] [CrossRef] [Google Scholar]
  110. Gemignani L., Savarino V., Ghio M., Parodi A., Zentilin P., de Bortoli N., Negrini S., Furnari M., Dulbecco P., Giambruno E., et al. Lactulose Breath Test to Assess Oro-Cecal Transit Delay and Estimate Esophageal Dysmotility in Scleroderma Patients. Semin. Arthritis Rheum. 2013;42:522–529. doi: 10.1016/j.semarthrit.2012.09.004. [PubMed] [CrossRef] [Google Scholar]
  111. Marie I., Leroi A.-M., Menard J.-F., Levesque H., Quillard M., Ducrotte P. Fecal Calprotectin in Systemic Sclerosis and Review of the Literature. Autoimmun. Rev. 2015;14:547–554. doi: 10.1016/j.autrev.2015.01.018. [PubMed] [CrossRef] [Google Scholar]
  112. Adarsh M.B., Sharma S.K., Sinha S.K., Bhattacharya A., Rana S., Dhir V., Singh S. Gastrointestinal Dysmotility and Infections in Systemic Sclerosis- An Indian Scenario. Curr. Rheumatol. Rev. 2018;14:172–176. doi: 10.2174/1573397113666170425145405. [PubMed] [CrossRef] [Google Scholar]
  113. Sawadpanich K., Soison P., Chunlertrith K., Mairiang P., Sukeepaisarnjaroen W., Sangchan A., Suttichaimongkol T., Foocharoen C. Prevalence and Associated Factors of Small Intestinal Bacterial Overgrowth among Systemic Sclerosis Patients. Int. J. Rheum. Dis. 2019;22:695–699. doi: 10.1111/1756-185X.13495. [PubMed] [CrossRef] [Google Scholar]
  114. García-Collinot G., Madrigal-Santillán E.O., Martínez-Bencomo M.A., Carranza-Muleiro R.A., Jara L.J., Vera-Lastra O., Montes-Cortes D.H., Medina G., Cruz-Domínguez M.P. Effectiveness of Saccharomyces Boulardii and Metronidazole for Small Intestinal Bacterial Overgrowth in Systemic Sclerosis. Dig. Dis. Sci. 2019;65:1134–1143. doi: 10.1007/s10620-019-05830-0. [PubMed] [CrossRef] [Google Scholar]
  115. Parodi A., Paolino S., Greco A., Drago F., Mansi C., Rebora A., Parodi A., Savarino V. Small Intestinal Bacterial Overgrowth in Rosacea: Clinical Effectiveness of Its Eradication. Clin. Gastroenterol. Hepatol. 2008;6:759–764. doi: 10.1016/j.cgh.2008.02.054. [PubMed] [CrossRef] [Google Scholar]
  116. Drago F., De Col E., Agnoletti A.F., Schiavetti I., Savarino V., Rebora A., Paolino S., Cozzani E., Parodi A. The Role of Small Intestinal Bacterial Overgrowth in Rosacea: A 3-Year Follow-Up. J. Am. Acad. Dermatol. 2016;75:e113–e115. doi: 10.1016/j.jaad.2016.01.059. [PubMed] [CrossRef] [Google Scholar]
  117. Strid H., Simrén M., Stotzer P.-O., Ringström G., Abrahamsson H., Björnsson E.S. Patients with Chronic Renal Failure Have Abnormal Small Intestinal Motility and a High Prevalence of Small Intestinal Bacterial Overgrowth. Digestion. 2003;67:129–137. doi: 10.1159/000071292. [PubMed] [CrossRef] [Google Scholar]
  118. Bernhardt H., Knoke M. Recent Studies on the Microbial Ecology of the Upper Gastrointestinal Tract. Infection. 1989;17:259–263. doi: 10.1007/BF01639536. [PubMed] [CrossRef] [Google Scholar]
  119. Dukowicz A.C., Lacy B.E., Levine G.M. Small Intestinal Bacterial Overgrowth: A Comprehensive Review. Gastroenterol. Hepatol. 2007;3:112–122. [PMC free article] [PubMed] [Google Scholar]
  120. Bouhnik Y., Alain S., Attar A., Flourié B., Raskine L., Sanson-Le Pors M.J., Rambaud J.-C. Bacterial Populations Contaminating The Upper Gut in Patients With Small Intestinal Bacterial Overgrowth Syndrome. Am. J. Gastroenterol. 1999;94:1327–1331. doi: 10.1111/j.1572-0241.1999.01016.x. [PubMed] [CrossRef] [Google Scholar]
  121. Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., Schmulson M., Valdovinos M., Zakko S., Pimentel M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017;112:775–784. doi: 10.1038/ajg.2017.46. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  122. Roland B.C., Ciarleglio M.M., Clarke J.O., Semler J.R., Tomakin E., Mullin G.E., Pasricha P.J. Low Ileocecal Valve Pressure Is Significantly Associated with Small Intestinal Bacterial Overgrowth (SIBO) Dig. Dis. Sci. 2014;59:1269–1277. doi: 10.1007/s10620-014-3166-7. [PubMed] [CrossRef] [Google Scholar]
  123. Khoshini R., Dai S.-C., Lezcano S., Pimentel M. A Systematic Review of Diagnostic Tests for Small Intestinal Bacterial Overgrowth. Dig. Dis. Sci. 2008;53:1443–1454. doi: 10.1007/s10620-007-0065-1. [PubMed] [CrossRef] [Google Scholar]
  124. Jacobs C., Coss Adame E., Attaluri A., Valestin J., Rao S.S.C. Dysmotility and Proton Pump Inhibitor Use Are Independent Risk Factors for Small Intestinal Bacterial and/or Fungal Overgrowth. Aliment. Pharm. 2013;37:1103–1111. doi: 10.1111/apt.12304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  125. Lombardo L., Foti M., Ruggia O., Chiecchio A. Increased Incidence of Small Intestinal Bacterial Overgrowth During Proton Pump Inhibitor Therapy. Clin. Gastroenterol. Hepatol. 2010;8:504–508. doi: 10.1016/j.cgh.2009.12.022. [PubMed] [CrossRef] [Google Scholar]
  126. Saltzman J.R., Kowdley K.V., Pedrosa M.C., Sepe T., Golner B., Perrone G., Russell R.M. Bacterial Overgrowth without Clinical Malabsorption in Elderly Hypochlorhydric Subjects. Gastroenterology. 1994;106:615–623. doi: 10.1016/0016-5085(94)90693-9. [PubMed] [CrossRef] [Google Scholar]
  127. Gray J.D., Shiner M. Influence of Gastric PH on Gastric and Jejunal Flora. Gut. 1967;8:574–581. doi: 10.1136/gut.8.6.574. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  128. Weston A.P., Biddle W.L., Bhatia P.S., Miner P.B. Terminal Ileal Mucosal Mast Cells in Irritable Bowel Syndrome. Dig. Dis. Sci. 1993;38:1590–1595. doi: 10.1007/BF01303164. [PubMed] [CrossRef] [Google Scholar]
  129. Salzmann J.L., Peltier-Koch F., Bloch F., Petite J.P., Camilleri J.P. Morphometric Study of Colonic Biopsies: A New Method of Estimating Inflammatory Diseases. Lab. Investig. 1989;60:847–851. [PubMed] [Google Scholar]
  130. Lin H.C. Small Intestinal Bacterial Overgrowth: A Framework for Understanding Irritable Bowel Syndrome. JAMA. 2004;292:852–858. doi: 10.1001/jama.292.7.852. [PubMed] [CrossRef] [Google Scholar]
  131. Aziz I., Törnblom H., Simrén M. Small Intestinal Bacterial Overgrowth as a Cause for Irritable Bowel Syndrome: Guilty or Not Guilty? Curr. Opin. Gastroenterol. 2017;33:196–202. doi: 10.1097/MOG.0000000000000348. [PubMed] [CrossRef] [Google Scholar]
  132. Pimentel M., Mathur R., Chang C. Gas and the Microbiome. Curr. Gastroenterol. Rep. 2013;15:356. doi: 10.1007/s11894-013-0356-y. [PubMed] [CrossRef] [Google Scholar]
  133. Cohen-Mekelburg S., Tafesh Z., Coburn E., Weg R., Malik N., Webb C., Hammad H., Scherl E., Bosworth B.P. Testing and Treating Small Intestinal Bacterial Overgrowth Reduces Symptoms in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2018;63:2439–2444. doi: 10.1007/s10620-018-5109-1. [PubMed] [CrossRef] [Google Scholar]
  134. Fraquelli M., Bardella M.T., Peracchi M., Cesana B.M., Bianchi P.A., Conte D. Gallbladder Emptying and Somatostatin and Cholecystokinin Plasma Levels in Celiac Disease. Am. J. Gastroenterol. 1999;94:1866–1870. doi: 10.1111/j.1572-0241.1999.01221.x. [PubMed] [CrossRef] [Google Scholar]
  135. Bardella M.T., Fraquelli M., Peracchi M., Cesana B.M., Bianchi P.A. Gastric Emptying and Plasma Neurotensin Levels in Untreated Celiac Patients. Scand. J. Gastroenterol. 2000;35:269–273. doi: 10.1080/003655200750024137. [PubMed] [CrossRef] [Google Scholar]
  136. Remes-Troche J.M., Adames K., Castillo-Rodal A.I., Ramírez T., Barreto-Zuñiga R., López-Vidal Y., Uscanga L.F. Intraepithelial Γδ+ Lymphocytes: A Comparative Study between Celiac Disease, Small Intestinal Bacterial Overgrowth, and Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2007;41:671–676. doi: 10.1097/ [PubMed] [CrossRef] [Google Scholar]
  137. Chalasani N., Younossi Z., Lavine J.E., Diehl A.M., Brunt E.M., Cusi K., Charlton M., Sanyal A.J. The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–2023. doi: 10.1002/hep.25762. [PubMed] [CrossRef] [Google Scholar]
  138. Araújo A.R., Rosso N., Bedogni G., Tiribelli C., Bellentani S. Global Epidemiology of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: What We Need in the Future. Liver Int. 2018;38((Suppl. 1)):47–51. doi: 10.1111/liv.13643. [PubMed] [CrossRef] [Google Scholar]
  139. Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E., McGilvray I.D., Allard J.P. Intestinal Microbiota in Patients with Nonalcoholic Fatty Liver Disease. Hepatology. 2013;58:120–127. doi: 10.1002/hep.26319. [PubMed] [CrossRef] [Google Scholar]
  140. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M., et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  141. Zhu L., Baker S.S., Gill C., Liu W., Alkhouri R., Baker R.D., Gill S.R. Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology. 2013;57:601–609. doi: 10.1002/hep.26093. [PubMed] [CrossRef] [Google Scholar]
  142. Yadav D., Timmons L., Benson J.T., Dierkhising R.A., Chari S.T. Incidence, Prevalence, and Survival of Chronic Pancreatitis: A Population-Based Study. Am. J. Gastroenterol. 2011;106:2192–2199. doi: 10.1038/ajg.2011.328. [PubMed] [CrossRef] [Google Scholar]
  143. Ghoshal U.C. How to Interpret Hydrogen Breath Tests. J. Neurogastroenterol. Motil. 2011;17:312–317. doi: 10.5056/jnm.2011.17.3.312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  144. Tan C., Ling Z., Huang Y., Cao Y., Liu Q., Cai T., Yuan H., Liu C., Li Y., Xu K. Dysbiosis of Intestinal Microbiota Associated with Inflammation Involved in the Progression of Acute Pancreatitis. Pancreas. 2015;44:868–875. doi: 10.1097/MPA.0000000000000355. [PubMed] [CrossRef] [Google Scholar]
  145. De Lisle R.C. Altered Transit and Bacterial Overgrowth in the Cystic Fibrosis Mouse Small Intestine. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007;293:G104–G111. doi: 10.1152/ajpgi.00548.2006. [PubMed] [CrossRef] [Google Scholar]
  146. Li L., Somerset S. Digestive System Dysfunction in Cystic Fibrosis: Challenges for Nutrition Therapy. Dig. Liver Dis. 2014;46:865–874. doi: 10.1016/j.dld.2014.06.011. [PubMed] [CrossRef] [Google Scholar]
  147. Sandek A., Bjarnason I., Volk H.-D., Crane R., Meddings J.B., Niebauer J., Kalra P.R., Buhner S., Herrmann R., Springer J., et al. Studies on Bacterial Endotoxin and Intestinal Absorption Function in Patients with Chronic Heart Failure. Int. J. Cardiol. 2012;157:80–85. doi: 10.1016/j.ijcard.2010.12.016. [PubMed] [CrossRef] [Google Scholar]
  148. Katsimichas T., Ohtani T., Motooka D., Tsukamoto Y., Kioka H., Nakamoto K., Konishi S., Chimura M., Sengoku K., Miyawaki H., et al. Non-Ischemic Heart Failure with Reduced Ejection Fraction Is Associated with Altered Intestinal Microbiota. Circ. J. 2018;82:1640–1650. doi: 10.1253/circj.CJ-17-1285. [PubMed] [CrossRef] [Google Scholar]
  149. Sandek A., Swidsinski A., Schroedl W., Watson A., Valentova M., Herrmann R., Scherbakov N., Cramer L., Rauchhaus M., Grosse-Herrenthey A., et al. Intestinal Blood Flow in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2014;64:1092–1102. doi: 10.1016/j.jacc.2014.06.1179. [PubMed] [CrossRef] [Google Scholar]
  150. Mollar A., Villanueva M.P., NÚÑez E., CarratalÁ A., Mora F., BayÉs-GenÍs A., MÍnguez M., Marrachelli V.G., Monleon D., Navarro D., et al. Hydrogen- and Methane-Based Breath Testing and Outcomes in Patients with Heart Failure. J. Card. Fail. 2019;25:319–327. doi: 10.1016/j.cardfail.2018.10.004. [PubMed] [CrossRef] [Google Scholar]
  151. Niebauer J., Volk H.-D., Kemp M., Dominguez M., Schumann R.R., Rauchhaus M., Poole-Wilson P.A., Coats A.J., Anker S.D. Endotoxin and Immune Activation in Chronic Heart Failure: A Prospective Cohort Study. Lancet. 1999;353:1838–1842. doi: 10.1016/S0140-6736(98)09286-1. [PubMed] [CrossRef] [Google Scholar]
  152. Sandek A., Rauchhaus M., Anker S.D., von Haehling S. The Emerging Role of the Gut in Chronic Heart Failure. Curr. Opin. Clin. Nutr. Metab. Care. 2008;11:632–639. doi: 10.1097/MCO.0b013e32830a4c6e. [PubMed] [CrossRef] [Google Scholar]
  153. Anker S.D., von Haehling S. Inflammatory Mediators in Chronic Heart Failure: An Overview. Heart. 2004;90:464–470. doi: 10.1136/hrt.2002.007005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  154. Mayerhofer C.C.K., Awoyemi A.O., Moscavitch S.D., Lappegård K.T., Hov J.R., Aukrust P., Hovland A., Lorenzo A., Halvorsen S., Seljeflot I., et al. Design of the GutHeart-Targeting Gut Microbiota to Treat Heart Failure-Trial: A Phase II, Randomized Clinical Trial: GutHeart Design. ESC Heart Fail. 2018;5:977–984. doi: 10.1002/ehf2.12332. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  155. Tang W.H.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  156. Chen M., Yi L., Zhang Y., Zhou X., Ran L., Yang J., Zhu J., Zhang Q., Mi M. Resveratrol Attenuates Trimethylamine- N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7:e02210-15. doi: 10.1128/mBio.02210-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  157. Virally-Monod M., Tielmans D., Kevorkian J.P., Bouhnik Y., Flourie B., Porokhov B., Ajzenberg C., Warnet A., Guillausseau P.J. Chronic Diarrhoea and Diabetes Mellitus: Prevalence of Small Intestinal Bacterial Overgrowth. Diabetes Metab. 1998;24:530–536. [PubMed] [Google Scholar]
  158. Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 Links Innate Immunity and Fatty Acid–Induced Insulin Resistance. J. Clin. Investig. 2006;116:3015–3025. doi: 10.1172/JCI28898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  159. Delzenne N.M., Cani P.D., Everard A., Neyrinck A.M., Bindels L.B. Gut Microorganisms as Promising Targets for the Management of Type 2 Diabetes. Diabetologia. 2015;58:2206–2217. doi: 10.1007/s00125-015-3712-7. [PubMed] [CrossRef] [Google Scholar]
  160. Bytzer P., Talley N.J., Leemon M., Young L.J., Jones M.P., Horowitz M. Prevalence of Gastrointestinal Symptoms Associated With Diabetes Mellitus: A Population-Based Survey of 15,000 Adults. Arch. Intern. Med. 2001;161:1989. doi: 10.1001/archinte.161.16.1989. [PubMed] [CrossRef] [Google Scholar]
  161. Reddymasu S.C., McCallum R.W. Small Intestinal Bacterial Overgrowth in Gastroparesis: Are There Any Predictors? J. Clin. Gastroenterol. 2010;44:e8–e13. doi: 10.1097/MCG.0b013e3181aec746. [PubMed] [CrossRef] [Google Scholar]
  162. Vallianou N.G., Stratigou T., Tsagarakis S. Microbiome and Diabetes: Where Are We Now? Diabetes Res. Clin. Pract. 2018;146:111–118. doi: 10.1016/j.diabres.2018.10.008. [PubMed] [CrossRef] [Google Scholar]
  163. Zaborska K.E., Cummings B.P. Rethinking Bile Acid Metabolism and Signaling for Type 2 Diabetes Treatment. Curr. Diab. Rep. 2018;18:109. doi: 10.1007/s11892-018-1092-3. [PubMed] [CrossRef] [Google Scholar]
  164. Ciobanu L., Dumitrascu D.L. Gastrointestinal Motility Disorders in Endocrine Diseases. Pol. Arch. Intern. Med. 2011;121:129–136. doi: 10.20452/pamw.1042. [PubMed] [CrossRef] [Google Scholar]
  165. Almandoz J.P., Gharib H. Hypothyroidism: Etiology, Diagnosis, and Management. Med. Clin. N. Am. 2012;96:203–221. doi: 10.1016/j.mcna.2012.01.005. [PubMed] [CrossRef] [Google Scholar]
  166. Daher R., Yazbeck T., Jaoude J.B., Abboud B. Consequences of Dysthyroidism on the Digestive Tract and Viscera. WJG. 2009;15:2834. doi: 10.3748/wjg.15.2834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  167. Zhou L., Li X., Ahmed A., Wu D., Liu L., Qiu J., Yan Y., Jin M., Xin Y. Gut Microbe Analysis Between Hyperthyroid and Healthy Individuals. Curr. Microbiol. 2014;69:675–680. doi: 10.1007/s00284-014-0640-6. [PubMed] [CrossRef] [Google Scholar]
  168. Penhale W.J., Young P.R. The Influence of the Normal Microbial Flora on the Susceptibility of Rats to Experimental Autoimmune Thyroiditis. Clin. Exp. Immunol. 1988;72:288–292. [PMC free article] [PubMed] [Google Scholar]
  169. Ihnatowicz P., Drywień M., Wątor P., Wojsiat J. The Importance of Nutritional Factors and Dietary Management of Hashimoto’s Thyroiditis. Ann. Agric. Environ. Med. 2020;27:184–193. doi: 10.26444/aaem/112331. [PubMed] [CrossRef] [Google Scholar]
  170. Barboza J.L., Okun M.S., Moshiree B. The Treatment of Gastroparesis, Constipation and Small Intestinal Bacterial Overgrowth Syndrome in Patients with Parkinson’s Disease. Expert Opin. Pharmacother. 2015;16:2449–2464. doi: 10.1517/14656566.2015.1086747. [PubMed] [CrossRef] [Google Scholar]
  171. DiBaise J.K., Crowell M.D., Driver-Dunckley E., Mehta S.H., Hoffman-Snyder C., Lin T., Adler C.H. Weight Loss in Parkinson’s Disease: No Evidence for Role of Small Intestinal Bacterial Overgrowth. J. Park. Dis. 2018:571–581. doi: 10.3233/JPD-181386. [PubMed] [CrossRef] [Google Scholar]
  172. Fasano A., Bove F., Gabrielli M., Petracca M., Zocco M.A., Ragazzoni E., Barbaro F., Piano C., Fortuna S., Tortora A., et al. The Role of Small Intestinal Bacterial Overgrowth in Parkinson’s Disease: Sibo in Parkinson’s Disease. Mov. Disord. 2013;28:1241–1249. doi: 10.1002/mds.25522. [PubMed] [CrossRef] [Google Scholar]
  173. van Kessel S.P., El Aidy S. Contributions of Gut Bacteria and Diet to Drug Pharmacokinetics in the Treatment of Parkinson’s Disease. Front. Neurol. 2019;10:1087. doi: 10.3389/fneur.2019.01087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  174. Valles-Colomer M., Falony G., Darzi Y., Tigchelaar E.F., Wang J., Tito R.Y., Schiweck C., Kurilshikov A., Joossens M., Wijmenga C., et al. The Neuroactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nat. Microbiol. 2019;4:623–632. doi: 10.1038/s41564-018-0337-x. [PubMed] [CrossRef] [Google Scholar]
  175. Geier D.A., Kern J.K., Geier M.R. A Comparison of the Autism Treatment Evaluation Checklist (ATEC) and the Childhood Autism Rating Scale (CARS) for the Quantitative Evaluation of Autism. J. Ment. Health Res. Intellect. Disabil. 2013;6:255–267. doi: 10.1080/19315864.2012.681340. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  176. Cryan J.F., Dinan T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012;13:701–712. doi: 10.1038/nrn3346. [PubMed] [CrossRef] [Google Scholar]
  177. Finegold S.M., Summanen P.H., Downes J., Corbett K., Komoriya T. Detection of Clostridium Perfringens Toxin Genes in the Gut Microbiota of Autistic Children. Anaerobe. 2017;45:133–137. doi: 10.1016/j.anaerobe.2017.02.008. [PubMed] [CrossRef] [Google Scholar]
  178. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008. [PubMed] [CrossRef] [Google Scholar]
  179. Macfabe D., Cain D., Rodriguezcapote K., Franklin A., Hoffman J., Boon F., Taylor A., Kavaliers M., Ossenkopp K. Neurobiological Effects of Intraventricular Propionic Acid in Rats: Possible Role of Short Chain Fatty Acids on the Pathogenesis and Characteristics of Autism Spectrum Disorders. Behav. Brain Res. 2007;176:149–169. doi: 10.1016/j.bbr.2006.07.025. [PubMed] [CrossRef] [Google Scholar]
  180. Zhang Y., Hodgson N.W., Trivedi M.S., Abdolmaleky H.M., Fournier M., Cuenod M., Do K.Q., Deth R.C. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE. 2016;11:e0146797. doi: 10.1371/journal.pone.0146797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  181. Khalighi A.R., Khalighi M.R., Behdani R., Jamali J., Khosravi A., Kouhestani S., Radmanesh H., Esmaeelzadeh S., Khalighi N. Evaluating the Efficacy of Probiotic on Treatment in Patients with Small Intestinal Bacterial Overgrowth (SIBO)—A Pilot Study. Indian J. Med. Res. 2014;140:604–608. [PMC free article] [PubMed] [Google Scholar]
  182. Adams J.B., Romdalvik J., Levine K.E., Hu L.-W. Mercury in First-Cut Baby Hair of Children with Autism versus Typically-Developing Children. Toxicol. Environ. Chem. 2008;90:739–753. doi: 10.1080/02772240701699294. [CrossRef] [Google Scholar]
  183. Petersen C. D-Lactic Acidosis. Nutr. Clin. Pract. 2005;20:634–645. doi: 10.1177/0115426505020006634. [PubMed] [CrossRef] [Google Scholar]
  184. Steen V.D., Medsger T.A. Severe Organ Involvement in Systemic Sclerosis with Diffuse Scleroderma. Arthritis Rheum. 2000;43:2437–2444. doi: 10.1002/1529-0131(200011)43:11<2437::AID-ANR10>3.0.CO;2-U. [PubMed] [CrossRef] [Google Scholar]
  185. Gyger G., Baron M. Gastrointestinal Manifestations of Scleroderma: Recent Progress in Evaluation, Pathogenesis, and Management. Curr. Rheumatol. Rep. 2012;14:22–29. doi: 10.1007/s11926-011-0217-3. [PubMed] [CrossRef] [Google Scholar]
  186. Sjogren R.W. Gastrointestinal Motility Disorders in Scleroderma. Arthritis Rheum. 1994;37:1265–1282. doi: 10.1002/art.1780370902. [PubMed] [CrossRef] [Google Scholar]
  187. Bharadwaj S., Tandon P., Gohel T., Corrigan M.L., Coughlin K.L., Shatnawei A., Chatterjee S., Kirby D.F. Gastrointestinal Manifestations, Malnutrition, and Role of Enteral and Parenteral Nutrition in Patients with Scleroderma. J. Clin. Gastroenterol. 2015;49:559–564. doi: 10.1097/MCG.0000000000000334. [PubMed] [CrossRef] [Google Scholar]
  188. Tian X.-P. Gastrointestinal Complications of Systemic Sclerosis. WJG. 2013;19:7062. doi: 10.3748/wjg.v19.i41.7062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  189. Stellaard F., Sauerbruch T., Luderschmidt C.H., Leisner B., Paumgartner G. Intestinal Involvement in Progressive Systemic Sclerosis Detected by Increased Unconjugated Serum Bile Acids. Gut. 1987;28:446–450. doi: 10.1136/gut.28.4.446. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  190. Maconi G. Diagnosis of Symptomatic Uncomplicated Diverticular Disease and the Role of Rifaximin in Management. Acta Biomed. 2017;88:25–32. doi: 10.23750/abm.v88i1.6360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  191. Pittman N., Rawn S.M., Wang M., Masetto A., Beattie K.A., Larché M. Treatment of Small Intestinal Bacterial Overgrowth in Systemic Sclerosis: A Systematic Review. Rheumatology. 2018;57:1802–1811. doi: 10.1093/rheumatology/key175. [PubMed] [CrossRef] [Google Scholar]
  192. Rebora A. The Management of Rosacea. Am. J. Clin. Dermatol. 2002;3:489–496. doi: 10.2165/00128071-200203070-00005. [PubMed] [CrossRef] [Google Scholar]
  193. Marks R., Clark M.L., Beard R.J., Kwok M., Robertson W.B. Gastrointestinal Observations in Rosacea. Lancet. 1967;289:739–743. doi: 10.1016/S0140-6736(67)91361-X. [PubMed] [CrossRef] [Google Scholar]
  194. Rukavina Mikusic N.L., Kouyoumdzian N.M., Choi M.R. Gut Microbiota and Chronic Kidney Disease: Evidences and Mechanisms That Mediate a New Communication in the Gastrointestinal-Renal Axis. Pflugers Arch-Eur. J. Physiol. 2020;472:303–320. doi: 10.1007/s00424-020-02352-x. [PubMed] [CrossRef] [Google Scholar]
  195. Vaziri N.D., Dure-Smith B., Miller R., Mirahmadi M.K. Pathology of Gastrointestinal Tract in Chronic Hemodialysis Patients: An Autopsy Study of 78 Cases. Am. J. Gastroenterol. 1985;80:608–611. [PubMed] [Google Scholar]
  196. Barrios C., Beaumont M., Pallister T., Villar J., Goodrich J.K., Clark A., Pascual J., Ley R.E., Spector T.D., Bell J.T., et al. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS ONE. 2015;10:e0134311. doi: 10.1371/journal.pone.0134311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  197. Nallu A., Sharma S., Ramezani A., Muralidharan J., Raj D. Gut Microbiome in Chronic Kidney Disease: Challenges and Opportunities. Transl. Res. 2017;179:24–37. doi: 10.1016/j.trsl.2016.04.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  198. Satoh M., Hayashi H., Watanabe M., Ueda K., Yamato H., Yoshioka T., Motojima M. Uremic Toxins Overload Accelerates Renal Damage in a Rat Model of Chronic Renal Failure. Nephron. Exp. Nephrol. 2003;95:e111–e118. doi: 10.1159/000074327. [PubMed] [CrossRef] [Google Scholar]
  199. Jang H.R., Gandolfo M.T., Ko G.J., Satpute S., Racusen L., Rabb H. Early Exposure to Germs Modifies Kidney Damage and Inflammation after Experimental Ischemia-Reperfusion Injury. Am. J. Physiol.-Ren. Physiol. 2009;297:F1457–F1465. doi: 10.1152/ajprenal.90769.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  200. Thadhani R., Pascual M., Bonventre J.V. Acute Renal Failure. N. Engl. J. Med. 1996;334:1448–1460. doi: 10.1056/NEJM199605303342207. [PubMed] [CrossRef] [Google Scholar]
  201. Yang J., Kim C.J., Go Y.S., Lee H.Y., Kim M.-G., Oh S.W., Cho W.Y., Im S.-H., Jo S.K. Intestinal Microbiota Control Acute Kidney Injury Severity by Immune Modulation. Kidney Int. 2020;98:932–946. doi: 10.1016/j.kint.2020.04.048. [PubMed] [CrossRef] [Google Scholar]
  202. Andrade-Oliveira V., Amano M.T., Correa-Costa M., Castoldi A., Felizardo R.J.F., de Almeida D.C., Bassi E.J., Moraes-Vieira P.M., Hiyane M.I., Rodas A.C.D., et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. JASN. 2015;26:1877–1888. doi: 10.1681/ASN.2014030288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  203. Mahmoodpoor F., Rahbar Saadat Y., Barzegari A., Ardalan M., Zununi Vahed S. The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomed. Pharmacother. 2017;93:412–419. doi: 10.1016/j.biopha.2017.06.066. [PubMed] [CrossRef] [Google Scholar]
  204. Kiryluk K., Li Y., Scolari F., Sanna-Cherchi S., Choi M., Verbitsky M., Fasel D., Lata S., Prakash S., Shapiro S., et al. Discovery of New Risk Loci for IgA Nephropathy Implicates Genes Involved in Immunity against Intestinal Pathogens. Nat. Genet. 2014;46:1187–1196. doi: 10.1038/ng.3118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  205. Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., Zadeh M., Gong M., Qi Y., Zubcevic J., et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension. 2015;65:1331–1340. doi: 10.1161/HYPERTENSIONAHA.115.05315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  206. Durgan D.J., Ganesh B.P., Cope J.L., Ajami N.J., Phillips S.C., Petrosino J.F., Hollister E.B., Bryan R.M. Role of the Gut Microbiome in Obstructive Sleep Apnea–Induced Hypertension. Hypertension. 2016;67:469–474. doi: 10.1161/HYPERTENSIONAHA.115.06672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  207. Stern J.M., Moazami S., Qiu Y., Kurland I., Chen Z., Agalliu I., Burk R., Davies K.P. Evidence for a Distinct Gut Microbiome in Kidney Stone Formers Compared to Non-Stone Formers. Urolithiasis. 2016;44:399–407. doi: 10.1007/s00240-016-0882-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


1. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int J Mol Sci 2020 Dec; 21(23): 9254.
2. Faecal Calprotectin. Clin Biochem Rev. 2018, Aug; 39(3): 77–90.,irritable%20bowel%20syndrome%20(IBS).
3. The Golden Fountain – Is urine the miracle drug no one told you about? Pan Afr Med J 2010, 5: 13.
7. 8. 8. Biology: parasaties – schistosomiasis:
9. The human snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PloS Negl Trop Dis. 2018, May;12(5):
10. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr Ther Res Clin Exp 2019; 91: 5–9:
11. Resources for health professionals: parasites – shistosomiasis:
12. Urinary bladder Schistosoma haematobium-related squamous cell carcinoma: a report of two fatal cases and literature review. Trop Dis Travel Med Vaccines 2022 Feb 15;8(1):3:
13. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 21-2001. A 31-year-old man with an apparent seizure and a mass in the right parietal lobe. N Engl J Med. 2001, 345(2):126–131.
14. [1] Healing Developmental Trauma: How Early Trauma Affects Self-Regulation, Self-Image, and the Capacity for Relationship, by Laurence Heller, PhD and Aline LaPierre, PsyD.
16. The Secret Language of Your Body: The Essential Guide to Health and Wellness, by Inna Segal:


May 2023


Hidden diversity: comparative functional morphology of humans and other speciesPeerJ, 2023; 11: e15148 DOI: 10.7717/peerj.15148.

Dr Roger Williams: University of Texas archive at

Guinea pigs: “Individuality in Vitamin C needs” (Roger Williams with Gary Deason). Paper read before the National Academy of Sciences, April 26, 1967:

John Neustadt, ND, and Steve Pieczenik, MD, PhD, review: Biochemical Individuality, Integrative Medicine 2007, 6:3, Jun/Jul:


Dietary magnesium intake is related to larger brain volumes and lower white matter lesions with notable sex differencesEuropean Journal of Nutrition 2023, DOI: 10.1007/s00394-023-03123-x.

Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023, 12, 4:
Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases. Life Sciences 2023, Feb, 314: 121325. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Molecular Systems Biology 2021,17:e10459,
Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19. Adv Sci (Weinh) 2021, 8(17):e2101222.

Selenium as a predictor of metabolic syndrome in middle age women. Aging (Albany NY) 2023, Mar 21,15(6):1734-1747.




[2] ‘The GMC: expediency before principle’




[4] ‘Good doctors: safer patients—the Chief Medical Officer’s prescription for regulating doctors’


[5] ‘Troubled heart’


[6] “Medical expert witnesses ‘should not scapegoat doctors’ “:


[7] “Covid-19: High Court overturns decision to ban GP from posting views on pandemic on social media” ,


[8] Chronic fatigue syndrome and mitochondrial dysfunction:


[9] Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS):


[10] Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit:




[12] “Gosport hospital: Dr Jane Barton implicated in deaths of 656 patients”:


[13] “Other points raised by the GMC’s handling of its investigations”:






[16] COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis:


[17]  Efficacy of “Essential Iodine Drops” against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2):  




[19] Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines:


[20] Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19:


[21] A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness:


[22] https://ivmmeta.comIvermectin for COVID-19: real-time meta-analysis of 95studies


[23] Effectiveness of personal protective measures in reducing pandemic influenza transmission: A systematic review and meta-analysis:   


[24] “Are Face Masks Effective? The Evidence”, Swiss Policy Research:







Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, Apr 17:

Incident type 2 diabetes attributable to suboptimal diet in 184 countries.
Nature Med 2023, Apr;29(4):982-995.

“Low-carb diets position statement for professionals (May 2021)”:

Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2017, DOI:

Diabetes UK:

Dr Sarah Myhill: “Diabetes – how to prevent the complications”.

Roy Roberston:

Virta: Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at One Year: An Open Label, Non-Randomized, Controlled Study. Diabetes Ther 2018:
Type 2 Diabetes Prevention Focused on Normalization of Glycemia: A Two-Year Pilot Study. Nutrients 2021, 13(3):749.

Insights from a general practice service evaluation supporting a lower carbohydrate diet in patients with type 2 diabetes mellitus and prediabetes: a secondary analysis of routine clinic data including HbA1c, weight and prescribing over 6 years. BMJ Nutrition, Prevention & Health 2021, 3:doi: 10.1136/bmjnph-2020-000072:


Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med 2023, Apr 3, Vol13: 4.

SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat Cell Biol 2023,, 25, 550–564:  

The influence of curcumin additives on the viability of probiotic bacteria, antibacterial activity against pathogenic microorganisms and quality indicators of low-fat yogurt. Frontiers in Nutrition 2023, Apr 3: Consumption of dairy product and its association with total and cause specific mortality – a population-based cohort study and meta-analysis.  Clinical Nutrition 2019, Dec;38(6):2833-2845.

Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023, 14, 1806:


Aryl Hydrocarbon Receptor Activation Coordinates Mouse Small Intestinal Epithelial Cell Programming. Lab Invest 2023, Feb;103(2):100012.

Childhood adversity and risk of type 2 diabetes in early adulthood: results from a population-wide cohort study of 1.2 million individuals.  Diabetologia 2023, Apr 20:, online ahead of print.

US study: “Metabolic, behavioural and social determinants of youth-onset T2D”:

Medication Deprescribing Among Patients With Type 2 Diabetes: A Qualitative Case Series of Lifestyle Medicine Practitioner Protocols. Clinical Diabetes 2023, Apr 18: doi 10.2337/cd22-0009.

Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med 2023, 29, 963–972:

Effects of Tai Chi Chuan on Cognitive Function in Adults 60 Years or Older With Type 2 Diabetes and Mild Cognitive Impairment in China: A Randomized Clinical Trial. JAMA Netw Open 2023, 6(4):e237004.

A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front. Microbiol 2023, 14:

Cranberries for preventing urinary tract infections. Cochrane Database of Systematic Reviews 2023, (4). DOI: 10.1002/14651858.CD001321.pub6.

Folate-dependent hypermobility syndrome: A proposed mechanism and diagnosisHeliyon 2023, 9 (4): e15387.

Hidden diversity: comparative functional morphology of humans and other speciesPeerJ, 2023; 11: e15148 DOI: 10.7717/peerj.15148.

“Digestive Organs Vary Widely Between People, Study Finds”, by Dennis Thompson, April 24, 2023 (HealthDay News):

Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023, Apr 12; S1550-4131(23)00124-9:

Mitoquinone Mesylate and Mitochondrial DNA in End Organs in Humanized Mouse Model of Chronic Treated Human Immunodeficiency Virus Infection. The Journal of Infectious Diseases 2023, Mar 24, jiad044:



April 2023

Success Rates in Psychiatry. JAMA Psychiatry 2023, online March 22:
“JAMA Psychiatry: No Evidence that Psychiatric Treatments Produce ‘Successful Outcomes’”, by Peter Simons:

Psychological distress, self-harm and attempted suicide in UK 17-year olds: prevalence and sociodemographic inequalities. The British Journal of Psychiatry 2021, 219(2), 437-439:

Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659.

The Key Role of Mitochondrial Function in Health and Disease. Antioxidants 2023, 12(4), 782:

Long-term gastrointestinal outcomes of COVID-19.
Nature Communications 2023. March 7:
Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659.

Walnuts and Vegetable Oils Containing Oleic Acid Differentially Affect the Gut Microbiota and Associations with Cardiovascular Risk Factors: Follow-up of a Randomized, Controlled, Feeding Trial in Adults at Risk for Cardiovascular Disease. The Journal of Nutrition 2019; DOI: 10.1093/jn/nxz289.


Considering the methodological limitations in the evidence base of antidepressants for depression: a reanalysis of a network meta-analysis. BMJ Open 2019;9(6):e024886. Jun 27:

Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun 2022;100:233-241.

Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators Inflamm 2017;2017:5650627.

Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci 2010;13(3):135-143:

Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders. Biomed Res Int  2016, 9485412.

Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder. Nord J Psychiatry  2022;76(7):523-529.

Investigation of the relation between anaerobic bacteria genus clostridium and late-onset autism etiology in children. J Immunoassay Immunochem 2014;35(1):101-109.

Action of m-tyrosine in experimental models: evidence for possible antiparkinsonian activity. Eur J Pharmacol 1973;21(2):230-237.

The role of catecholamines, 5-hydroxytryptamine and m-tyramine in the behavioural effects of m-tyrosine in the rat. Eur J Pharmacol 1982;84(3-4):139-149.

Vancomycin Taper and Pulse Regimen With Careful Follow-up for Patients With Recurrent Clostridium difficile Infection. Clin Infect Dis  2017;65(8):1396-1399.

Research panel
1. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nature  Microbiol 2023, March 13:
2. Bile Salt Hydrolase Activity of Probiotics and their Role in Hypolipidemia. Journal of Biology and Todays World 2023, Jan, 12: 1:–in-hypolipidemia.pdf.


Inhibition of Nicotine Metabolism by Cannabidiol (CBD) and 7-Hydroxycannabidiol (7-OH-CBD).
Chem. Res. Toxicol 2023, 36, 2, 177-187, Jan 10:


Audebert, C., Even, G., Cian, A., Blastocystis Investigation Group, Loywick, A., Merlin, S., Viscogliosi, E., & Chabé, M. (2016). Colonisation with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports, 6. https://doi. org/10.1038/srep25255

  1. Deng, L., Wojciech, L., Gascoigne, N. R. J., Peng, G., & Tan, K. S. W. (2021). New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLOS Pathogens, 17(2).
  2. Nemati, S., Zali, M. R., Johnson, P., Mirjalali, H., & Karanis, P. (2021). Molecular prevalence and subtype distribution of Blastocystis sp. In Asia and in Australia. Journal of Water and Health, 19(5), 687-704.
  3. Oliveira-Arbex, A. P., David, É. B., Cacciò, S. M., de Fonseca, C. R. B., Martin, J. G., Kurokawa, C. S., Tosini, F., Souza Neto, J. A., & Guimarães, S. (2021). Prevalence and genetic characterisation of Dientamoeba fragilis in asymptomatic children attending daycare centres. Revista do Instituto de Medicina Tropical de Sao Paulo, 63.
  4. Scanlan, P. D., Stensvold, C. R., Rajilić-Stojanovic, M., Heilig, H. G. H. J., De Vos, W. M., O’Toole, P. W., & Cotter, P. D. (2014). The microbial eukaryote Blastocystis is a prevlent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 90(1), 326-330. https://doi. org/10.1111/1574-6941.12396
  5. Beiromvand, M., Hashemi, S. J., Arjmand, R., Sadjadei, N., & Hardanipasand, L. (2017). Comparative prevalence of Blastocystis in patients with irritable bowel syndrome and health individuals: a case control study. Jundishapur Journal of Microbiology, 10(6).
  6. Krogsgaard, L. R., O’Brien Andersen, L., Johannesen, T, B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), 161.
  7. Tito, R. Y., Chaffron, S., Caenepeel, C., Lima-Mendez, G., Wang, J., Vieira-Silva, S., Falony, G., Hildebrand, F., Darzi, Y., Rymenans, L., Verspecht, C., Bork, P., Vermeire, S., Joossens, M., & Raes, J. (2019). Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut, 68(7).
  8. Jiménez, P. A., Jaimes, J. E., & Ramírez, J. D. (2019). A summary of Blastocystis subtypes in North and South America. Parasites and Vectors, 12(1), 1-19.
  9. Feranmi, F. (2022). Blastocystis subtype 3 linked to gut microbiota stability. The Lancet Microbe, 3(8). 5247(22)00196-3
  10. Coyle, C. M., Varughese, J., Weiss, & Tanositz, H. B. (2012). Blastocystis: to treat or not to treat. Clinical Infectious Diseases, 54(1), 105-110. https://
  11. Chandramathi, S., Suresh, K., Sivanandam, S., & Kuppusamy, U. R. (2014). Stress exacerbates infectivity and pathogenicity of Blastocystic homnis: in vitro and in vivo evidences. PLoS One, 9(5),

AGA Clinical Practice Update on Alpha-Gal Syndrome for the GI Clinician: Commentary. Clinical Gastroenterology and Hepatology 2023;21:891-896.
Co-sensitization between legumes is frequently seen, but variable and not always clinically relevant. Front. Allergy 2023, 16 March,
Sec. Food Allergy, Vol 4:
Gluten-Free Products: Do We Need to Update Our Knowledge? Foods  2022; 11(23):3839.


Short-term Outcomes of Saffron Supplementation in Patients with Age-related Macular Degeneration: A Double-blind, Placebo-controlled, Randomized Trial.
Med Hypothesis Discov Innov Ophthalmol 2016, Spring; 5(1): 32–38.
Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefes Arch Clin Exp Ophthalmol 2019, 257, 31-40:

High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 2018 Oct;50(10):1357-1365.

Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014, Jun 18;20:1003-16.

Collagen loss with age:

Type III collagen modulates fracture callus bone formation and early remodeling. J Orthop Res 2015, May;33(5):675-84.

A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial.
 Scandinavian Rheumatology 2005, 34, 4: 302-8.

The Effects of a Standardized Herbal Remedy Made from a Subtype of Rosa canina in Patients with Osteoarthritis: A Double-Blind, Randomized, Placebo-Controlled Clinical TrialCurrent Ther Res 2003, 64,1: 21-31.

Anti-inflammatory and chondro-protective effects of rose-hip powder and its constituent galactolipids GOPO.  Poster presentation by Schwager J, Richard N, Wolfram S at the World Congress of Osteoarthritis (OARSI) 2008.

The effect of a glycoside of mono and diglycerol (GOPO®) supplementation on passive knee joint forces and subjective assessment of pain in a non-arthritic population. Brit J Sports Medicine 2013, 47, e4:

A herbal remedy, Hyben Vital (stand. Powder of a subspecies of Rosa canina fruits), reduces pain and improves general wellbeing in patients with OA – a double-blind, placebo-controlled, randomised trial. Phytomedicine 2004, Jul;11(5):383-91.

Does the hip powder of Rose canina (rosehip) reduce pain in osteoarthritis patients? – a meta-analysis of randomised controlled trials. Osteoarthritis Cartilage 2008. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. York (UK): Centre for Reviews and Dissemination (UK); 1995-. Available from:

Anti-inflammatory and chondro-protective effects of rosehip powder and its constituent galactolipids GOPO. Poster presentation at the World Congress of Osteoarthritis (OARSI) 2008:

Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol 2023, March 20:

Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 2023, online 28 February:

Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut 2022;71:230-232:

Association between blood N-3 fatty acid levels and the risk of coronavirus disease 2019 in the UK Biobank. Am J Clin Nutr 2023, Feb;117(2):357-363:


  1. López-Otín, C et al. (2013). ‘The Hallmarks of Aging’. Cell, Volume 153, Issue 6, P1194-1217, June 06.
  2. Ferrucci, L et al. (2019). ‘Measuring biological aging in humans: A quest’. Aging Cell, Volume 19, Issue 2, June 20.
  3. Nagpal, R et al. (2018). ‘Gut microbiome and aging: Physiological and mechanistic insights’. Nutrition and Healthy Aging, Volume 4, No. 4, P267-285 DOI: 10.3233/NHA-170030
  4. Odamaki, T., Kato, K., Sugahara, H. et al. (2016). ‘Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study’. BMC Microbial, 16, 90 (2016).
  5. Saraswati, S., & Sitaraman, R. (2015). ‘Aging and the human gut microbiota-from correlation to causality’. Frontiers in Microbiology, Volume 5, Issue 764.
  6. Santoro, A. et al. (2020). ‘Microbiomes other than the gut: inflammaging and age-related diseases’. Seminars in Immunopathology, Volume 42, P589–605.
  7. Barrientos-Durán, A et al. (2020). ‘Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis’. Nutrients, Volume 12, Issue 2, 419.
  8. Auriemma, RS et al. (2021). ‘The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life’. Front. Cell. Infect. Microbiol., 06 July 2021
  9. Mulheisen, A., & Herbst-Kravoletz, M (2016). ‘Menopause and the vaginal microbiome’. Maturitas, Volume 91, P42-50, September 01.
  10. Gliniewicz, K et al. (2019). ‘Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women’. Frontiers in Microbiology, 14 February 2019.
  11. Dumic, I et al. (2019). ‘Gastrointestinal Tract Disorders in Older Age’. Canadian Journal of Gastroenterology & Hepatology, 2019, 6757524.
  12. Firth, M., & Prather, CM. (2002). ‘Gastrointestinal motility problems in the elderly patient’. Gastroenterology, Volume 122, Issue 6, P1688-1700.
  13. Corcoran, C et al. (2019). ‘Malnutrition in the elderly’. Science Progress, Volume 102, Issue 2 P103-196
  14. Calder, PC , et al. (2022). ‘Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota’. Advances in Nutrition (Bethesda, Md.), Volume 13, Issue 5, S1–S26.
  15. Weyand, CM., & Goronzy, JJ. (2016). ‘Aging of the Immune System. Mechanisms and Therapeutic Targets’. Annals of the American Thoracic Society, Volume 13, Issue 5, S422–S428.
  16. Ferrucci, L., Fabbri, E. (2018). ‘Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty’. Nature Reviews Cardiology, Volume15, P505–522.
  17. Novotny, SA., Warren, GL., & Hamrick, MW. (2015). ‘Aging and the muscle-bone relationship’. Physiology (Bethesda, Md.), Volume 30, Issue 1, P8–16.
  18. Ji, M. X., & Yu, Q. (2015). ‘Primary osteoporosis in postmenopausal women’. Chronic diseases and translational medicine, Volume 1, Issue 1, P9–13.
  19. Ogawa, S., Yakabe, M., & Akishita, M. (2016). ‘Age-related sarcopenia and its pathophysiological bases’. Inflammation and Regeneration, Volume 36, Article 17.
  20. Yakabe, M., Ogawa, S., & & Akishita, M. (2015). ‘Clinical Manifestations and Pathophysiology of Sarcopenia’. RNA and Transcription, Volume 1, No. 2, P10-17. doi: 10.11648/j.rnat.20150102.11
  21. Ding, K., Hua, F., & Ding, W. (2020). ‘Gut Microbiome and Osteoporosis’. Aging and disease, Volume 11, Issue 2, P438–447.
  22. Xu, Z et al. (2020). ‘Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis’. Front. Cell. Infect. Microbiol., 21 April 2020
  23. Liu, C., Cheung, WH., Li, J., et al. (2021). ‘Understanding the gut microbiota and sarcopenia: a systematic review’. Journal of Cachexia, Sarcopenia and Muscle, Volume 12, Issue 6, P1393–1407.
  24. Lochlainn, MN., Bowyer, RCE., & Steves CJ. (2018). ‘Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome’. Nutrients 2018, Volume 10, Issue 7, 929;
  25. Jung, C., & Brubaker, L. (2019). ‘The etiology and management of recurrent urinary tract infections in postmenopausal women’. Climacteric: the Journal of the International Menopause Society, Volume 22, Issue 3, P242–249.
  26. Mulheisen, A., & Herbst-Kravoletz, M (2016). ‘Menopause and the vaginal microbiome’. Maturitas, Volume 91, P42-50, September 01.
  27. Gliniewicz, K et al. (2019). ‘Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women’. Frontiers in Microbiology, 14 February 2019.
  28. MacBride, MB., Rhodes, DJ., & Shuster, L. T. (2010). ‘Vulvovaginal atrophy’. Mayo Clinic proceedings, Volume 85, Issue 1, P87–94.
  29. Naumova, I., & Castelo-Branco, C. (2018). ‘Current treatment options for postmenopausal vaginal atrophy’. International journal of women’s health, Volume 10, P387–395.
  30. Hoffmann, JN et al. (2014), ‘Prevalence of Bacterial Vaginosis and Candida among Postmenopausal Women in the United States’. The Journals of Gerontology: Series B, Volume 69, Issue Suppl_2, November 2014, Pages S205–S214,
  31. Szymański, JK.., Słabuszewska-Jóźwiak, A., & Jakiel, G. (2021). ‘Vaginal Aging-What We Know and What We Do Not Know’. International Journal of Environmental Research and Public Health, Volume 18, Issue 9, 4935.
  32. Waller et al. (2011). ‘Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults.’ Scandinavian Journal of Gastroenterology. 46: P1057-1064
  33. Gopal, PK., Prasad, J., Gill, HS. (2003). ‘Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects.’ Nutrition Research. 23 (2003) P1313–1328.
  34. Gill H et al. (2001). ‘Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019′. Am J Clin Nutr, Volume 74: P833-839.
  35. Miller L et al. (2017). ‘The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis’. Nutrients, Volume 9, Issue 3:191.
  36. Bernini L et al. (2016). ‘Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomised trial. Effects of probiotics on metabolic syndrome’. Nutrition, Volume 32, Issue 6: P716-9.
  37. Upadhyaya, S. and Banerjee, G. (2011). ‘Enhancement of natural killer cell activity in immuno-compromised elderly subjects by Bacillus coagulans.’ International Journal of Probiotics and Prebiotics. Volume 6, No.3/4 P141-146.
  38. Madempudi, R et al. (2019). ‘Randomised clinical trial: ‘The effect of probiotic Bacillus coagulans Unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults’. Scientific Reports. 9: 12210.
  39. Eskesen, D et al. (2015). ‘Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: a randomised, double-blind, placebo-controlled, parallel-group trial’. The British Journal of Nutrition, Volume 114, Issue 10, P1638–1646.
  40. Alm L, et al (1993). ‘Effect of a new fermented milk product “CULTURA” on constipation in geriatric patients’. 1st Lactic Acid Bacteria Computer Conference Proceedings. Horizon Scientific Press, Norfolk, England 1993.
  41. Beerepoot et al. (2012). ‘Lactobacilli vs antibiotics to prevent urinary tract infections: a randomized, double-blind, non-inferiority trial in postmenopausal women’. Arch Intern Med., Volume 172, Issue 9, P704-12.
  42. Macklaim et al., (2015). ‘Changes in vaginal microbiota following antimicrobial and probiotic therapy’. Microbial Ecology in Health and Disease, 26:27799.
  43. Martinez et al. (2009). ‘Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14®’. Lett Appl Microbiol. Volume 48, Issue 3, P269-74



March 2023

IHCAN references March 2023


“The seven lifestyle factors in middle-age proven to protect you from dementia later in life”, by Luke Andrews., Feb 27, 2023.
Association Between Drug Characteristics and Manufacturer Spending on Direct-to-Consumer Advertising. JAMA 2023, Feb 7;329(5):386-392.
“New Study: In the Midst of COVID-19 Crisis, 7 out of 10 Big Pharma Companies Spent More on Sales and Marketing than R&D”: 


Monocytes re-enter the bone marrow during fasting and alter the host response to infectionImmunity 2023, Fe 23:

Reduction in caffeine withdrawal after open-label decaffeinated coffee. Journal of Psychopharmacology 2023, Jan, 37(2):181-191.

Sources and severity of bias in estimates of the BMI–mortality associationPopulation Studies, 2023; 1 DOI: 10.1080/00324728.2023.2168035.

Sources and severity of bias in estimates of the BMI–mortality associationPopulation Studies, 2023; 1 DOI: 10.1080/00324728.2023.2168035.

Association of COVID-19 Vaccination With Risk for Incident Diabetes After COVID-19 Infection. JAMA Network Open 2023, 6(2): e2255965. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. Cell Rep Med 2020, Oct 20, 1(7):100125.
Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Research and Clinical Practice 2021, 172: 108637.

“Multi-‘omics of gut microbiome-host interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients”. Cell Host & Microbe 2023, Feb:
Variation of butyrate production in the gut microbiome in type 2 diabetes patients. Int Microbiol 2023, Feb 13: 


Curcumin-Qingdai Combination For Patients With Active Ulcerative Colitis: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Inflammatory Bowel Diseases 2023, Feb, 29, Supplement_1, S9:
Qingdai (Qd) For Patients With Active Ulcerative Colitis: A Retrospective Israeli National Experience. Inflammatory Bowel Diseases 2023, Feb, 29, Supplement_1, S83–S84:
Curcumin-QingDai Combination as Treatment for Moderate-Severe Ulcerative Colitis. Case Rep Gastroenterol 2022, 563-8:

  1. Curcumin in Combination With Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin Gastroenterol Hepatol 2015 Aug;13(8), 1444-9.e1:
    2. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.Am J Physiol Cell Physiol. 2017;312(4):C438–45.
    3. Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J Gastroenterol 2013, May 7;19(17):2718-22:

Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. Gut 2023, Online First January 9:
Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol Hepatol 2020, Nov;5(11):986-995:  

Allobaculum mucilyticum sp. nov. and Allobaculum fili sp. nov., two novel members of the Allobaculum genus isolated from the human intestinal tract. International Journal of Systematic and Evolutionary Microbiology 2023, Jan 73(1):005635.

Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nature Communications 2022, Dec 20:


Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of AcylationJournal of Agricultural and Food Chemistry 2022; 71 (2): 1002.

Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegenerationCommunications Biology, 2022; 5 (1):

Modulating the Microbiome for Crohn’s Disease Treatment. Gastroenterology 2023, Jan 24, S0016-5085(23)00049-5:

The σE Pathway Is Involved in Biofilm Formation by Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J Bacteriol.2013 Jan; 195(1), 76–84:

The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol 2021, 4, 627:   


Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Science & Nutrition 2023, 11, 3-16.

Açai pulp improves cognition and insulin sensitivity in obese mice. Nutritional Neuroscience 2023:

Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaı́ (Euterpe oleracea Mart.) PolyphenolsACS Omega 2019; 4 (13): 15628 DOI: 10.1021/acsomega.9b02127.

15 N ‐labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque productionActa Physiologica 2023; DOI: 10.1111/apha.13924.

Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutr Neurosci 2023, Jan 18:1-15:  


Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory.  Journal of Neurochemistry 2003, Jan 20, 00, 1-18.

Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metab. 2023 Jan 3;35(1):56-70.e3.

The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023, Feb 8, 15, 871:

A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed Pharmacother 2022 Mar;147:112636.

Association between sarcopenia and cognitive function in older Chinese adults: Evidence from the China health and retirement longitudinal study. Front Public Health 2023, Jan 10;

Oral hygiene, mouthwash usage and cardiovascular mortality during 18.8 years of follow-up. Br Dent J 2023, Feb 3,1-6:
Associations of genetic and infectious risk factors with coronary heart disease. eLife 2023, Feb 14, 12:e79742:


February 2023

Starmer and Sunak:
“NHS in crisis: The worst reasons people visit A&E when they shouldn’t”, by Will Worley. The Independent, 2016, March 26:




The costs of drug prescriptions for diabetes in the NHS.
 Lancet 2019, Jan 19;393(10168):226-227:


Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. 
Nat Commun 2022, 13, 6958:

Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023, Jan 4, 15, 259:

Opportunities to integrate nutrigenomics into clinical practice and patient counselling. Eur J Clin Nutr 2023, Jan;77(1):36-44:


What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutrition, Prevention & Health 2023;e000544:

Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ 2023, 380, Jan 18:

The FADS1 rs174550 Genotype Modifies the n‐3 and n‐6 PUFA and Lipid Mediator Responses to a High Alpha‐Linolenic Acid and High Linoleic Acid Diets. Molecular Nutrition & Food Research 2022:

Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trialThe Lancet Microbe 2023, Jan 13:

Purine Nucleosides Interfere with c-di-AMP Levels and Act as Adjuvants To Re-Sensitize MRSA To β-Lactam Antibiotics. mBio 2022, Dec 12:

Dietary nucleotides: a novel supplement in fish feeds: 1. Effects on resistance to disease in salmonids. Aquaculture 2001, 199: 1-2, 159-169:

A Randomised Double Blind Placebo Controlled Trial of a Nucleotide-Containing Supplement Nucell on Symptoms of Participants with the Common Cold – A Pilot Study.

Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics 2022, Dec 8, 11(12), 1777;
Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolate. Front Microbiol 2018; 9: 2329:


Association of Body Weight With Response to Vitamin D Supplementation and Metabolism. 
JAMA Netw Open 2023, 6(1):e2250681:  

Decreased bioavailability of vitamin D in obesityAm. J. Clin. Nutr 2000;72:690–3:
Vitamin D deficiency in obesity and health consequences. Current Opinion in Endocrinology and Diabetes 2006, 13(5):p 412-418, Oct:
“Michael F. Holick, PhD, MD The Pioneer of Vitamin D Research”, by Philip Smith. Life Extension Magazine 2010, Sept:

The vitamin d dose response in obesity. Endocr Pract 2014, Dec;20(12):1258-64:

Regular use of vitamin D supplement is associated with fewer melanoma cases compared to non-use: a cross-sectional study in 498 adult subjects at risk of skin cancers. Melanoma Research 2022; published ahead of print DOI: 10.1097/CMR.0000000000000870.

Vitamin D Deficiency Increases Mortality Risk in the UK Biobank. Annals of Internal Medicine 2022, Nov: DOI: 10.7326/M21-3324.


1. Taghizade Z.I., Rezaiepour A., Mehran A.B., Alimoradi Z. Communication skills application and its’ relation to clients’ satisfaction. Hayat. 2006;12:47–55. [Google Scholar]

  1. Kahrima I., Nural N., Arsal U., Torbas M., Can G., Kasim S. The effect of empathy training on the empathic skills of nurses. Iran Red Crescent Med. J. 2016;18:1–10. [PMC free article][PubMed] [Google Scholar]
  2. Deligianni A., Kyriakidou M., Kaba E., Kelesi M., Rovithis M., Fasoi G., Rikos N., Stavropoulou A. Empathy equals: the meaning of empathy as it perceived by Greek nurse students—a qualitative study. Glob. J. Health Sci. 2017;9:171–180. doi: 10.5539/gjhs.v9n1p171. [CrossRef] [Google Scholar]
  3. Ouzouni C., Nakakis K. An exploratory study of student nurse’s empathy. Health Sci. J. 2012;6:534–552. [Google Scholar]
  4. Stanley S., Sethuramalingam V. Empathy in social work: implications for practice. IJPR. 2015;20:51–61. [Google Scholar]
  5. Hasgul E., Serpen E. Empathy’s Importance in Social Work Practices. Athens Institute for Education and Research ATINER; Athens, Greece: 2014. [Google Scholar]
  6. Rogers C.R. Client-Centered Therapy. Houghton Mifflin; Boston, MA, USA: 1951. [Google Scholar]
  7. Rothery M., Tutty L. Client-centered therapy. In: Lehmann P., Coady N., editors. Theoretical Perspectives for Direct Social Work Practice: A Genenalist-Eclectic Approach. Springer; New York, NY, USA: 2001. pp. 223–239. [Google Scholar]
  8. Wickman S.A., Campell C. An analysis of how Carl Rogers enacted client- centered conversation with Gloria. J. Couns. Dev. 2003;81:178–189. doi: 10.1002/j.1556-6678.2003.tb00239.x. [CrossRef] [Google Scholar]
  9. Oxford English Dictionary Online. Oxford University Press. [(accessed on 15 September 2019)]; Available online:
  10. King S.H. The structure of empathy in social work practice. J. Hum. Behav. Soc. Environ. 2011;21:679–695. doi: 10.1080/10911359.2011.583516. [CrossRef] [Google Scholar]
  11. Kliszcz J., Nowicka-Sauer K., Trzeciak B., Nowak P., Sadowska A. Empathy in health care providers—validation study of the Polish version of the Jefferson Scale of Empathy. Adv. Med. Sci. 2006;51:219–225. [PubMed] [Google Scholar]
  12. King S.J., Holosko M.J. The development and initial validation of the empathy scale for social workers. Res. Soc. Work Pract. 2012;22:174–185. doi: 10.1177/1049731511417136. [CrossRef] [Google Scholar]
  13. Batson C.D. The Altruism Question: Toward a Social-Psychological Answer. Erlbaum; Hillsdale, MI, USA: 1991. [Google Scholar]
  14. Skovholt T. The cycle of caring: a model of expertise in the helping professions. J. Ment. Health Couns. 2005;27:82–93. doi: 10.17744/mehc.27.1.mj5rcvy6c713tafw. [CrossRef] [Google Scholar]
  15. Turner K. Mindfulness: the present moment in clinical social work. Clin. Soc. Work J. 2009;37:95–103. doi: 10.1007/s10615-008-0182-0. [CrossRef] [Google Scholar]
  16. Ames D.R., Kammarath L.K. Mind—reading and metacognition: narcissism not actual competence predicts self-estimated ability. J. Nonverbal. Behav. 2004;28:187–209. doi: 10.1023/B:JONB.0000039649.20015.0e. [CrossRef] [Google Scholar]
  17. Hojat M. Empathy in Patient Care: Antecedents, Development, Measurement, and Outcomes. Springer; New York, NY, USA: 2007. [Google Scholar]
  18. Jollife D., Farrigthon D.P. Development and validation of the basic empathy scale. J. Adolesc. 2005;29:589–611. doi: 10.1016/j.adolescence.2005.08.010. [PubMed] [CrossRef] [Google Scholar]
  19. Lantz J. Existential theory. In: Lehmann P., Coady N., editors. Theoretical Perspectives for Direct Social Work Practice: A Generalist-Eclectic Approach. Springer; New York, NY, USA: 2001. pp. 240–254. [Google Scholar]
  20. Preckel K., Kanske P., Singer T. On the interaction of social affect and cognition empathy, compassion and theory of mind. Curr. Opin. Behav. Sci. 2018;19:1–6. [Google Scholar]
  21. Cuartero M.E., Campos-Vidal J.F. Self-care behavior and their relationship with satisfaction and compassion fatigue levels among social workers. Soc. Work Health Care. 2019;58:274–290. doi: 10.1080/00981389.2018.1558164. [PubMed] [CrossRef] [Google Scholar]
  22. Choi G.Y. Secondary traumatic stress and empowerment among social workers working with family violence or sexual assault survivors. J. Soc. Work. 2017;17:358–378. doi: 10.1177/1468017316640194. [CrossRef] [Google Scholar]
  23. Riess H. Empathy in medicine: a neurological perspective. J. Am. Med. Assoc. 2010;304:1604–1605. doi: 10.1001/jama.2010.1455. [PubMed] [CrossRef] [Google Scholar]
  24. Boyle M.J., Williams B., Brown T., Molly A., Mckennal E., Lewis B. Level of empathy in undergraduate health science student. Int. J. Med. Educ. 2010;5:299–306. [Google Scholar]
  25. Hojat M., Mangione S., Nasca T.J., Cohen M.J.M., Gonnella J.S., Erdmann J.B., Veloski J., Magee M. The Jefferson scale of physician empathy: development and preliminary psychometric data. Edu. Psychol. Meas. 2001;61:349–365. doi: 10.1177/00131640121971158. [CrossRef] [Google Scholar]
  26. Spiro H. Commentary: the practice of empathy. Acad. Med. 2009;84:1177–1179. doi: 10.1097/ACM.0b013e3181b18934. [PubMed] [CrossRef] [Google Scholar]
  27. Hojat M., Gonella J.S., Mangione S., Nasca T.J., Veloski J., Erdamann J.B., Callahan C.A., Magee M. Empathy in medical students as related to academic performance, clinical competence and gender. Med. Educ. 2002;36:522–527. doi: 10.1046/j.1365-2923.2002.01234.x. [PubMed] [CrossRef] [Google Scholar]
  28. Hojat M., Louis D.Z., Maio V., Wang X., Rossi G. Empathy and health care quality. Am. J. Med. Qual. 2013;28:6–7. doi: 10.1177/1062860612464731. [PubMed] [CrossRef] [Google Scholar]
  29. Del Canale S., Louis D.Z., Maio V., Wang X., Rossi G., Hojat M. The relationship between physician empathy and disease complications: an empirical study of primary care physicians and their diabetic patients in Parma, Italy. Acad. Med. 2012;87:1243–1249. doi: 10.1097/ACM.0b013e3182628fbf. [PubMed] [CrossRef] [Google Scholar]
  30. Bonvicini K.A., Perlin M.J., Bylund C.L., Carrol A.G., Rouse R.A., Goldstein M.G. Impact of communication training on physician expression of empathy in patient encounters. Patient Educ. Couns. 2009;75:3–10. doi: 10.1016/j.pec.2008.09.007. [PubMed] [CrossRef] [Google Scholar]
  31. Ogle J., Bushnell J.A., Caputi P. Empathy is related to clinical competence in medical care. Med. Educ. 2013;47:824–831. doi: 10.1111/medu.12232. [PubMed] [CrossRef] [Google Scholar]
  32. Hojat M., Louis D.Z., Markham F.W., Wender R., Rabinowitz C., Gonnella J.S. Physicians’ empathy and clinical outcomes for diabetic patients. Acad. Med. 2011;86:359–364. doi: 10.1097/ACM.0b013e3182086fe1. [PubMed] [CrossRef] [Google Scholar]
  33. Brunero S., Lamonts S., Coates M. A review of empathy education in nursing. Nurs. Inq. 2010;17:65–74. doi: 10.1111/j.1440-1800.2009.00482.x. [PubMed] [CrossRef] [Google Scholar]
  34. Moloney S., Gair S. Empathy and spiritual care in midwifery practice: contributing to women’s enhanced birth experiences. Women Birth. 2015;28:323–328. doi: 10.1016/j.wombi.2015.04.009. [PubMed] [CrossRef] [Google Scholar]
  35. Lim B.T., Moriarti H., Huthwaite M. ‘Being-in-role’: A teaching innovation to enhance empathic communication skills in medical students. Med. Teach. 2011;33:663–669. doi: 10.3109/0142159X.2011.611193. [PubMed] [CrossRef] [Google Scholar]
  36. Hemmerdier J.M., Stoddart S.D.R., Lilford R.J. A systemic review of tests of empathy in medicine. BMC Med. Educ. 2007;7:1–8. [Google Scholar]
  37. Μoudatsou M. Ph.D. Thesis. University of Crete; Heraklion, Greece: 2015. Correlation between Social Capital and Womens’ Health in a Rural Municipality in Crete. [Google Scholar]
  38. Norcross J.C. Psychotherapy Relationships that Work: Evidence Based Responsiveness. 2nd ed. Oxford University Press; New York, NY, USA: 2011. [Google Scholar]
  39. Kallinikaki T.H. Qualitative Methods in Social Work Research.Topos; Athens, Greece: 2010. [Google Scholar]
  40. Reynolds W.J., Scott B. Do nurses and other professional helpers normally display much empathy? J. Adv. Nurs. 2000;31:226–234. doi: 10.1046/j.1365-2648.2000.01242.x. [PubMed] [CrossRef] [Google Scholar]
  41. Kenny D.A., Veldhuijzen W., Weijden T., Leblanc A., Lockyer J., Legare F., Campbell C. Interpersonal perception in the context of doctor-patient relationships: a dyadic analysis of doctor–patient communication. Soc. Sci. Med. 2010;70:763–768. doi: 10.1016/j.socscimed.2009.10.065. [PubMed] [CrossRef] [Google Scholar]
  42. Hojat M., Vergare M.J., Maxwell K., Brainard G., Herrine S.K., Isenberg G.A., Veloski J., Gonnella J.S. The devil is in the third year: a longitudinal study of erosion of empathy in medical school. Acad. Med. 2009;84:1182–1191. doi: 10.1097/ACM.0b013e3181b17e55. [PubMed] [CrossRef] [Google Scholar]
  43. Pedersen R. Empirical research on empathy in medicine—a critical review. Patient Educ. Couns. 2009;76:307–322. doi: 10.1016/j.pec.2009.06.012. [PubMed] [CrossRef] [Google Scholar]
  44. Jefferson Scale of Empathy (JSE). Center for research in medical education and health care (CRMEHC) [(accessed on 12 December 2018)]; Available online:
  45. Hojat M., Gonnella J.S., Nasca T.J., Mangione S., Vergare M., Magee M. Physician empathy: definition, measurement and relationship to gender and specialty. Am. J. Psychiatry. 2002;159:1563–1569. doi: 10.1176/appi.ajp.159.9.1563. [PubMed] [CrossRef] [Google Scholar]
  46. Sun Hun D., Hong Soo J., Lee Hun D., Gonnella S.J., Hojat M. The Jefferson scale of physician empathy: A preliminary psychometric study and group comparisons in Korean physicians. Med. Teach. 2012;34:464–468. [PubMed] [Google Scholar]
  47. Di Lillo M., Cicchetti A., Lo Scalzo A., Taroni F., Hojat M. The Jefferson scale of physician empathy: preliminary psychometrics and group comparisons in Italian physicians. Acad. Med. 2009;84:1198–1202. doi: 10.1097/ACM.0b013e3181b17b3f. [PubMed] [CrossRef] [Google Scholar]
  48. Stanley S., Buvaneswari G.M., Meenakshi A. Predictors of empathy in women social workers. J. Soc. Work. 2020;20:43–63. doi: 10.1177/1468017318794280. [CrossRef] [Google Scholar]
  49. Greemo E., Ting L., Wader K. Predicting empathy in helping professionals: Comparison of social work and nursing students. Soc. Work Educ. 2017;37:173–189. doi: 10.1080/02615479.2017.1389879. [CrossRef] [Google Scholar]
  50. Van Ryn M., Hardeman R.R., Phelan S.M., Burke S.E., Przedworski J., Allen M.L., Burgess D.J., Ridgeway J., White R.O., Dovidio J.F. Psychosocial predictors of attitudes towards physician empathy in clinical encounters, among 4732 1th year medical students: a report from the CHANGES study. Patient Educ. Couns. 2014;96:367–375. doi: 10.1016/j.pec.2014.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  51. Ben–Porat A., Itzhaky H. Burnout among trauma social workers: the contribution of personal and environmental resources. J. Soc. Work. 2015;17:606–620. doi: 10.1177/1468017314552158. [CrossRef] [Google Scholar]
  52. Wagaman M.A., Geiger J.M., Shockley C., Segal E.A. The vole of empathy in burnout, compassion satisfaction and secondary traumatic stress among social workers. Soc. Work. 2015;60:201–209. doi: 10.1093/sw/swv014. [PubMed] [CrossRef] [Google Scholar]
  53. Duarte J., Pinto-Gouveia J., Cruz B. Relationships between nurses’ empathy, self-compassion and dimensions of professional quality of life: a cross-sectional study. Int. J. Nurs. Stud. 2016;60:1–11. doi: 10.1016/j.ijnurstu.2016.02.015. [PubMed] [CrossRef] [Google Scholar]
  54. Stanley S., Mettilba G.B. Reflective ability, empathy and emotional intelligence in undergraduate social work students: a cross sectional study from India. Soc. Work Educ. 2016;35:560–575. doi: 10.1080/02615479.2016.1172563. [CrossRef] [Google Scholar]
  55. Stanley S., Buvaneswari G.M. Personality attributes of social work students: an assessment of empathy, emotional intelligence and resilience. Soc. Work Chron. 2016;7:85–110. [Google Scholar]
  56. Pohontsch N.J., Stark A., Ehrhardt M., Kötter T., Scherer M. Influences on students’ empathy in medical education: an exploratory interview study with medical students in their third and last year. BMC Med. Educ. 2018;18:231. doi: 10.1186/s12909-018-1335-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Dadgari A., Kasaeian A., Atash T.S.G., Naserli F.L., Dadvari L., Kalateh J.M. Efficacy of midwifery clinical curriculum in achieving core learning goals: tutors and students’ point of view. Knowledge Health. 2009;4:28–33. [Google Scholar]
  58. Reynolds W.J., Scott B., Jessiman W.C. Empathy has not been measured in client’ terms or effectively taught: a review of the literature. J. Adv. Nurs. 1999;30:1177–1185. doi: 10.1046/j.1365-2648.1999.01191.x. [PubMed] [CrossRef] [Google Scholar]
  59. Levinson W., Corawara – Bhat R., Lamp J. A study of patient clues and physician responses in primary care and surgical settings. JAMA. 2000;284:1021–1027. doi: 10.1001/jama.284.8.1021. [PubMed] [CrossRef] [Google Scholar]
  60. Cinar N., Gevahir R., Sahin S., Sozeri C., Kuguoglu S. Evaluation of the empathetic skills of nursing students with respect to the classes they are attending. Revista Electronica de Entermagen. 2007;9:588–595. [Google Scholar]
  61. Metes S. The empathetic tendencies and skills of nursing students. Soc. Behav. Personal. 2007;35:1181–1188. doi: 10.2224/sbp.2007.35.9.1181. [CrossRef] [Google Scholar]
  62. Fallowfield L. Efficacy of a Cancer Research UK communication skills training model for oncologists: A randomized controlled trial. Lancet. 2002;359:650–656. doi: 10.1016/S0140-6736(02)07810-8. [PubMed] [CrossRef] [Google Scholar]
  63. Pollack K.I. Oncologist communication about emotion during visits with patients with advanced cancer. J. Clin. Oncol. 2007;25:5748–5752. doi: 10.1200/JCO.2007.12.4180. [PubMed] [CrossRef] [Google Scholar]
  64. Shapiro J. How do physicians teach empathy in the primary care setting. Acad. Med. 2002;77:323–329. doi: 10.1097/00001888-200204000-00012. [PubMed] [CrossRef] [Google Scholar]
  65. Papouli E. Diversity dolls: A creative teaching method for encouraging social work students to develop empathy and understanding for vulnerable populations. Soc. Work Educ. 2018;38:241–260. doi: 10.1080/02615479.2018.1515904. [CrossRef] [Google Scholar]
  66. Papouli E. The role of arts in raising ethical awareness and knowledge of the European refugee crisis among social work students. An example from the classroom. Soc. Work Educ. Int. J. 2017;36:775–793. doi: 10.1080/02615479.2017.1353074. [CrossRef] [Google Scholar]
  67. Zaleski K.L., Araque J.C., Finney K., Harper B., Lewis J., Amit M.S., Tamas C., Steele J.M., Castronuo J. Empathy in social work education. Contemp. Behav. Health Care. 2016;2:48–53. doi: 10.15761/CBHC.1000113. [CrossRef] [Google Scholar]
  68. Englander M. Empathy training from a phenomenological perspective. J. Phenomenol. Psychol. 2014;45:5–26. doi: 10.1163/15691624-12341266. [CrossRef] [Google Scholar]
  69. Eriksson K., Englander M. Empathy in social work. J. Soc. Work Educ. 2017;53:607–621. doi: 10.1080/10437797.2017.1284629. [CrossRef] [Google Scholar]
  70. Lazo D., Vik E. Bachelor’s Thesis. Faculty of Health and Occupational Studies, Gävle University; Gävle, Sweden: 2014. [(accessed on 30 January 2020)]. Reflections on empathy in social work practice: a qualitative study among Swedish social workers. Available online:[Google Scholar]

Brief diesel exhaust exposure acutely impairs functional brain connectivity in humans: a randomized controlled crossover studyEnvironmental Health 2023; 22 (1) DOI: 10.1186/s12940-023-00961-4.

Impact of Yoga on Global Cardiovascular Risk as an Add-On to a Regular Exercise Regimen in Patients With HypertensionCanadian Journal of Cardiology 2022; DOI: 10.1016/j.cjca.2022.09.019.

Fucosylation of HLA-DRB1 regulates CD4+ T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacyNature Cancer 2023;

Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023, Jan 13:

January 2023

Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2016, Jul;1376(1):29-52:

Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci Sec Molecular Diagnostics and Therapeutics 2022, provisionally accepted Dec 5:
Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic encephalomyelitis/chronic fatigue syndrome Frontiers in Immunology 2022: 10.3389/fimmu.2022.949787.

Anti-Inflammatory Diets in Fertility: An Evidence ReviewNutrients, 2022; 14 (19): 3914 DOI: 10.3390/nu14193914.

Recurrent urinary tract infection and oestrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiomeCell Reports Medicine 2022; 3 (10): 100753 DOI: 10.1016/j.xcrm.2022.100753.

Impact of Yoga on Global Cardiovascular Risk as an Add-On to a Regular Exercise Regimen in Patients With HypertensionCanadian Journal of Cardiology, 2022; DOI: 10.1016/j.cjca.2022.09.019.

Agr2-associated ER stress promotes adherent-invasive E. coli dysbiosis and triggers CD103+ dendritic cell IL-23-dependent ileocolitisCell Reports 2022; 41 (7): 111637 DOI: 10.1016/j.celrep.2022.111637.

Micronutrient Supplementation to Reduce Cardiovascular RiskJournal of the American College of Cardiology 2022; 80 (24): 2269.

Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14 (23), 4984:
Combining L-Arginine with vitamin C improves long-COVID symptoms: The LINCOLN Survey. Pharmacol. Res. 2022, 183, 106360:
Association between vitamin D status and physical performance in COVID-19 survivors: Results from the Gemelli against COVID-19 post-acute care project. Mech Ageing Dev 2022, Jul, 205:111684.

Oral microbes and the formation of cerebral abscesses: A single-centre retrospective studyJournal of Dentistry, 2023; 128: 104366.

Nasal spray:
Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS-COV-2
. Advanced Materials.2021. 33(26), 2008304.
Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidisciplinary Respiratory Medicine 9, 57.
Nasal Swab samples analysed by high performance liquid chromatography (HPLC) coupled UV-Vis spectroscopy – study conducted by LabWide Solutions HK Ltd.

Vitamin D protects against depression: Evidence from an umbrella meta-analysis on interventional and observational meta-analyses. Pharmacol Res 2022, Dec 9, 106605.


1. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system:

2.Healing Developmental Trauma: How Early Trauma Affects Self-Regulation, Self-Image, and the Capacity for Relationship”, by Laurence Heller and Aline Lapierre (Tantor Auidio, 2015):

3.“Holotropic Breathwork: A New Approach to Self-Exploration and Therapy” by Stanislav Grof and Christina Grof (State University of New York Press, 2010):

4. Healing altered states of consciousness:



7. Intergenerational trauma: Parental PTSD and parent-reported child abuse subtypes differentially relate to admission characteristics in the autism inpatient collection:

8. On the ontological status of autism: the ‘double empathy problem’:

9. “The double empathy problem”:

10. “Autistic burnout, explained”:

11. The Relation Between Adverse Childhood Experiences and Adult Health: Turning Gold into Lead:

12. A Model for Basic Emotions Using Observations of Behavior in Drosophila:

13. The Evolutionary Psychology of Envy and Jealousy:

14. The ecology of human fear: survival optimization and the nervous system:

15. “The Secret Language of Your Body: The Essential Guide to Health and Wellness”, Inna Segal (Beyond Words, 2010).

16. A Model for Basic Emotions Using Observations of Behavior in Drosophila:

17.“What You Feel You Can Heal”, John Gray (Vermilion, 2002).

18. When the Body Says No: The Cost of Hidden Stress, by Dr Gabor Maté (Vermilion, 2019):

19. “The Body Keeps the Score: Mind, Brain and Body in the Transformation of Trauma” by Bessel van der Kolk (Penguin, 2015):

20. “The Secret Language of Your Body: The Essential Guide to Health and Wellness”, Inna Segal (Beyond Words, 2010):

21. “The Encyclopedia of Ailments and Diseases: How to Heal the Conflicted Feelings, Emotions, and Thoughts at the Root of Illness”, by Jacques Martel (Findhorn Press, 2021):

22 A future perspective for regenerative medicine: understanding the concept of vibrational medicine:

23. “Tuning the Human Biofield: Healing with Vibrational Sound Therapy”,  by Eileen Day McKusick (Healing Arts Press, 2021):

  1. “Lost in Translation: The Social Language Theory of Neurodivergence”, by Janae Elisabeth: The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system:
  2. Polyvagal theory in practice”, by Dee Wagner. Counseling Today 2016: “Music and the Vagus Nerve: How Music Affects the Nervous System and Mental Health”: Creative Flow and Physiologic States in Dancers During Performance:
  3. “How to Stimulate Your Vagus Nerve for Better Mental Health”, by Jordan Fallis, September 24, 2022: Directional effects of whole-body spinning and visual flow in virtual reality on vagal neuromodulation: Breath of Life: The Respiratory Vagal Stimulation Model of Contemplative Activity: The opioid effects of gluten exorphins: asymptomatic celiac disease:


Brain vitamin D forms, cognitive decline, and neuropathology in community-dwelling older adults. Alzheimer’s & Dementia 2022, Dec 7:

Transgenerational transmission of aspartame-induced anxiety and changes in glutamate-GABA signaling and gene expression in the amygdalaProceedings of the National Academy of Sciences 2022; 119 (49) DOI: 10.1073/pnas.2213120119.

Lutein Decreases Inflammation and Oxidative Stress and Prevents Iron Accumulation and Lipid Peroxidation at Glutamate-Induced Neurotoxicity. Antioxidants (Basel) 2022, Nov 17;11(11):2269.
Lutein Has a Positive Impact on Brain Health in Healthy Older Adults: A Systematic Review of Randomized Controlled Trials and Cohort Studies. Nutrients 2021, May 21;13(6):1746.

Association of Red Blood Cell Omega-3 Fatty Acids with MRI Markers and Cognitive Function in Midlife — The Framingham Heart StudyNeurology  2022:


Iron status in pregnant women and women of reproductive age in Europe. Am J Clin Nutr 2017; 106 (Suppl): 1655S-62S.
Riksmaten Adolescents Survey 2016-2017, Swedish National Food Agency (Livsmedelsverket) report series no. 23, 2018.
Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish MarketNutrients 2022; 14 (19): 3903.

Plasticity of the adult human small intestinal stoma microbiotaCell Host & Microbe 2022:

Gravity and the Gut: A Hypothesis of Irritable Bowel SyndromeAmerican Journal of Gastroenterology, 2022; 117 (12): 1933.

Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosusB. lactis, and B. longum). Nutrition. 2018; 53:95-102. doi: 10.1016/j.nut.2018.02.005.

Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients 20179, 555.

Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 2022, 611: 578–584.

Methanogens and Hydrogen Sulfide Producing Bacteria Guide Distinct Gut Microbe Profiles and Irritable Bowel Syndrome Subtypes. American Journal of Gastroenterology 2022, Dec, 117(12):2055-2066.

Post-COVID-19 syndrome risk factors and further use of health services in East England. PLOS Global Public Health 2022:

Early adversity promotes binge-like eating habits by remodeling a leptin-responsive lateral hypothalamus–brainstem pathway. Nature Neuroscience 2022, Dec 12:

The gut microbiota and depressive symptoms across ethnic groups. Nature Communications 2022, Dec 6:
Gut microbiome-wide association study of depressive symptoms. Nature Communications 2022, 13, 7128:

1. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: A double-blind placebo-controlled clinical trial. Phytother Res 2009;23:367–372. Doi: 10.1002/ptr.2634

  1. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int J Mol Sci 2020;21:284. Doi: 10.3390/ijms21010284
  2. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants 2021;10:898. Doi: 10.3390/antiox10060898
  3. Natural compounds such as Hericium erinaceus and Coriolus versicolor modulate neuroinflammation, oxidative stress and lipoxin A4 expression in rotenone-induced Parkinson’s disease in mice. Biomedicines 2022;10:2505.


Cyberchondria: Overlap with health anxiety and unique relations with impairment, quality of life, and service utilization. Psychiatry Res 2018,  Mar;261:204-211,  doi: 10.1016/j.psychres.2018.01.002.

Diagnose this if you can: On the effectiveness of search engines in finding medical self-diagnosis information. In Advances in Information Retrieval: 37th European Conference on IR Research, ECIR 2015, Proceedings [Lecture Notes in Computer Science, Volume 9022]. Springer, Switzerland, pp. 562-567.

December 2022

 Burden of chronic diseases associated with periodontal diseases: a retrospective cohort study using UK primary care data. BMJ Open 2021;11:e048296:

Association between hypercholesterolemia and mortality risk among patients referred for cardiac imaging test: Evidence of a “cholesterol paradox?” Progress in Cardiovascular Diseases 2022, In Press, online Oct 20.


Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res 2022:
Outdoor light at night in relation to glucose homoeostasis and diabetes in Chinese adults: a national and cross-sectional study of 98,658 participants from 162 study sitesDiabetologia 2022,  doi: 10.1007/s00125-022-05819-x.

Premature Deaths Attributable to the Consumption of Ultraprocessed Foods in BrazilAmerican Journal of Preventive Medicine, 2022; DOI: 10.1016/j.amepre.2022.08.013.

Broad Antiviral Effects of Echinacea purpurea against SARS-CoV-2 Variants of Concern and Potential Mechanism of Action. Microorganisms 2022, 10, 2145. Full text free online at

Prevalence of and factors associated with osteoarthritis and pain in retired Olympians compared with the general population: part 1 – the lower limbBritish Journal of Sports Medicine, 2022; 56 (19): 1123 DOI: 10.1136/bjsports-2021-104762.

Prevalence of and factors associated with osteoarthritis and pain in retired Olympians compared with the general population: part 2 – the spine and upper limbBritish Journal of Sports Medicine, 2022; 56 (19): 1132 DOI: 10.1136/bjsports-2021-104978.

Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patientNature Communications 2022; 13 (1) DOI: 10.1038/s41467-022-34101-2.

Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: a systematic reviewJournal of Medical Microbiology, 2022; 71 (11) DOI: 10.1099/jmm.0.001625.


1. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 2019, Dec, 25(12): 1822-32.
2. Porphyromonas gingivalis is a Strong Risk Factor for Alzheimer’s Disease. J Alzheimers Dis Rep 2020; 4(1): 501–511, published online Dec 14:

University of Central Lancashire studies:
Antimicrobial, Polarizing Light, and Paired Helical Filament Properties of Fragmented Tau Peptides of Selected Putative Gingipains. J Alz Dis 2022, Oct 11, 89 (4), 1279-91:
Porphyromonas gingivalis Conditioned Medium Induces Amyloidogenic Processing of the Amyloid-β Protein Precursor upon in vitro Infection of SH-SY5Y Cells. J Alzheimer’s Dis Reports 2022, Sept 20, 6 (1), 577-87:


Effect of garlic on serum lipids: an updated meta-analysis.
Nutr Rev 2013 May;71(5):282-99:

“Commonly used supplements for ‘heart health’ don’t work”: Laffin quoted in “Taking supplements to control cholesterol? Read this”, Fox8 News, Nov 8:

Statins as safe as supplements: claim made in “Supplements Ineffective in Reducing Cholesterol, Study Finds”, a Nov 7 release from the Cleveland Clinic Newsroom:

Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain – a systematic review and meta-analysis. Atherosclerosis 2015, 240(2):415–23:

Rare Variant in Scavenger Receptor BI raises HDL Cholesterol and Increases Risk of Coronary Heart Disease. Science 2016:

Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Sci Rep 2019, 9, 1596:,

Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front Pharmacol 2022, 03 Oct:

Red Yeast Rice for Hypercholesterolemia. Methodist Debakey Cardiovasc J 2019, Jul-Sep; 15(3): 192–199.

Race-Dependent Association of High-Density Lipoprotein Cholesterol Levels With Incident Coronary Artery DiseaseJournal of the American College of Cardiology 2022; 80 (22): 2104. DOI: 10.1016/j.jacc.2022.09.027.

Subretinal drusenoid deposits are strongly associated with coexistent high-risk vascular diseasesBMJ Open Ophthalmology 2022, 7 (1): e001154. DOI: 10.1136/bmjophth-2022-001154.

Aerobic exercise training reduces cerebrovascular impedance in older adults: a 1-year randomized controlled trial. Journal of Applied Physiology 2022, 133:4, 902-912:
Higher Habitual Dietary Flavonoid Intake Associates With Less Extensive Abdominal Aortic Calcification in a Cohort of Older WomenArteriosclerosis, Thrombosis, and Vascular Biology, 2022; 42 (12): 1482 DOI: 10.1161/ATVBAHA.122.318408.
Association of Dietary Intake of Flavonols With Changes in Global Cognition and Several Cognitive AbilitiesNeurology, 2022; 10.1212/WNL.0000000000201541 DOI: 10.1212/WNL.0000000000201541.
SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysisCommunications Biology, 2022; 5 (1) DOI: 10.1038/s42003-022-03986-6.
Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Research 2022; gkac941,
Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging 2022, Nov, 14 (21): 8661-87:
Acupuncture for low back and/or pelvic pain during pregnancy: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2022, 12: e056878.

Macronutrient (im)balance drives energy intake in an obesogenic food environment: An ecological analysis. Obesity (Silver Spring) 2022, 30( 11): 2156-66.
Obesity: the protein leverage hypothesis. Obesity Reviews 2005, May, 6 (2): 133-142.

Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction 2022, 9 Nov:

Nutritional Ecology and Human Health. Annu Rev Nutr 2016, Jul, 36: 603-26.


November 2022

Effectiveness of an intervention for reducing sitting time and improving health in office workers: three arm cluster randomised controlled trial. BMJ 2022, 378:
Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival.
Cancer Prev Res (Phila). 2011 Dec;4(12):2110-21.
Prof  Richard David Feinman quote is from his book Nutrition in Crisis (Chelsea Green 2019), page 236.

Accumulation of Sulforaphane and Alliin in Human Prostate Tissue.  Nutrients 2022, 14(16), 3263. DOI: 10.3390/nu14163263.  
A dietary intervention for vasomotor symptoms of menopause: a randomized, controlled trial. Menopause 2022, Oct 18, doi: 10.1097/GME.0000000000002080:
Dr Marilyn Glenville:
Consensus: soy isoflavones as a first-line approach to the treatment of menopausal vasomotor complaints.
Gynecol Endocrinol 2016 Jun; 32(6):427-30, doi: 10.3109/09513590.2016.1152240. Epub 2016 Mar 4.
Full paper:

Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects. Front Microbiol 2022, Oct 19:

 doi: 10.1016/j.cell.2022.08.005. Epub 2022 Aug 29.

Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 2022, Sep 15;185(19):3501-3519.e20:

1. Infertility . World Health Organization WHO: (2010). [Google Scholar]

  1. Chiu YH, Chavarro JE, Souter I. Diet and female fertility: doctor, what should I eat? Fertil Steril. (2018) 110:560–9. 10.1016/j.fertnstert.2018.05.027 [PubMed] [CrossRef] [Google Scholar]
  2. Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, et al.. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. (2021) 236:7966–83. 10.1002/jcp.30468 [PubMed] [CrossRef] [Google Scholar]
  3. Rodney R, Celi P, Scott W, Breinhild K, Santos J, Lean I. Effects of nutrition on the fertility of lactating dairy cattle. J Dairy Sci. (2018) 101:5115–33. 10.3168/jds.2017-14064 [PubMed] [CrossRef] [Google Scholar]
  4. Hammiche F, Vujkovic M, Wijburg W, de Vries JH, Macklon NS, Laven JS, et al.. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil Steril. (2011) 95:1820–3. 10.1016/j.fertnstert.2010.11.021 [PubMed] [CrossRef] [Google Scholar]
  5. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr. (2007) 85:231–7. 10.1093/ajcn/85.1.231 [PubMed] [CrossRef] [Google Scholar]
  6. Lefevre M, Lovejoy JC, Smith SR, Delany JP, Champagne C, Most MM, et al.. Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Metabolism. (2005) 54:1652–8. 10.1016/j.metabol.2005.06.015 [PubMed] [CrossRef] [Google Scholar]
  7. Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr. (2004) 79:969–73. 10.1093/ajcn/79.6.969 [PubMed] [CrossRef] [Google Scholar]
  8. Kwiecinksi GG, Petrie GI, DeLuca HF. 1,25-Dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am J Physiol. (1989) 256:E483–7. 10.1152/ajpendo.1989.256.4.E483 [PubMed] [CrossRef] [Google Scholar]
  9. Mumford SL, Silver R, Sjaarda LA, Galai N, Stanford J, Lynch A, et al.. Vitamin D and Ovarian Reserve and Fecundability among Women with Proven Fecundity. FASEB J. (2016) 30:290.6. [Google Scholar]
  10. Møller UK, Streym S, Heickendorff L, Mosekilde L, Rejnmark L. Effects of 25OHD concentrations on chances of pregnancy and pregnancy outcomes: a cohort study in healthy Danish women. Eur J Clin Nutr. (2012) 66:862–8. 10.1038/ejcn.2012.18 [PubMed] [CrossRef] [Google Scholar]
  11. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Iron intake and risk of ovulatory infertility. Obstet Gynecol. (2006) 108:1145–52. 10.1097/01.AOG.0000238333.37423.ab [PubMed] [CrossRef] [Google Scholar]
  12. Swenerton H, Hurley LS. Severe zinc deficiency in male and female rats. J Nutr. (1968) 95:8–18. 10.1093/jn/95.1.8 [PubMed] [CrossRef] [Google Scholar]
  13. Swenerton H, Hurley LS. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J Nutr. (1980) 110:575–83. 10.1093/jn/110.3.575 [PubMed] [CrossRef] [Google Scholar]
  14. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol. (2007) 110:1050–8. 10.1097/01.AOG.0000287293.25465.e1 [PubMed] [CrossRef] [Google Scholar]
  15. Braga DP, Halpern G, Setti AS, Figueira RC, Iaconelli A, Jr, Borges E, Jr. The impact of food intake and social habits on embryo quality and the likelihood of blastocyst formation. Reprod Biomed Online. (2015) 31:30–8. 10.1016/j.rbmo.2015.03.007 [PubMed] [CrossRef] [Google Scholar]
  16. Shahin AY, Ismail AM, Zahran KM, Makhlouf AM. Adding phytoestrogens to clomiphene induction in unexplained infertility patients–a randomized trial. Reprod Biomed Online. (2008) 16:580–8. 10.1016/S1472-6483(10)60465-8 [PubMed] [CrossRef] [Google Scholar]
  17. Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC. High dose of phytoestrogens can reverse the antiestrogenic effects of clomiphene citrate on the endometrium in patients undergoing intrauterine insemination: a randomized trial. J Soc Gynecol Investig. (2004) 11:323–8. 10.1016/j.jsgi.2003.12.007 [PubMed] [CrossRef] [Google Scholar]
  18. Unfer V, Casini ML, Gerli S, Costabile L, Mignosa M, Di Renzo GC. Phytoestrogens may improve the pregnancy rate in in vitrofertilization-embryo transfer cycles: a prospective, controlled, randomized trial. Fertil Steril. (2004) 82:1509–13. 10.1016/j.fertnstert.2004.07.934 [PubMed] [CrossRef] [Google Scholar]
  19. Becker GF, Passos EP, Moulin CC. Short-term effects of a hypocaloric diet with low glycemic index and low glycemic load on body adiposity, metabolic variables, ghrelin, leptin, and pregnancy rate in overweight and obese infertile women: a randomized controlled trial. Am J Clin Nutr. (2015) 102:1365–72. 10.3945/ajcn.115.117200 [PubMed] [CrossRef] [Google Scholar]
  20. Noli SA, Ferrari S, Ricci E, Reschini M, Cipriani S, Dallagiovanna C, et al.. The role of diet in unexpected poor response to ovarian stimulation: a cross-sectional study. Reprod Biomed Online. (2020) 41:874–83. 10.1016/j.rbmo.2020.07.011 [PubMed] [CrossRef] [Google Scholar]
  21. Kermack AJ, Lowen P, Wellstead SJ, Fisk HL, Montag M, Cheong Y, et al.. Effect of a 6-week “Mediterranean” dietary intervention on in vitro human embryo development: the Preconception Dietary Supplements in Assisted Reproduction double-blinded randomized controlled trial. Fertil Steril. (2020) 113:260–9. 10.1016/j.fertnstert.2019.09.041 [PubMed] [CrossRef] [Google Scholar]
  22. Szymański W, Kazdepka-Ziemińska A. [Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity]. Ginekol Pol. (2003) 74:1392–6. [PubMed] [Google Scholar]
  23. Rudick BJ, Ingles SA, Chung K, Stanczyk FZ, Paulson RJ, Bendikson KA. Influence of vitamin D levels on in vitrofertilization outcomes in donor-recipient cycles. Fertil Steril. (2014) 101:447–52. 10.1016/j.fertnstert.2013.10.008 [PubMed] [CrossRef] [Google Scholar]
  24. Polyzos NP, Anckaert E, Guzman L, Schiettecatte J, Van Landuyt L, Camus M, et al.. Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Hum Reprod. (2014) 29:2032–40. 10.1093/humrep/deu156 [PubMed] [CrossRef] [Google Scholar]
  25. Aleyasin A, Hosseini MA, Mahdavi A, Safdarian L, Fallahi P, Mohajeri MR, et al.. Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol. (2011) 159:132–7. 10.1016/j.ejogrb.2011.07.006 [PubMed] [CrossRef] [Google Scholar]
  26. Neville G, Martyn F, Kilbane M, O’Riordan M, Wingfield M, McKenna M, et al.. Vitamin D status and fertility outcomes during winter among couples undergoing in vitrofertilization/intracytoplasmic sperm injection. Int J Gynaecol Obstet. (2016) 135:172–6. 10.1016/j.ijgo.2016.04.018 [PubMed] [CrossRef] [Google Scholar]
  27. Sun N, Xu C, Zhang Q, Lu X, Li W. Impact of multivitamin supplementation on trace element levels in serum and follicular fluid of women undergoing in vitrofertilisation. J Develop Med. (2013) 1:74–7. [Google Scholar]
  28. Özkaya MO, Naziroglu M, Barak C, Berkkanoglu M. Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitrofertilization (IVF). Biol Trace Elem Res. (2011) 139:1–9. 10.1007/s12011-010-8637-x [PubMed] [CrossRef] [Google Scholar]
  29. Ng SC, Karunanithy R, Edirisinghe WR, Roy AC, Wong PC, Ratnam SS. Human follicular fluid levels of calcium, copper and zinc. Gynecol Obstet Invest. (1987) 23:129–32. 10.1159/000298848 [PubMed] [CrossRef] [Google Scholar]
  30. Vujkovic M, de Vries JH, Lindemans J, Macklon NS, van der Spek PJ, Steegers EA, et al.. The preconception Mediterranean dietary pattern in couples undergoing in vitrofertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril. (2010) 94:2096–101. 10.1016/j.fertnstert.2009.12.079 [PubMed] [CrossRef] [Google Scholar]
  31. Karayiannis D, Kontogianni MD, Mendorou C, Mastrominas M, Yiannakouris N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum Reprod. (2018) 33:494–502. 10.1093/humrep/dey003 [PubMed] [CrossRef] [Google Scholar]
  32. Ricci E, Bravi F, Noli S, Somigliana E, Cipriani S, Castiglioni M, et al.. Mediterranean diet and outcomes of assisted reproduction: an Italian cohort study. Am J Obstet Gynecol. (2019) 221:627.e1–14. 10.1016/j.ajog.2019.07.011 [PubMed] [CrossRef] [Google Scholar]
  33. Hohos NM, Cho KJ, Swindle DC, Skaznik-Wikiel ME. High-fat diet exposure, regardless of induction of obesity, is associated with altered expression of genes critical to normal ovulatory function. Mol Cell Endocrinol. (2018) 470:199–207. 10.1016/j.mce.2017.10.016 [PubMed] [CrossRef] [Google Scholar]
  34. Harreiter J, Simmons D, Desoye G, Corcoy R, Adelantado JM, Devlieger R, et al.. Nutritional lifestyle intervention in obese pregnant women, including lower carbohydrate intake, is associated with increased maternal free fatty acids, 3-β-Hydroxybutyrate, and fasting glucose concentrations: a secondary factorial analysis of the European multicenter, randomized controlled DALI lifestyle intervention trial. Diabetes Care. (2019) 42:1380–9. 10.2337/dc19-0418 [PubMed] [CrossRef] [Google Scholar]
  35. Makieva S, Reschini M, Ferrari S, Bonesi F, Polledri E, Fustinoni S, et al.. Oral Vitamin D supplementation impacts gene expression in granulosa cells in women undergoing IVF. Hum Reprod. (2021) 36:130–44. 10.1093/humrep/deaa262 [PubMed] [CrossRef] [Google Scholar]
  36. Ikeda S, Sugimoto M, Kume S. The RPMI-1640 vitamin mixture promotes bovine blastocyst development in vitroand downregulates gene expression of TXNIP with epigenetic modification of associated histones. J Dev Orig Health Dis. (2018) 9:87–94. 10.1017/S2040174417000563 [PubMed] [CrossRef] [Google Scholar]
  37. Nelen WLDM, Blom HJ, Thomas CMG, Steegers EAP, Boers GHJ, Eskes TKAB. Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr. (1998) 128:1336–41. 10.1093/jn/128.8.1336 [PubMed] [CrossRef] [Google Scholar]
  38. Heidar Z, Hamzepour N, Zadeh Modarres S, Mirzamoradi M, Aghadavod E, Pourhanifeh MH, et al.. The effects of selenium supplementation on clinical symptoms and gene expression related to inflammation and vascular endothelial growth factor in infertile women candidate for in vitrofertilization. Biol Trace Elem Res. (2020) 193:319–25. 10.1007/s12011-019-01715-5 [PubMed] [CrossRef] [Google Scholar]
  39. Zadeh Modarres S, Heidar Z, Foroozanfard F, Rahmati Z, Aghadavod E, Asemi Z. The effects of selenium supplementation on gene expression related to insulin and lipid in infertile polycystic ovary syndrome women candidate for in vitrofertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. (2018) 183:218–25. 10.1007/s12011-017-1148-2 [PubMed] [CrossRef] [Google Scholar]
  40. Gannon MC, Nuttall FQ, Neil BJ, Westphal SA. The insulin and glucose responses to meals of glucose plus various proteins in type II diabetic subjects. Metabolism. (1988) 37:1081–8. 10.1016/0026-0495(88)90072-8 [PubMed] [CrossRef] [Google Scholar]
  41. Hubbard R, Kosch CL, Sanchez A, Sabate J, Berk L, Shavlik G. Effect of dietary protein on serum insulin and glucagon levels in hyper- and normocholesterolemic men. Atherosclerosis. (1989) 76:55–61. 10.1016/0021-9150(89)90193-7 [PubMed] [CrossRef] [Google Scholar]
  42. Holmes MD, Pollak MN, Willett WC, Hankinson SE. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarkers Prev. (2002) 11:852–61. [PubMed] [Google Scholar]
  43. Meza-Herrera CA, Hallford DM, Ortiz JA, Cuevas RA, Sanchez JM, Salinas H, et al.. Body condition and protein supplementation positively affect periovulatory ovarian activity by non LH-mediated pathways in goats. Anim Reprod Sci. (2008) 106:412–20. 10.1016/j.anireprosci.2007.06.004 [PubMed] [CrossRef] [Google Scholar]
  44. Armstrong DG, McEvoy TG, Baxter G, Robinson JJ, Hogg CO, Woad KJ, et al.. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system. Biol Reprod. (2001) 64:1624–32. 10.1095/biolreprod64.6.1624 [PubMed] [CrossRef] [Google Scholar]
  45. Vandermeersch G, Lourenço HM, Alvarez-Muñoz D, Cunha S, Diogène J, Cano-Sancho G, et al.. Environmental contaminants of emerging concern in seafood–European database on contaminant levels. Environ Res. (2015) 143:29–45. 10.1016/j.envres.2015.06.011 [PubMed] [CrossRef] [Google Scholar]
  46. Seppen J. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase. Toxicol Appl Pharmacol. (2012) 264:335–42. 10.1016/j.taap.2012.09.013 [PubMed] [CrossRef] [Google Scholar]
  47. Setchell KD, Gosselin SJ, Welsh MB, Johnston JO, Balistreri WF, Kramer LW, et al.. Dietary estrogens–a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology. (1987) 93:225–33. 10.1016/0016-5085(87)91006-7 [PubMed] [CrossRef] [Google Scholar]
  48. Bakaloudi DR, Halloran A, Rippin HL, Oikonomidou AC, Dardavesis TI, Williams J, et al.. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr. (2021) 40:3503–21. 10.1016/j.clnu.2020.11.035 [PubMed] [CrossRef] [Google Scholar]
  49. Benham AJ, Gallegos D, Hanna KL, Hannan-Jones MT. Intake of vitamin B12 and other characteristics of women of reproductive age on a vegan diet in Australia. Public Health Nutr. (2021) 24:4397–407. 10.1017/S1368980021001695 [PubMed] [CrossRef] [Google Scholar]
  50. Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW, et al.. Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. (2015) 25:795–815. 10.1016/j.numecd.2015.05.005 [PubMed] [CrossRef] [Google Scholar]
  51. Kaaks R, Lukanova A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc. (2001) 60:91–106. 10.1079/PNS200070 [PubMed] [CrossRef] [Google Scholar]
  52. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. (1997) 18:774–800. 10.1210/er.18.6.774 [PubMed] [CrossRef] [Google Scholar]
  53. Chavarro JE, Rich-Edwards JW, Rosner B, Willett WC. A prospective study of dairy foods intake and anovulatory infertility. Hum Reprod. (2007) 22:1340–7. 10.1093/humrep/dem019 [PubMed] [CrossRef] [Google Scholar]
  54. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. (2018) 23:705–15. 10.1016/j.chom.2018.05.012 [PubMed] [CrossRef] [Google Scholar]
  55. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. (2009) 44:50–8. 10.1111/j.1439-0531.2009.01402.x [PubMed] [CrossRef] [Google Scholar]
  56. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. (2001) 345:1400–8. 10.1056/NEJMra000763 [PubMed] [CrossRef] [Google Scholar]
  57. Hughes J, Kwong WY, Li D, Salter AM, Lea RG, Sinclair KD. Effects of omega-3 and−6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction. (2011) 141:105–18. 10.1530/REP-10-0337 [PubMed] [CrossRef] [Google Scholar]
  58. Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC, et al.. Dietary omega-3 and−6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction. (2010) 139:57–69. 10.1530/REP-09-0219 [PubMed] [CrossRef] [Google Scholar]
  59. Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod. (2007) 77:190–201. 10.1095/biolreprod.107.060558 [PubMed] [CrossRef] [Google Scholar]
  60. Abayasekara DR, Wathes DC. Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fatty Acids. (1999) 61:275–87. 10.1054/plef.1999.0101 [PubMed] [CrossRef] [Google Scholar]
  61. Saravanan N, Haseeb A, Ehtesham NZ, Ghafoorunissa. Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Eur J Endocrinol. (2005) 153:159–65. 10.1530/eje.1.01946 [PubMed] [CrossRef] [Google Scholar]
  62. Komar CM, Braissant O, Wahli W, Curry TE, Jr. Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology. (2001) 142:4831–8. 10.1210/endo.142.11.8429 [PubMed] [CrossRef] [Google Scholar]
  63. Kurzynska A, Bogacki M, Chojnowska K, Bogacka I. Peroxisome proliferator activated receptor ligands affect progesterone and 17β-estradiol secretion by porcine corpus luteum during early pregnancy. J Physiol Pharmacol. (2014) 65:709–17. [PubMed] [Google Scholar]
  64. Banerjee J, Komar CM. Effects of luteinizing hormone on peroxisome proliferator-activated receptor gamma in the rat ovary before and after the gonadotropin surge. Reproduction. (2006) 131:93–101. 10.1530/rep.1.00730 [PubMed] [CrossRef] [Google Scholar]
  65. Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update. (2007) 13:163–74. 10.1093/humupd/dml054 [PubMed] [CrossRef] [Google Scholar]
  66. Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L, et al.. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res. (2010) 42:754–7. 10.1055/s-0030-1262837 [PubMed] [CrossRef] [Google Scholar]
  67. Agic A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al.. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci. (2007) 14:486–97. 10.1177/1933719107304565 [PubMed] [CrossRef] [Google Scholar]
  68. Tanamura A, Nomura S, Kurauchi O, Furui T, Mizutani S, Tomoda Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol. (1995) 21:631–9. 10.1111/j.1447-0756.1995.tb00923.x [PubMed] [CrossRef] [Google Scholar]
  69. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. (2002) 13:3–9. 10.1097/00041433-200202000-00002 [PubMed] [CrossRef] [Google Scholar]
  70. Nazni P. Association of western diet & lifestyle with decreased fertility. Indian J Med Res. (2014) 140:S78–81. [PMC free article] [PubMed] [Google Scholar]
  71. Jinno M, Takeuchi M, Watanabe A, Teruya K, Hirohama J, Eguchi N, et al.. Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Hum Reprod. (2011) 26:604–10. 10.1093/humrep/deq388 [PubMed] [CrossRef] [Google Scholar]
  72. Thomas M, Baynes J, Thorpe S, Cooper M. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets. (2005) 6:453–74. 10.2174/1389450054021873 [PubMed] [CrossRef] [Google Scholar]
  73. Simopoulos AP. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med. (2010) 235:785–95. 10.1258/ebm.2010.009298 [PubMed] [CrossRef] [Google Scholar]
  74. Chu J, Gallos I, Tobias A, Tan B, Eapen A, Coomarasamy A. Vitamin D and assisted reproductive treatment outcome: a systematic review and meta-analysis. Hum Reprod. (2018) 33:65–80. 10.1093/humrep/dex326 [PubMed] [CrossRef] [Google Scholar]
  75. Voulgaris N, Papanastasiou L, Piaditis G, Angelousi A, Kaltsas G, Mastorakos G, et al.. Vitamin D and aspects of female fertility. Hormones. (2017) 16:5–21. 10.14310/horm.2002.1715 [PubMed] [CrossRef] [Google Scholar]
  76. Twigt JM, Bolhuis MEC, Steegers EAP, Hammiche F, van Inzen WG, Laven JSE, et al.. The preconception diet is associated with the chance of ongoing pregnancy in women undergoing IVF/ICSI treatment. Hum Reprod. (2012) 27:2526–31. 10.1093/humrep/des157 [PubMed] [CrossRef] [Google Scholar]
  77. Hammiche F, Laven JS, van Mil N, de Cock M, de Vries JH, Lindemans J, et al.. Tailored preconceptional dietary and lifestyle counselling in a tertiary outpatient clinic in The Netherlands. Hum Reprod. (2011) 26:2432–41. 10.1093/humrep/der225 [PubMed] [CrossRef] [Google Scholar]
  78. Mena GP, Mielke GI, Brown WJ. The effect of physical activity on reproductive health outcomes in young women: a systematic review and meta-analysis. Hum Reprod Update. (2019) 25:542–64. 10.1093/humupd/dmz013 [PubMed] [CrossRef] [Google Scholar]
  79. Hakimi O, Cameron LC. Effect of exercise on ovulation: a systematic review. Sports Med. (2017) 47:1555–67. 10.1007/s40279-016-0669-8 [PubMed] [CrossRef] [Google Scholar]
  80. Garruti G, Depalo R, De Angelis M. Weighing the impact of diet and lifestyle on female reproductive function. Curr Med Chem. (2019) 26:3584–92. 10.2174/0929867324666170518101008 [PubMed] [CrossRef] [Google Scholar]
  81. Orio F, Muscogiuri G, Ascione A, Marciano F, Volpe A, La Sala G, et al.. Effects of physical exercise on the female reproductive system. Minerva Endocrinol. (2013) 38:305–19. [PubMed] [Google Scholar]
  82. Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. (2003) 4:315–22. 10.1038/nrg1047 [PubMed] [CrossRef] [Google Scholar]
  83. Bouchard C, Ordovas JM. Fundamentals of nutrigenetics and nutrigenomics. Prog Mol Biol Transl Sci. (2012) 108:1–15. 10.1016/B978-0-12-398397-8.00001-0 [PubMed] [CrossRef] [Google Scholar]
  84. Dawson KA. Nutrigenomics: Feeding the genes for improved fertility. Anim Reprod Sci. (2006) 96:312–22. 10.1016/j.anireprosci.2006.08.009 [PubMed] [CrossRef] [Google Scholar]
  85. Mallepaly R, Butler PR, Herati AS, Lamb DJ. Genetic basis of male and female infertility. Genet Hum Infertil. (2017) 21:1–16. 10.1159/000477275 [CrossRef] [Google Scholar]
  86. Stover PJ. Influence of human genetic variation on nutritional requirements. Am J Clin Nutr. (2006) 83:436S−42S. 10.1093/ajcn/83.2.436S [PubMed] [CrossRef] [Google Scholar]
  87. Reyes-Engel A, Muñoz E, Gaitan MJ, Fabre E, Gallo M, Dieguez JL, et al.. Implications on human fertility of the 677C–>T and 1298A–>C polymorphisms of the MTHFR gene: consequences of a possible genetic selection. Mol Hum Reprod. (2002) 8:952–7. 10.1093/molehr/8.10.952 [PubMed] [CrossRef] [Google Scholar]
  88. Laanpere M, Altmäe S, Kaart T, Stavreus-Evers A, Nilsson TK, Salumets A. Folate-metabolizing gene variants and pregnancy outcome of IVF. Reprod Biomed Online. (2011) 22:603–14. 10.1016/j.rbmo.2011.03.002 [PubMed] [CrossRef] [Google Scholar]
  89. Shahrokhi SZ, Kazerouni F, Ghaffari F, Rahimipour A, Omrani MD, Arabipoor A, et al.. The relationship between the MTHFR C677T genotypes to serum anti-müllerian hormone concentrations and in vitrofertilization/intracytoplasmic sperm injection outcome. Clin Lab. (2017) 63:927–34. 10.7754/Clin.Lab.2016.161104 [PubMed] [CrossRef] [Google Scholar]
  90. Beerda B, Wyszynska-Koko J, Te Pas MF, de Wit AA, Veerkamp RF. Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities. Animal. (2008) 2:1158–67. 10.1017/S1751731108002371 [PubMed] [CrossRef] [Google Scholar]
  91. Irani M, Minkoff H, Seifer DB, Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab. (2014) 99:E886–90. 10.1210/jc.2013-4374 [PubMed] [CrossRef] [Google Scholar]
  92. Vannice G, Rasmussen H. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. (2014) 114:136–53. 10.1016/j.jand.2013.11.001 [PubMed] [CrossRef] [Google Scholar]
  93. Lu X, He Y, Zhu C, Wang H, Chen S, Lin HY. Twist1 is involved in trophoblast syncytialization by regulating GCM1. Placenta. (2016) 39:45–54. 10.1016/j.placenta.2016.01.008 [PubMed] [CrossRef] [Google Scholar]
  94. Oseikria M, Elis S, Maillard V, Corbin E, Uzbekova S. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology. (2016) 85:1625–34.e2. 10.1016/j.theriogenology.2016.01.019 [PubMed] [CrossRef] [Google Scholar]
  95. Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al.. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. (2016) 4:1025–36. 10.1016/S2213-8587(16)30217-0 [PubMed] [CrossRef] [Google Scholar]
  96. Lane M, Robker RL, Robertson SA. Parenting from before conception. Science. (2014) 345:756–60. 10.1126/science.1254400 [PubMed] [CrossRef] [Google Scholar]
  97. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, et al.. The role of nutrition on epigenetic modifications and their implications on health. Biochimie. (2012) 94:2242–63. 10.1016/j.biochi.2012.06.012 [PubMed] [CrossRef] [Google Scholar]
  98. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. (2019) 16:35–56. 10.1038/s41575-018-0061-2 [PubMed] [CrossRef] [Google Scholar]
  99. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, et al.. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. (2014) 20:799–812. 10.1016/j.cmet.2014.10.006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  100. Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al.. The vaginal microbiome as a predictor for outcome of in vitrofertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod. (2019) 34:1042–54. 10.1093/humrep/dez065 [PubMed] [CrossRef] [Google Scholar]
  101. Sharma M, Dwivedi P, Singh Rawat A, Dwivedi AK. Nutrition nutraceuticals: a proactive approach for healthcare. Nutraceuticals. (2016) 4:79–116. 10.1016/B978-0-12-804305-9.00003-8 [CrossRef] [Google Scholar]
  102. Singh RK. “Chapter 10-nutraceuticals in reproductive and developmental disorders,” in Nutraceuticals, ed Gupta R. C. (Boston: Academic Press; (2016). p. 123–34. 10.1016/B978-0-12-802147-7.00010-3 [CrossRef] [Google Scholar]
  103. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al.. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. (2014) 11:506–14. 10.1038/nrgastro.2014.66 [PubMed] [CrossRef] [Google Scholar]
  104. Reid G, Beuerman D, Heinemann C, Bruce AW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol. (2001) 32:37–41. 10.1111/j.1574-695X.2001.tb00531.x [PubMed] [CrossRef] [Google Scholar]
  105. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et al.. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. (2016) 215:684–703. 10.1016/j.ajog.2016.09.075 [PubMed] [CrossRef] [Google Scholar]
  106. Azaïs-Braesco V, Bresson JL, Guarner F, Corthier G. Not all lactic acid bacteria are probiotics,.but some are. Br J Nutr. (2010) 103:1079–81. 10.1017/S0007114510000723 [PubMed] [CrossRef] [Google Scholar]
  107. Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, et al.. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr. (2010) 140:671s−6s. 10.3945/jn.109.113779 [PubMed] [CrossRef] [Google Scholar]
  108. Cho NA, Klancic T, Nettleton JE, Paul HA, Reimer RA. Impact of food ingredients (Aspartame, Stevia, Prebiotic Oligofructose) on fertility and reproductive outcomes in obese rats. Obesity. (2018) 26:1692–5. 10.1002/oby.22325 [PubMed] [CrossRef] [Google Scholar]
  109. Kobayashi T, Takano M, Kaneko K, Onoue M. A one-generation reproduction toxicity study in rats treated orally with a novel galacto-oligosaccharide. Hum Exp Toxicol. (2014) 33:814–21. 10.1177/0960327113510328 [PubMed] [CrossRef] [Google Scholar]
  110. Kyono K, Hashimoto T, Kikuchi S, Nagai Y, Sakuraba Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: an analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod Med Biol. (2018) 18:72–82. 10.1002/rmb2.12105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Reciprocal interactions between the gut microbiome and mammary tissue mast cells promote metastatic dissemination of HR+ breast tumoursCancer Immunology Research 2022. DOI: 10.1158/2326-6066.CIR-21-1120.

Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. Journal of Hazardous Materials 2023, 442 130010:

BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases  beta-cell massCell Metabolism 2022; DOI: 10.1016/j.cmet.2022.09.001.

Identification of environmental factors that promote intestinal inflammationNature 2022 DOI: 10.1038/s41586-022-05308-6

A local tumour microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinomaNature Communications 2022; 13 (1). DOI: 10.1038/s41467-022-33377-8

Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patientsGastroenterology 2022. DOI: 10.1053/j.gastro.2022.09.034

The Role of the Gut Microbiome in Diet and Exercise Effects on Cognition: A Review of the Intervention LiteratureThe Journals of Gerontology: Series A, 2022. DOI: 10.1093/gerona/glac166

Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC. Circulation 2022, Sep 13;146(11):851-867,
Honokiol Research Review: A promising extract with multiple applications.
Nat Med J 2014, Jan 16:

Theory and performance of substitution models for estimating relative causal effects in nutritional epidemiologyThe American Journal of Clinical Nutrition, 2022. DOI: 10.1093/ajcn/nqac188.

Long COVID stat:

Persistence, prevalence, and polymorphism of sequelae after COVID-19 in unvaccinated, young adults of the Swiss Armed Forces: a longitudinal cohort study (LoCoMo). The Lancet Infectious Diseases 2022, Aug 25:

Distinguishing features of Long COVID identified through immune profiling. medRxiv 2022.08.09.22278592, doi: Preprint.

Bile Acid–Microbiome Interaction Promotes Gastric Carcinogenesis. Advanced Science 2022, 9:16.

October 2022


Effects of cocoa extract and a multivitamin on cognitive function: A randomized clinical trial. Alzheimer’s & Dementia 2022, Sept 14,1- 12:

The mineral depletion of foods available to us as a nation (1940-2002)–a review of the 6th Edition of McCance and Widdowson. Nutr Health 2007;19(1-2):21-55.

Health Survey for England, 2016 showed that 48% of adults in the country had taken at least one prescribed medicine in the past week, and almost a quarter, 24%, had taken three or more prescribed medicines in the past week. Feb 12, 2021.

Only 12% of American adults are metabolically healthy, Carolina study finds. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metabolic Syndrome and Related Disorders 2019, Feb, 46-52:

“Disease burden is higher in the US. than in comparable countries”, at

Diet change for hypertension: research presented at the American Heart Association’s Hypertension Scientific Sessions 2022, held Sept. 7-10, 2022, in San Diego.

An ACE2-dependent Sarbecovirus in Russian bats is resistant to SARS-CoV-2 vaccinesPLOS Pathogens, 2022; 18 (9): e1010828 DOI: 10.1371/journal.ppat.1010828.

More on Dr Royal Lee at

Profitability of Large Pharmaceutical Companies Compared With Other Large Public Companies.  JAMA 2020, Mar 3; 323(9): 834–843,  doi: 10.1001/jama.2020.0442.
Prescribing Costs in Hospitals and the Community 2019-2020. NHS Digital:

98.2% survival rate:

Non-Small-Cell Lung Cancer Promotion by Air Pollutants
, was presented at the ESMO Congress on Saturday 10 September 10, 2022. Related paper: Lung cancer in never-smokers: a hidden disease. Journal of the Royal Society of Medicine 2019, 112(7):269-271.  

Statin therapy is not warranted for a person with high LDL-cholesterol on a low-carbohydrate diet. Current Opinion in Endocrinology & Diabetes and Obesity 2022, Oct, 29 (5): 497-511.
Evaluating the Association Between Low-Density Lipoprotein Cholesterol Reduction and Relative and Absolute Effects of Statin Treatment: A Systematic Review and Meta-analysis. JAMA Intern Med 2022 May 1;182(5):474-481:

Effects of cocoa extract and a multivitamin on cognitive function: A randomized clinical trial. Alzheimer’s & Dementia 2022, Sept 14,1- 12:

Coenzyme Q10 ameliorates aging-induced memory deficits via modulation of apoptosis, oxidative stress, and mitophagy in aged rats. Exp Gerontol 2022, Oct 15, 168:111950.

Rapid initiation of nasal saline irrigation to reduce severity in high-risk COVID+ outpatients. Ear, Nose & Throat Journal 2022; 0(0). doi:10.1177/01455613221123737.


  1. MEA:
  2. McGrath, Simon (June 11, 2018). “Analysis of data from 500,000 individuals in UK Biobank demonstrates 
an inherited component to ME/CFS”.  ME/CFS Research Review. Retrieved  February 23, 2019
  3. Bested AC, Marshall LM. Review of myalgic encephalomyelitis/chronic fatigue syndrome: 
an evidence‑based approach to diagnosis and management by clinicians. 
Rev Environ Health. 2015;30:223–49.
  4. Front Neurol. 2020 Aug 11;11:826.


  1. ME Association website poll, conducted January 2016.
    3. “Crunching the numbers: is GBR the sick man of Europe?” by Simon Martin. IHCAN 2021, Feb, 6-7.
    4. Offline: COVID-19 is not a pandemic. Lancet.2020; 396: 874. DOI: Discussed in The COVID-19 syndemic is not global: context matters, Lancet 2020, Nov 28;396 (10264):1731. doi: 10.1016/S0140-6736(20)32218-2.
    5. Glucocorticoids activate Epstein Barr virus lytic replication through the upregulation of immediate early BZLF1 gene expression. Brain Behav Immun 2010, Oct; 24(7):1089-96. DOI: 10.1016/j.bbi.2010.04.013.

OHC papers:
A preliminary prospective study of nutritional, psychological and combined therapies for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in a private care setting. BMJ  Open 2012:

The Application of Integral Medicine in the Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Integral Theory and Practice 2011, 6(4), 25-40:


A Company Is Only as Healthy as Its Workers: a 6-Month Metabolic Health Management Pilot Program Improves Employee Health and Contributes to Cost Savings. Metabolites 2022, 12(9), 848:

Diabetes UK statement:


Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 2011 Jun;25(6):1793-814.

Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009, Oct; 90(4):889-907.

 Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 2012, Jul 9; 13:79.

Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop. Nutrients 2022, Apr 4;14(7):1504.

Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci 2016, Dec 16;17(12):2124.

Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol. 2022; 10: 956394. Published online 2022 Aug 24. doi: 10.3389/fcell.2022.956394.

Dr Terry Wahls

  1. Ames BN. Delaying the mitochondrial decay of aging-a metabolic tune-up. Alzheimer Dis Assoc Disord.2003;17 Suppl 2:S54-57.
  2. Ames BN. Delaying the mitochondrial decay of aging. Ann N Y Acad Sci.2004;1019:406-411.>
  3. Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A.2006;103(47):17589-17594.
  4. Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine.Ann N Y Acad Sci. 2004;1033:108-116.
  5. Sergi G, Pizzato S, Piovesan F, Trevisan C, Veronese N, Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin Exp Res. 2018;30(2):133-138.
  6. Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes.Nutr Diabetes. 2018;8(1):8.
  7. Ferrari R, Merli E, Cicchitelli G, Mele D, Fucili A, Ceconi C. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci. 2004;1033:79-91.
  8. Chao de la Barca JM, Rondet-Courbis B, Ferre M, et al. A Plasma Metabolomic Profiling of Exudati2020;9(3).
  9. Moos WH, Faller DV, Glavas IP, et al. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol.2022;203:115168.
  10. Veronese N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S. Acetyl-L-Carnitine Supplementation and the Treatment of Depressive Symptoms: A Systematic Review and Meta-Analysis.Psychosom Med.2018;80(2):154-159.
  11. Kepka A, Ochocinska A, Borzym-Kluczyk M, et al. Preventive Role of L-Carnitine and Balanced Diet in Alzheimer’s Disease. 2020;12(7).
  12. Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management.Altern Med Rev. 2005;10(4):268-293.
  13. Traina G. The neurobiology of acetyl-L-carnitine. Front Biosci (Landmark Ed).2016;21(7):1314-1329.
  14. Crentsil V. Mechanistic contribution of carnitine deficiency to geriatric frailty.Ageing Res Rev.2010;9(3):265-268.
  15. Par A, Hegyi JP, Vancsa S, Par G. Sarcopenia – 2021: Pathophysiology, diagnosis, therapy. Orv Hetil.2021;162(1):3-12.



Environmental risks from artificial nighttime lighting widespread and increasing across Europe. Science Advances 2022, Sept 14, 8 (37):
Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environ Health Perspectives 2018, 126 (4),
Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina
. Oxid Med Cell Longev 2019, Aug 21;2019:6435364.

Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 2022, Sept 15, 185 (19): 3467-86.e16:

Plant N-glycan breakdown by human gut Bacteroides. PNAS 2022, Sept 19, 119 (39) e2208168119:

Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. J Agric Food Chem 2022, 70, 29, 9048–9056:

Gut-Brain Circuits for Fat PreferenceNature, 2022; DOI: 10.1038/s41586-022-05266-z.

Acute Impact of Fine Particulate Air Pollution on Cardiac Arrhythmias in a Population‐Based Sample of Adolescents: The Penn State Child Cohort.  Journal of the American Heart Association 2022, Sept 14, 11 (18):

Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022:

news EXTRA

SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophagesScience Translational Medicine, 2022;
Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2022, Jan 8;399(10320):143-151:

Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms. Eur Respir J 2022, Sep 22;2200970.

Association of COVID-19 with New-Onset Alzheimer’s Disease. J Alzheimer’s Disease 2022, 89 (2): 411-414:

Effects of mild obesity on outcomes in Japanese patients with COVID-19: a nationwide consortium to investigate COVID-19 host geneticsNutr. Diabetes 2022,12, 38:

How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. EJE 2020, 183 (4):

September 2022


Vitamin B12 and folate decrease inflammation and fibrosis in NASH by preventing Syntaxin 17 homocysteinylation. Journal of Hepatology 2022:
Skill-mix change and outcomes in primary care: Longitudinal analysis of general practices in England 2015-2019. Soc Sci Med 2022, Sep;308:115224:

IHCANchat: High-dose Vitamin B6 supplementation reduces anxiety and strengthens visual surround suppression. Hum Psychopharmacol 2022, Jul 19;e2852, online ahead of print:

The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse modelScientific Reports, 2022; 12 (1) DOI: 10.1038/s41598-022-14241-7.

Plant green pigment of chlorophyllin attenuates inflammatory bowel diseases by suppressing autophagy activation in mice. Am J Physiol Gastrointest Liver Physiol 2022, 323(2):G102-G113:

A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 2022:

Alzheimer’s is Preventable campaign:
Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ 2021; 372: n156.
Editorial. Dementia: a false promise. Lancet 2014;384(9948):1072:
The costs of developing treatments for Alzheimer’s disease: A retrospective exploration. Alzheimer’s Dement 2022;18:469–477.  
Genetics of Alzheimer disease. Journal of Geriatric Psychiatry and Neurology 2010, 23(4) 213-227:
Effect of the Apolipoprotein E Genotype on Cognitive Change During a Multidomain Lifestyle Intervention: A Subgroup Analysis of a Randomized Clinical Trial. JAMA Neurol. 2018; 75: 462-70:
Precision Nutrition for Alzheimer’s Prevention in ApoE4 Carriers.
Nutrients 2021, 13, 1362:
Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA 2019, Feb 12;321(6):553-561:
Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 2020,  Nov;91(11):1201-1209:
Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014 Jun 24;14:643:
Homocysteine, B Vitamins, and Cognitive Impairment. Annual Review of Nutrition 2016, 36: 211-239:
Piloting and validation of a novel self-administered online cognitive screening tool in normal older persons: the Cognitive Function Test. Int J Geriatr Psychiatry 2014, Feb; 29(2):198-206:

Intranasal delivery of pro-resolving lipid mediators rescues memory and gamma oscillation impairment in AppNL-G-F/NL-G-F mice. Communications Biology 2022, 5, 245:
Downregulation of Neurofilament Light Chain Expression in Human Neuronal-Glial Cell Co-Cultures by a Microbiome-Derived Lipopolysaccharide-Induced miRNA-30b-5p. Front. Neurol 2022, Sec. Autonomic Neuroscience,

Fibre stats:,aim%20for%2015g%20per%20day.

Inflammation, tau pathology, and synaptic integrity associated with sleep spindles and memory prior to β-amyloid positivity. Sleep 2022:  zsac135,

A Japanese Herbal Formula, Daikenchuto, Alleviates Experimental Colitis by Reshaping Microbial Profiles and Enhancing Group 3 Innate Lymphoid Cells. Frontiers in Immunology 2022: 10.3389/fimmu.2022.903459.

Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022, Jul 12: S1934-5909(22)00261-2.

Dietary Meat, Trimethylamine N-Oxide-Related Metabolites, and Incident Cardiovascular Disease Among Older Adults: The Cardiovascular Health Study. Arteriosclerosis Thrombosis and Vascular Biology 2022, Aug 1:

Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study
International Journal of Epidemiology 2022. DOI: 10.1093/ije/dyac087.
Vitamin D and brain health: an observational and Mendelian randomization study. Am J Clin Nutr 2022, Aug 4;116(2):531-540:
Supplemental Vitamin D and Incident Fractures in Midlife and Older Adults. N Engl J Med 2022, July 28, 387:299-309:
Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev 2014, Jan;72(1):48-54:
Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009-2011 rates. J Steroid Biochem Mol Biol 2016, Jan;155(Pt B):245-51:

Association of Ultraprocessed Food Consumption With Risk of Dementia A Prospective Cohort
Neurology, July 27, 2022 DOI: 10.1212/WNL.0000000000200871.

Roundup and glyphosate’s impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegansSci Rep 2022, 12, 13655:

Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesityeBioMedicine, 2022; 104192 DOI: 10.1016/j.ebiom.2022.104192.

Folic acid and neural tube defects: Discovery, debate and the need for policy change. J Med Screen 2022, Sep;29(3):138-146:

Risk of hip fracture in meat-eaters, pescatarians, and vegetarians: results from the UK Women’s Cohort Study. BMC Med 2022, 20, 275:

Effect on bone anabolic markers of daily cheese intake with and without vitamin K2: a randomised clinical trial. BMJ Nutrition Prevention & Health 2022:

Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems 2022, 7:3,

1. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: a randomized, double-blind cross-over trial. Eur J Nutr 2013 Oct;52(7):1821-4:
2. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmun Rev 2021 Aug;20(8):102867:
3. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol 2014, 6 May, Sec. Redox Physiology:
4. Thiamine Deficiency Disease, Dysautonomia and High Calorie Malnutrition, by Derrick Lonsdale, MD, and Chandler Marrs, PhD. Academic Press; 1st edition (June 29, 2017):
5. EONutrition:

COVID update

  1. “A Deeper Dive on CDC’s Exit Strategy”, by Jeffrey A. Tucker. August 15, 2022:
    2. ONS links: and
    3. “Deaths with unknown causes now Alberta’s top killer: province”, by Nicole Di Donato, July 6, 2022:
  2. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front. Immunol 2022, Sec. Molecular Innate Immunity:
  3. The Efficacy of Facemasks in the Prevention of COVID-19: A Systematic Review. medRxiv 2022:
    6. “How junk science got spread like wildfire”, by Dr Alasdair Munro. August 10, 2022:
August 2022


Antidepressant prescribing in England: patterns and costs. Prim Care Companion CNS Disord. 2020, 22(2):19m02552:
What the NHS tells patients:
What proportion of initially prescribed antidepressants is still being prescribed chronically after 5 years in general practice? A longitudinal cohort analysis. BMJ Open 2019; 9:e024051:
Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018, Apr 7;391(10128):1357-1366:


Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell 2022, June 16:
Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.  Gut 2022:

The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry 2022:

High‐dose Vitamin B6 supplementation reduces anxiety and strengthens visual surround suppression. Human Psychopharmacology: Clinical and Experimental, 2022; DOI: 10.1002/hup.2852.

Double-blinded randomised placebo controlled trial of enterosgel (polymethylsiloxane polyhydrate) for the treatment of IBS with diarrhoea (IBS-D. Gut 2022, published online first, 27 June:

Molecular Mechanisms of Neuroinflammation in ME/CFS and Long COVID to Sustain Disease and Promote RelapsesFrontiers in Neurology, 2022; 13. DOI: 10.3389/fneur.2022.877772.
Investigating trends in those who experience menstrual bleeding changes after SARS-CoV-2 vaccinationScience Advances, 2022; 8 (28). DOI: 10.1126/sciadv.abm7201.
Cloaking the ACE2 receptor with salivary cationic proteins inhibits SARS-CoV-2 entryThe Journal of Biochemistry 2022. DOI: 10.1093/jb/mvac054.
Reduced Vitamin A RBP levels in hospitalised COVID-19 patients. Presented at the American Society for Nutrition’s Nutrition 2022 Live Online, by Dr Richard Vollenberg, MD. Also see Significantly Reduced Retinol Binding Protein 4 (RBP4) Levels in Critically Ill COVID-19 Patients. Nutrients 2022, May; 14(10): 2007, doi: 10.3390/nu14102007.

“How gut bacteria could boost cancer treatments”, by Jeanne Erdmann. News feature, Nature, 19 July 2022:
Gut microbiota from patients with mild COVID-19 cause alterations in mice that resemble post-COVID syndrome. Preprint (Version 1) 22 June 2022,  available at Research Square:

Trends and Disparities in Cardiometabolic Health Among U.S. Adults, 1999-2018Journal of the American College of Cardiology, 2022; 80 (2): 138 DOI: 10.1016/j.jacc.2022.04.046.
Our unhealthy nation. The Lancet Healthy Longevity 2021, Comment, 2: 1, E8-9. DOI:

“Tufts University touts the Food Compass as the ‘most comprehensive and science-based’ nutrient profiling system to date that clears up confusion to benefit consumers, policymakers”:
Limitations of the Food Compass Nutrient Profiling System. SocArXiv 2022, Feb 18:

Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat Aging 2022, 2, 254–263:

E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition
. Seminars in Immunology 2022, online February16:

Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome
Cell Reports 2022; 40 (1): 111008 DOI: 10.1016/j.celrep.2022.111008.

Human Colon Cancer–Derived Clostridioides difficile Strains Drive Colonic Tumourigenesis in Mice. Cancer Discov 2022, July 12.

ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 2022, July 13:

Retrograde movements determine effective stem cell numbers in the intestine. Nature 2022; DOI: 10.1038/s41586-022-04962-0.

Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behavioural Processes 2022; 199: 1046,50 DOI: 10.1016/j.beproc.2022.104650. 


The influence of the macular carotenoids on women’s eye and brain healthNutritional Neuroscience, 2022; 1 DOI: 10.1080/1028415X.2022.2084125.

The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front Psychiatry 2022, July 6:

Disentangling self from pain: mindfulness meditation-induced pain relief is driven by thalamic-default mode network decoupling. Pain 2022, July 7:

Secular Trends in Risk Profiles Among Adults With Cardiovascular Disease in the United States. J Am Coll Cardiol 2022, Jul, 80 (2) 126–37:

Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrineNature Neuroscience 2022: 10.1038/s41593-022-01102-9

July 2022

Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave. Sci Rep 2022, 12, 6978:
Long-term outcomes of adding Lutein/Zeaxanthin and Omega-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression: AREDS2 Report #28JAMA Ophthalmology 2022, June 2:

Ameliorating Atopy by Compensating Micronutritional Deficiencies in Immune Cells: A Double-Blind Placebo-Controlled Pilot StudyThe Journal of Allergy and Clinical Immunology: In Practice, 2022; DOI: 10.1016/j.jaip.2022.02.028.

Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer’s Disease and All-Cause Dementia: Framingham Offspring Study. Nutrients 2022, 14(12), 2408;  

A Multicentre, Randomised, Double Blind, Parallel Design, Placebo Controlled Study to Evaluate the Efficacy and Safety of Uthever (NMN Supplement), an Orally Administered Supplementation in Middle Aged and Older Adults. Front. Aging 2022:

Early clues regarding the pathogenesis of long-COVID.
Trends Immunol 2022, Apr; 43(4): 268-70.
Long COVID: to investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy.
Eur Respir J.2022, Feb; 59(2): doi 10.1183/13993003.02245-2021.
Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020, 24, 422:
Long covid – mechanisms, risk factors, and management. BMJ 2021;374:n1648:
Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 2006, 16, 196–202 (2006).
Metabolic features of the cell danger response. Mitochondrion 2014, May;16:7-17. doi: 10.1016/j.mito.2013.08.006.


Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome.  J Cell Mol Med 2020;00:1–4.
Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor MicroenvironmentCannabis and Cannabinoid Research 2021; published online Dec 21:
Inflammaging and Cannabinoids. Ageing Research Reviews 2021, 72, [101487]:
Effects of cannabidiol on simulated driving and cognitive performance: A dose-ranging randomised controlled trial. Journal of Psychopharmacology 2022:

Maternal gut microbiome–induced IgG regulates neonatal gut microbiome and immunityScience Immunology 2022; 7 (72). DOI: 10.1126/sciimmunol.abh3816.
Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trialTranslational Psychiatry, 2022; 12 (1) DOI: 10.1038/s41398-022-01977-z.

Does the concept of ‘ultra-processed foods’ help inform dietary guidelines, beyond conventional classification systems? YESThe American Journal of Clinical Nutrition, 2022; DOI: 10.1093/ajcn/nqac122.
Does the concept of ‘ultra-processed foods’ help inform dietary guidelines, beyond conventional classification systems? NOThe American Journal of Clinical Nutrition, 2022; DOI: 10.1093/ajcn/nqac123.
Conflicts of interests of ICQC members (International Carbohydrate Quality Consortium):
Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019, Apr;22(5):936-941. DOI: 10.1017/S1368980018003762.

Effects of a New Multicomponent Nutritional Supplement on Muscle Mass and Physical Performance in Adult and Old Patients Recovered from COVID-19: A Pilot Observational Case–Control Study. Nutrients 2022, 14(11), 2316:

NEWS extra
Folate related pathway gene analysis reveals a novel metabolic variant
associated with Alzheimer’s disease with a change in metabolic profile.
Metabolites 2022, 12(6), 475;

Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer’s Disease. Front Aging Neurosci 2018:
Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol 1991 Apr;33(4):224-7,
Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997, Jan 25;349(9047):241-4:

Vitamin D and brain health: an observational and Mendelian randomization studyAmerican Journal of Clinical Nutrition 2022; DOI: 10.1093/ajcn/nqac107.

Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLOS One 2022,
Vitamin D, Epstein-Barr virus, and endogenous retroviruses in multiple sclerosis – facts and hypotheses. J Integr Neurosci 2021, Mar 30;20(1):233-238:

SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2PLOS Pathogens, 2022; 18 (5): e1010359 DOI: 10.1371/journal.ppat.1010359.

June 2022

Increasing use of prescription drugs in the United Kingdom. 
Pharmacoepidemiology and drug safety 2016, 25(6), 628–636.


Fruit and vegetable intake is inversely associated with severity of inattention in a pediatric population with ADHD symptoms: the MADDY StudyNutritional Neuroscience 2022; 1 DOI: 10.1080/1028415X.2022.2071805.
Chronic Consumption of Cranberries (Vaccinium macrocarpon) for 12 Weeks Improves Episodic Memory and Regional Brain Perfusion in Healthy Older Adults: A Randomised, Placebo-Controlled, Parallel-Groups Feasibility StudyFrontiers in Nutrition 2022; 9 DOI: 10.3389/fnut.2022.849902.

Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. Sci Adv 2022, May 13, 8(19):eabm5371, doi: 10.1126/sciadv.abm5371.
SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis. Journal of the American College of Cardiology: Basic to Translational Science 2021, 6: 4, 331-345:
SARS-CoV-2 and influenza: a comparative overview and treatment implications. Bol Med Hosp Infant Mex. 2020;77(5):262-273. DOI: 10.24875/BMHIM.20000183.
“Even Mild COVID Can Increase the Risk of Heart Problems”, by Mariana Lenharo. Scientific American, March 16, 2022:

Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Reports 2022; 39 (7): 110837 DOI: 10.1016/j.celrep.2022.110837.

Obese individuals do not underreport dietary intake to a greater extent than nonobese individuals when data are allometrically-scaled. Am J Human Biol 2022,

NEWS SARS in the gut

“Coronavirus ‘ghosts’ found lingering in the gut”, by Heidi Ledford.
Nature 605, 408-409 (2022),
Natarajan, A. et al. Med (2022). Article  Google Scholar 
Zollner, A. et al. Gasteroenterology (2022). PubMed  Article  Google Scholar 
Gaebler, C. et al. Nature 591, 639–644 (2021). PubMed  Article  Google Scholar 
Chertow, D. et al. Preprint at Research Square (2021).
Goh, D. et al. Preprint at Research Square (2022).

1.         Isaacs LL. Pancreatic proteolytic enzymes and cancer: new support for an old theory. Integr Cancer Ther. 2022;21:15347354221096077. doi: 10.1177/15347354221096077. Available at:

  1. Gonzalez NJ. One Man Alone; An Investigation of Nutrition, Cancer, and William Donald Kelley. New York, NY: New Spring Press; 2010.
  2. Gonzalez NJ, Isaacs LL. Evaluation of pancreatic proteolytic enzyme treatment of adenocarcinoma of the pancreas, with nutrition and detoxification support. Nutr Cancer. 1999;33(2):117-124. doi: 10.1207/S15327914NC330201 Available at:
  3. Gonzalez NJ. What Went Wrong: The Truth Behind the Clinical Trial of the Enzyme Treatment of Cancer. New York, NY: New Spring Press; 2012.
  4. Isaacs LL. Research battles: survival tips from a veteran. Integr Med (Encinitas). 2015;14(5):30-32. Available at:
  5. Andriulli A, Masoero G, Felder M, et al. Circulating trypsin-like immunoreactivity in chronic pancreatitis. Dig Dis Sci. 1981;26(6):532-537. doi: 10.1007/bf01308103.
  6. Andriulli A, Masoero G. Serum trypsinogen. Dig Dis Sci. 1984;29(5):479. doi: 10.1007/bf01296230.
  7. Verhamme IM, Leonard SE, Perkins RC. Proteases: pivot points in functional proteomics. Meth Mol Biol (Clifton, NJ). 2019;1871:313-392. doi: 10.1007/978-1-4939-8814-3_20. Available at:
  8. Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J. 2020;287(4):645-658. doi: 10.1111/febs.15055. Available at:
  9. Liu L, Shah K. The Potential of the Gut Microbiome to Reshape the Cancer Therapy Paradigm: A Review. JAMA Oncol. 2022. doi: 10.1001/jamaoncol.2022.0494.
  10. Beard J. The Enzyme Treatment of Cancer and Its Scientific Basis. London: Chatto and Windus; 1911.
  11. Lala PK, Nandi P, Hadi A, Halari C. A crossroad between placental and tumor biology: What have we learnt? Placenta. 2021;116:12–30. doi: 10.1016/j.placenta.2021.03.003.
  12. Even-Ram SC, Grisaru-Granovsky S, Pruss D, et al. The pattern of expression of protease-activated receptors (PARs) during early trophoblast development. J Pathol. 2003;200(1):47-52. doi: 10.1002/path.1338
  13. Nag JK, Bar-Shavit R. Transcriptional Landscape of PARs in Epithelial Malignancies. Int J Mol Sci. 2018;19(11). doi: 10.3390/ijms19113451.
  14. Hernandez-Camarero P, Lopez-Ruiz E, Grinan-Lison C, et al. Pancreatic (pro)enzymes treatment suppresses BXPC-3 pancreatic cancer stem cell subpopulation and impairs tumour engrafting. Sci Rep. 2019;9(1):11359. doi: 10.1038/s41598-019-47837-7.

Obesity I: Overview and molecular and biochemical mechanisms.
Biochemical Pharmacology 2022, 199: 115012. Part of Special Issue, Impact of Endocrine Disrupting Chemicals on Health and Disease:
Obesity II: Establishing causal links between chemical exposure and obesityBiochem Pharacol. Doi: 10.1016/j.bcp.2022.115015.
Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharacol. Doi: 10.1016/j.bcp.2022.115014.


Decreased Fatty Acid Oxidation and Altered Lactate Production during Exercise in Patients with Post-acute COVID-19 SyndromeAmerican Journal of Respiratory and Critical Care Medicine 2022, 205(1), 126–129.
Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome. Physiol Rep 2019, 7 (11), 2019, e14138,,
Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study. Int J Immunopathol Pharmacol 2009, Apr-Jun;22(2):427-36. doi: 10.1177/039463200902200219.
Old muscle in young body: an aphorism describing the Chronic Fatigue Syndrome. Eur J Transl Myol 2018, Sep 7;28(3):7688, doi: 10.4081/ejtm.2018.7688.
Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil 2007;28(6):355-62, doi: 10.1007/s10974-008-9128-y.
Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J Aging Res. 2016;2016:2497348, 10.1155/2016/2497348.


COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69(6):973-4. doi: 10.1136/gutjnl-2020-321195.

Gut as viral reservoir: lessons from gut viromes, VIH and COVID-19. Gut. 2021; 70(9):1605-8. doi: 10.1136/gutjnl-2021-324622.

Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4):698-706. doi: 10.1136/gutjnl-2020-323020.

Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology 2022; 162(2):548-61.e4. doi: 10.1053/j.gastro.2021.10.013.

Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 2022; 71(3):544-52. doi: 10.1136/gutjnl-2021-325989.

Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020; 31(6):1068-77.e3. doi: 10.1016/j.cmet2020.04.021.

SIM01 as a novel microbiome replacement therapy for COVID-19: an open-label pilot study. APDW2021. Available: 

Targeting the gut microbiota in coronavirus disease 2019: hype or hope? Gastroenterology 2022; 162(1):9-16. doi: 10.1053/j.gastro.2021.09.009.

Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut. 2022. doi: 10.1136/gutjnl-2021-326563.

Online COVID-19 gastroenterology collection published by GutFrontline Gastroenterology and BMJ Open Gastroenterology

Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes 2022, 14:1. DOI: 10.1080/19490976.2021.2018899.

Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-associated diarrheaiScience. 2021; 25(1):103644. doi: 10.1016/j.isci.2021.103644.

Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell. 2021; 184(8):2053-67. doi: 10.1016/j.cell.2021.02.052.

Use of traditional and genetically modified probiotics in human health: what does the future hold? Microbiol Spectr. 2017; 5(5). doi: 10.1128/microbiolspec.BAD-0016-2016.

Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol. 2013; 16(3):278-83. doi: 10.1016/j.mib.2013.06.002.

Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med. 2012; 4(158):158ra144. doi: 10.1126/scitranslmed.2004212.

Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105(43):16731-6. doi: 10.1073/pnas.0804812105.

Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kB pathway. Front Microbiol. 2017; 8:114. doi: 10.3389/fmicb.2017.00114.

A selective gut bacterial bile salt hydrolase alters host metabolism. Elife. 2018; 7:e37182. doi: 10.7554/eLife.37182.

Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. bioRxiv. doi : 10.1101/2021.03.24.436896.

Human gut bacteria produce TH17-modulating bile acid metabolites. Nature. 2022; 603(7903):907-12. doi: 10.1038/s41586-022-04480-z.

Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in womenNature Microbiology 2022; 7 (5): 630 DOI: 10.1038/s41564-022-01107-x.

Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host & Microbe 2022, 30 5: 696-711.e5:

Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host & Microbe 2022:

British Lung Foundation website:

ONS figures: “Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK”, May 6, 2022:

Arunachalam, Karuppusamy, Sreeja Puthanpura Sasidharan, and Xuefei Yang. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food Chemistry Advances (2022): 100023.

Li, Y., Li, M., Wang, R., Wang, B., Athari, S. S., & Wang, J. (2022). Ganoderma Modulates Allergic Asthma Pathologic Features via Anti-inflammatory Effects. Respiratory physiology & neurobiology, 103843.

Jan, RH., Lin, TY., Hsu, YC. et al. Immuno-modulatory activity of Ganoderma lucidum-derived polysacharide on human monocytoid dendritic cells pulsed with Der p 1 allergen. BMC Immunol 12, 31 (2011).

Chen S, Li Z, Krochmal R, Abrazado M, Kim W, Cooper CB. Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial. J Altern Complement Med. 2010 May;16(5):585-90.

Wang, N., Li, J., Huang, X., Chen, W., & Chen, Y. (2016). Herbal medicine Cordyceps sinensis improves health-related quality of life in moderate-to-severe asthma. Evidence-Based Complementary and Alternative Medicine, 2016.

Yu, X., Mao, Y., Shergis, J. L., Coyle, M. E., Wu, L., Chen, Y., … & Xu, Y. (2019). Effectiveness and Safety of Oral Cordyceps sinensis on Stable COPD of GOLD Stages 2–3: Systematic Review and Meta-Analysis. Evidence-Based Complementary and Alternative Medicine, 2019.

Xu J, Xiao C, Xu H, Yang S, Chen Z, Wang H, Zheng B, Mao B, Wu X. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol. 2021 Apr;150:112073.

Oh KW, Lee CK, Kim YS, Eo SK, Han SS. Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with acyclovir and vidarabine. J Ethnopharmacol. 2000 Sep;72(1-2):221-7.


Guowei, D., Bao, T., Xu, C., Cooper, R. and Zhu, J. X. (2001) CordyMaxTM Cs-4 Improves Steady-State Bioenergy Status in Mouse Liver. The Journal of Alternative and Complementary Medicine. 7, 231-24.

Manabe N, Sugimoto M, Azuma Y, Taketomo N, Yamashita A, Tsuboi H, Tsunoo A, Kinjo N, Nian-Lai H, Miyamoto H. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse. Jpn J Pharmacol. 1996 Jan;70(1):85-8.

Phillips JM, Ooi SL, Pak SC. Health-Promoting Properties of Medicinal Mushrooms and Their Bioactive Compounds for the COVID-19 Era-An Appraisal: Do the Pro-Health Claims Measure Up? Molecules. 2022;27(7):2302. Published 2022 Apr 1.

Panda AK, Swain KC. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayurveda Integr Med. 2011;2(1):9-13.

Chen M, Cheung FW, Chan MH, et al. Protective roles of Cordyceps on lung fibrosis in cellular and rat models. J Ethnopharmacol. 2012;143(2):448-454.

Geng P, Siu KC, Wang Z, Wu JY. Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. Biomed Res Int. 2017;2017:9648496. doi:10.1155/2017/9648496

Ahmad MF, Ahmad FA, Khan MI, Alsayegh AA, Wahab S, Alam MI, Ahmed

  1. Ganoderma lucidum: A potential source to surmount viral infections through

β-glucans immunomodulatory and triterpenoids antiviral properties. Int J Biol

Macromol. 2021 Sep 30;187:769-779.


Al-Jumaili, Miqdam & K.Y. Al-dulaimi, Fahad & Ajeel, Mohammed. The Role of

Ganoderma lucidum Uptake on Some Hematological and Immunological Response

in Patients with Coronavirus (COVID-19). Sys Rev Pharm 2020;11(8):537-541:


Eo SK, Kim YS, Lee CK, Han SS. Antiviral activities of various water and methanol

soluble substances isolated from Ganoderma lucidum. J Ethnopharmacol. 1999

Dec 15;68(1-3):129-36.

Hernández-Márquez E, Lagunas-Martínez A, Bermudez-Morales VH, BurgeteGarcía AI, León-Rivera I, Montiel-Arcos E, García-Villa E, Gariglio P, Madrid-Marina

V V, Ondarza-Vidaurreta RN. Inhibitory activity of Lingzhi or Reishi medicinal

mushroom, Ganoderma lucidum (higher Basidiomycetes) on transformed cells by

human papillomavirus. Int J Med Mushrooms. 2014;16(2):179-87.


Jan JT, Cheng TR, Juang YP, Ma HH, Wu YT, Yang WB, Cheng CW, Chen X, Chou

TH, Shie JJ, Cheng WC, Chein RJ, Mao SS, Liang PH, Ma C, Hung SC, Wong CH.

Identification of existing pharmaceuticals and herbal medicines as inhibitors of

SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021 Feb 2;118(5):e2021579118.


Li RF, Zhou XB, Zhou HX, Yang ZF, Jiang HM, Wu X, Li WJ, Qiu JJ, Mi JN, Chen M,

Zhong NS, Zhu GY, Jiang ZH. Novel Fatty Acid in Cordyceps Suppresses Influenza

A (H1N1) Virus-Induced Proinflammatory Response Through Regulating Innate

Signaling Pathways. ACS Omega. 2021 Jan 7;6(2):1505-1515.


Lim WZ, Cheng PG, Abdulrahman AY, Teoh TC. The identification of active

compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus

serine protease and its computational studies. J Biomol Struct Dyn. 2020



Lin YL, Shih C, Cheng PY, Chin CL, Liou AT, Lee PY, Chiang BL. A Polysaccharide

Purified From Ganoderma lucidum Acts as a Potent Mucosal Adjuvant That

Promotes Protective Immunity Against the Lethal Challenge With Enterovirus A71.

Front Immunol. 2020 Sep 29;11:561758.

Lise Alschuler, Ann Marie Chiasson, Randy Horwitz, Esther Sternberg, Robert

Crocker, Andrew Weil, Victoria Maizes. Integrative medicine considerations for

convalescence from mild-to-moderate COVID-19 disease. EXPLORE, 18,

2, 2022, 140-148.

Luo L, Cai LM, Hu XJ. Evaluation of the Anti-Hypoxia and Anti-Fatigue Effects of

Ganoderma lucidum Polysaccharides. AMM 2014;522–524:303–6.

N.Q. Wang, L D Jiang, X. .M. Zhang, Z. .X. Li. [Effect of Dongchong Xiacao capsule

on airway inflammation of asthmatic patients] [article in Chinese] Zhongguo

Zhong Yao Za Zhi, 32 (15) (2007), pp. 1566-1568.


Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y,

Sawasdee N, Lee VS, Nimmanpipug P, Yenchitsomanus PT. Cordycepin Inhibits

Virus Replication in Dengue Virus-Infected Vero Cells. Molecules. 2021 May


 Ping Geng, Ka-Chai Siu, Zhaomei Wang and Jian-Yong Wu. Antifatigue Functions

and Mechanisms of Edible and Medicinal Mushrooms. BioMed Research

International. Volume 2017. Article ID 9648496.


Popa, Miruna and Oancea, Simona. Studies On Bioactive Compounds

Of Mushrooms And Their Potential Antiviral Effects Against

Covid-19. December 2020, Conference: 44th Conference For Students Of Agriculture And Veterinary Medicine With International Participation, Novi Sad, Serbia.


Rahman MA, Rahman MS, Bashir NMB, Mia R, Hossain A, Saha SK, Kakon

AJ, Sarker NC. Rationalization of Mushroom-Based Preventive and Therapeutic

Approaches to COVID-19: Review. Int J Med Mushrooms. 2021;23(5):1-11.


Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung

GH, Kang H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus

replication. Oncoscience. 2014 Dec 18;1(12):866-881.


  1. Chen, Z. Li, R. Krochmal, M. Abrazado, W. Kim, C.B. Cooper. Effect of

Cs-4® (Cordyceps sinensis) on exercise performance in healthy older subjects: a

double-blind, placebo-controlled trial. J Altern Complem Med 2010, 16 (5) (2010), pp.

585-590, 10.1089/acm.2009.0226.


Zhang W, Tao J, Yang X, Yang Z, Zhang L, Liu H, Wu K, Wu J. Antiviral effects of

two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem

Biophys Res Commun. 2014 Jul 4;449(3):307-12.


Zheng DS, Chen LS. Triterpenoids from Ganoderma lucidum inhibit the activation

of EBV antigens as telomerase inhibitors. Exp Ther Med. 2017 Oct;14(4):3273-



Zhu Y, Ma L, Hu Q, Li J, Chen Y, Jia R, Shen S, Zeng Y. [In Vitro Anti-HIV-1 Activity

of Cordyceps sinensis Extracts]. Bing Du Xue Bao. 2016 Jul;32(4):417-22. Chinese.

PMID: 29979545.


Rossi P, Buonocore D, Altobelli E, et al. Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation. Evid Based Complement Alternat Med. 2014;2014:979613.

Fung CK et al. (2012) “Cordyceps Extracts and the major ingredient, cordycepin: possible cellular mechanisms of their therapeutic effects on respiratory disease”, Chapter 1 in Respiratory Diseases, Mostafa Ghanei (Ed.) InTech.



Bandara, A. R. et al. Cryptogam. Polyporus umbellatus, an Edible-Medicinal Cultivated Mushroom with Multiple Developed Health-Care Products as Food, Medicine and Cosmetics. Mycol. 36, 3–42 (2015).

Zhao YY, Xie RM, Chao X, Zhang Y, Lin RC, Sun WJ. Bioactivity-directed isolation, identification of diuretic compounds from Polyporus umbellatus. J Ethnopharmacol. 2009 Oct 29;126(1):184-7.

Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, Nakahata N. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biol Pharm Bull. 2008 Sep;31(9):1727-32.

Thongbai, Benjarong & Rapior, Sylvie & Wittstein, Kathrin & Hyde, Kevin & Stadler, Marc. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress. 14. 1-23. 10.1007/s11557-015-1105-4.

Khan MA, Tania M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med. 2013 May 24;10:/j/jcim.2013.10.

Nagano M, Shimizu K, Kondo R, Hayashi C, Sato D, Kitagawa K, Ohnuki K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res. 2010 Aug;31(4):231-7.

Liu, T., Zhang, L., Joo, D. et al. NF-κB signaling in inflammation. Sig Transduct Target Ther 2, 17023 (2017).

Sevindik KM. Mushrooms as natural antiviral sources and supplements foods against coronavirus (COVID-19). J Bacteriol Mycol Open Access. 2021;9(3):73-76. DOI: 10.15406/jbmoa.2021.09.00299.



Increased genetic contribution to wellbeing during the COVID-19 pandemicPLOS Genetics, 2022; 18 (5): e1010135 DOI: 10.1371/journal.pgen.1010135

1. Abelson R. Buoyed by federal Covid aid, big hospital chains buy up competitors. The New York Times Mat 21, 2021 (updated Oct 22, 2022) .

  1. Albright L. Medical nonconformity and its persecution. Brownstone Institute.[Last accessed on 2022 Feb 06]
  2. Ausman JI, Blaylock RL. What is the truth? United States: James I. and Carolyn R. Ausman Education Foundation (AEF); 2021. The China Virus. [Google Scholar]
  3. Beder A, Buyukkocak U, Sabuncuoglu H, Keskil ZA, Keskil S. Preliminary report on surgical mask induced deoxygenation during major surgery. Neurocirugia. 2008;19 [Google Scholar]
  4. Bhakdi S. Presentation of autopsy findings. presentation on findings [Last accessed on 2022 Feb 06]
  5. Blaylock RL. Covid-19 pandemic: What is the truth? Surg Neurol Inter. 2021;12(151) [Google Scholar]
  6. Blaylock RL. National Health Insurance (Part 1): the socialist nightmare. Aug 19, 2009[Last accessed on 2022 Feb 06]
  7. Blaylock RL. Regimentation in medicine and its human price (part 1 & 2) Hacienda publishing. March 20, 2015[Last accessed on 2022 Feb 06] [Google Scholar]
  8. Blaylock RL. Haciendia Publishing; When rejecting orthodoxy becomes a mental illness. Aug 15, 2013[Last accessed on 2022 Feb 06] [Google Scholar]
  9. Bloche MG. Corporate takeover of Teaching Hospitals. Georgetown Univ Law Center. 1992.[Last accessed on 2022 Feb 06]
  10. Bosh X, Ross JS. Ghostwriting: Research misconduct, plagiarism, or Fool’s gold. Amer J Med. 2012;125(4):324–6. [PubMed] [Google Scholar]
  11. Breggin PR, Breggin GR. Breggin PR, Breggin GR. Covid-19 and the Global Predators: We are the Prey. Ithaca, NY: Lake Edge Press; 2021. Top Medical Journals Sell their Souls; pp. 285–292. [Google Scholar]
  12. Breggin, p133 [Last accessed on 2022 Feb 06]
  13. Bulik BS. The top 10 ad spenders in Big Pharma for 2020. Fierce Pharma Apr 19, 2021[Last accessed on 2022 Feb 06]
  14. Children’s Health Defense Team Harvard experts critique cozy FDA-Pharma relationship. The Defender. Jan 28, 29020.
  15. Chughtai AA, Stelzer-Braid S, Rawlinson W, Pontivivi G, Wang Q, Pan Y, et al. Contamination by respiratory viruses on outer surface of medical mask used by hospital healthcare workers. BMC Infect Dis. 2019. Article number 491.
  16. Coleman-Lochner L. U.S. Hospitals pushed to financial ruin as nurses quit during pandemic. Bloomberg. Dec 21, 2021[Last accessed on 2022 Feb 06]
  17. D’Souza K. Pandemic effects may have lowered baby’s IQs, study says EdSource. [Last accessed on 2022 Feb 06]
  18. Davis GG, Williamson AK. Risk of covid-19 transmission during autopsy. Arch Path Lab Med. 2020;144(12):1445a–1445. [Google Scholar]
  19. Department of Health and Human Services: Part 1. Overview Information.[Last accessed on 2022 Feb 06]
  20. Durden T. Life Insurance CEO says deaths up 40% among those aged 18 to 64. Tyler Durden Report. 2022. Jan 3,
  21. Elder C, Schroder AS, Aepfelbacher M, Fitzek A, Heinemann A, Heinrich F, et al. Dying with SARS-CoV-2 infection an autopsy study of the first consecutive 80 cases in Hamberg, Germany. Inter J Legal Med. 2020;134:1275–84. [Google Scholar]
  22. Front Line Covid Critical Care Alliance.[Last accessed on 2022 Feb 06]
  23. Gueriero M. Restriction of autopsies during the Covid-19 epidemic in Italy. Prudence or fear? Pathologica. 2020;112:172–3. [PMC free article] [PubMed] [Google Scholar]
  24. Hope JR. Sudden death by “hot lot”—Dr. Michael Yeadon sounds the alarm. The Desert review. 2022. Jan 24,
  25. Huff E. Idaho doctor reports “20 times increase” in cancer among those “vaccinated” for covid. Natural News. 2021. Sept 14,[Last accessed on 2022 Feb 06]
  26. Ioannou P, Karakonstantis S, Astrinaki E, Saplamidou S, Vitsaxaki E, Hamilos G, et al. Transmission of SARS-C0V-2 variant B1.1.7 among vaccinated health care workers. Infect Dis. 2021:1–4. [Google Scholar]
  27. James Thorpe interview by Dr. Steve Kirsch. Rumble[Last accessed on 2022 Feb 06]
  28. Jiang H, Mei Y-F. SARS-CoV-2 spike protein impairs DNA damage repair and inhibits V(D)J recombination in vitro. Viruses. 2021;13:2056. doi: 10.3390/10.3390/v13102056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  29. Jimenez J, Vigdor N. Covid-19 news: Over 150 Texas hospital workers are fired or resign over vaccine mandates. The New York Times. 2021. Jun 22,[Last accessed on 2022 Feb 06]
  30. Katz E. Postal service seeks temporary exemption from Biden’s vaccine-or-test mandate. Government Executive. 2022. Jan 22,[Last accessed on 2022 Feb 06]
  31. Kennedy R., Jr . Skyhorse Publishing; 2021. The Real Anthony Fauci. Bill Gates, Big Pharma, and the Global War on Democracy and Public Health; pp. 24–29. [Google Scholar]
  32. Kennedy RF., Jr pp. 24–25.
  33. Kennedy RF., Jr pp. 26–30.
  34. Kennedy RF., Jr p. 32.
  35. Kennedy RF., Jr pp. 35–56.
  36. Kennedy RF., Jr pp. 47–56.
  37. Kennedy RF., Jr p. 135.
  38. Kennedy RF., Jr p. 217.
  39. Lee M. University of Florida finds dangerous pathogens on children’s face mask. NTD[Last accessed on 2022 Feb 06]
  40. Liu Q, Wang RS, Qu GQ, Wang YY, Liu P, Zhu YZ, et al. Gross examination report of a Covid-19 death autopsy. Fa Yi Xue Za Zhi. 2020;36:21–23. [PubMed] [Google Scholar]
  41. Loffredo J. Fully vaccinated are Covid ‘Superspreaders’ Says inventor of mRNA technology.[Last accessed on 2022 Feb 06]
  42. Marik PE, Kory P, Varon J, Iglesias J, Meduri GU. MATH+ protocol for the treatment oof SARS-CoV-2 infection: the scientific rationale. Exp rev Ant-infective Ther. 2020 doi: 10.1080/14787210.2020.1808462. [CrossRef] [Google Scholar]
  43. McCullough P, Kelly R, Ruocco G, Lerma E, Tumlin J, Wheeland KR, et al. Pathophysiological basis and rationale for early outpatient treatment of SARS-CoV-2 (COVID-19) Infection. Amer J Med. 2021;134:16–22. [PMC free article] [PubMed] [Google Scholar]
  44. McCullough P. Study: Fully vaccinated healthcare workers carry 251 times viral load, pose threat to unvaccinated patients, Co-workers. The Defender 08/23/21. [Google Scholar]
  45. McCullough P. “We’re in the middle of a major biological catastrophe”: Covid expert Dr. Peter McCullough. 2021. Oct 6,[Last accessed on 2022 Feb 06]
  46. McGovern C. Thousands report developing abnormal tumors following Covid shots. LifeSite News. Nov 1, 2021[Last accessed on 2022 Feb 06]
  47. Mercola J. Bill Gates and Anthony Fauci: a ‘formidable, nefarious’ partnership.[Last accessed on 2022 Feb 06]
  48. Moffatt B, Elliott C. Ghost Marketing: Pharmaceutical companies and ghostwritten journal articles. Persp Biol Med. 2007;50(1):18–31. [Google Scholar]
  49. Mulvany C. Covid-19 exacerbates bankruptcy for at-risk hospitals. Health Care Financial Management Association. 2020. Nov 9,
  50. Muoio D. How many employees have hospitals lost to vaccine mandates? Here are the numbers so far. Fierce Healthcare. 2022. Jan 13,[Last accessed on 2022 Feb 06]
  51. Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018 doi: 10.3389/fnins.2018.00825. [CrossRef] [Google Scholar]
  52. Nicole Sirotek shares what she saw on the front lines in NYC. # Murder.[Last accessed on 2022 Feb 06]
  53. Noether M, Mat S. Hospital merger benefits: Views from hospital leaders and econometric analysis. Amer Hospital Assoc. Charles Rivers Associates. Jan, 2017[Last accessed on 2022 Feb 06]
  54. Nurse Colette Martin testimony to Louisiana House of Representatives.[Last accessed on 2022 Feb 06]
  55. Nurse Dani: It’s the Covid-19 hospital protocols are killing people.[Last accessed on 2022 Feb 06]
  56. Parpia R. Mayo Clinic fires 700 employees for refusing to get Covid-19 vaccinations. The Vaccine Reaction.[Last accessed on 2022 Feb 06]
  57. Pomara C, Li Volti G, Cappello F. Covid-19 deaths: are we sure it is pneumonia? Please, autopsy, autopsy, autopsy! J Clin Med. 2020 doi: 10.3390/jcm9051259. [CrossRef] [Google Scholar]
  58. New York Post. Post Editorial Board Facebook admits the truth: “Fact checks” are just (lefty) opinion. Dec 14,2021.[Last accessed on 2022 Feb 06] [Google Scholar]
  59. Rancourt DG. Mask don’t work. A review of science relevant to the covid-19 social policy.[Last accessed on 2022 Feb 06]
  60. Redshaw M. As reports of injuries after Covid vaccines near 1 million mark. CDC, FDA clear Pfizer, Moderna boosters for all adults. The Defender 11/19/21.
  61. Roche D. Boston Herald. 2021. Sept 14, Members of Congress and their staff are exempt from Biden’s vaccine mandate, Newsweek 9/10/21 Boston Herald Editorial Staff. Editorial: Political elites exempt from vax mandates. [Google Scholar]
  62. Ross E. How drug companies’ PR tactics skew the presentation of medical research. The Guardian.[Last accessed on 2022 Feb 06]
  63. Saul S. Ghostwriters used in Vioxx studies, article says. New York Times. April 15, 2008,%202008_The%20New%20Times.pdf[Last accessed on 2022 Feb 06]
  64. Saxena V. Doctors loses medical license. Ordered to have Psych Eval for Ivermectin Scrits, Sharing Covid “misinformation” BRP News. Available from: [Last accessed on 2022 Feb 06]
  65. Schwab K, Malleret T. Cologny/Geneva: The Covid-19 Pandemic and the Great Reset. Forum Publishing 2020 World Economic Forum. [Google Scholar]
  66. Sen. Ron Johnson on Covid-19 vaccine injuries to test subjects.[Last accessed on 2022 Feb 06]
  67. Sperhake J-P. Autopsies of Covid-19 deceased? Absolutely! Legal Med. 2020 doi: 10.1016/j.legalmed.2020.101769. [CrossRef] [Google Scholar]
  68. Svab P. Non-Covid death spike in Americans aged 18-49. The Epoch Times. Jan 26-Feb 1 2022.
  69. US Medical, Scientific, Patient and Civic Organization Funding Report: Pfizer: Fourth Quarter 2010.[Last accessed on 2022 Feb 06]
  70. Vivek Saxena. Doctors loses license, ordered to have psych eval for Ivermectin scrits, sharing Covid ‘misinformation’ BPR News.
  71. Westendorf AM, et al. Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting Treg activity. Cell Physiol Biochem. 2017;41:1271–84. [PubMed] [Google Scholar]
  72. Wood PM. Coherent Publishing; 2018. Technocracy: The Hard Road to World Order. [Google Scholar]
  73. Wood PM. Coherent Publishing; 2015. Technocracy Rising: The Trojan Horse of Global Transformation. [Google Scholar].

References added to original:
75. Vaccinated and unvaccinated individuals have similar viral loads in communities with a high prevalence of the SARS-CoV-2 delta variant. medRxiv 2021.07.31.21261387; doi:
76. Transmissibility of SARS-CoV-2 among fully vaccinated individuals. Lancet Infect Dis 2022, Jan;22(1):18-19. DOI: 10.1016/S1473-3099(21)00761-1.





May 2022

Microbiomes of Urine and the Prostate Are Linked to Human Prostate Cancer Risk Groups.
Eur Urology Oncology 2022, April 18,

Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk: a Mendelian randomization analysis. BMC Med 2020, 20, 125, Open Access:

Characterizing menstrual bleeding changes occurring after SARS-CoV-2 vaccination.
medRxiv 2021,10.11.21264863; doi:

Long covid: How to define it and how to manage it. BMJ 2020, 370. Rapid responses, doi:

Beriberi may be misdiagnosed as a viral infection. NY Acad. Sci 2018:

Fever believed to be caused by viral infections may rather emanate from dysfunction of the hypothalamus with accompanying lack of nitric oxide induced by thiamine deficiency. American J Alzheimer’s Disease & Other Dementia 2008, Jan:

Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology 2022, 14 Apr:

Association of adverse childhood experiences with the development of multiple sclerosis.
Journal of Neurology, Neurosurgery & Psychiatry Published Online First: 04 April 2022.
Adverse Childhood Experiences and Adult Risk Factors for Age-Related Disease: Depression, Inflammation, and Clustering of Metabolic Risk Markers. Arch Pediatr Adolesc Med. 2009;163(12):1135–1143
Improved nutrition in the first 1000 days and adult human capital and health. Am J Hum Biol. 2017;29(2):10.1002/ajhb.22952.
Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann Nutr Metab. 2012;61 Suppl 1:8-17.
Personalised prescribing: using pharmacogenomics to improve patient outcomes. Royal College of Physicians:
Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment. Circulation: Cardiovascular Genetics 2016;9:291–313:
The Human Gutome: Nutrigenomics of Host-Microbiome Interactions.
Front. Genet 2016:

1. Saul AW (2020) Vitamin C Protects Against Coronavirus. Orthomolecular Medicine News Service.

  1. Front Line COVID-19 Critical Care Alliance: Prevention & Treatment Protocols for COVID-19. (2022)
  2. Klenner FR. (1949) The treatment of poliomyelitis and other virus diseases with vitamin C. South Med J, 111:209-214.
  3. Klenner FR. (1951) Massive Doses of Vitamin C and the Virus Diseases. Presented in the Fifty-second Annual Meeting of the Tri-State Medical Association of the Carolinas and Virginia, held at Columbia, February 19th and 20th, 1951.
  4. Holford P, Carr AC, Zawari M, Vizcaychipi MP (2021) Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life, 11:1166.
  5. Holford P (2021) Twelve intervention trials conclude that vitamin C works for Covid. So why are hospitals being prohibited from using it? Orthomolecular Medicine News Service.
  6. Health Advisory and Recovery Team (2021) COVID-19: the case for supporting the human immune system with vitamin D: Why is this simple vitamin not promoted more?
  7. Mohr SB, Gorham ED, Garland CF, et al. (2021) San Diego group studying positive effects of sunlight.
  8. Lowther M (2020) Why are there fewer nutrients in our food? Orthomolecular Medicine News Service.
  9. Downing D (2020) How we can fix this pandemic in a month. Orthomolecular Medicine News Service.
  10. Power ML, Oftedal OT, Savage A, et al. (1997) Assessing vitamin D status of callitrichids: Baseline data from wild cotton-top tamarins (Saguinus oedipus) in Colombia. Zoo Biol 16:39-46.<39::AID-ZOO6>3.0.CO;2-C
  11. Power ML, Dittus, WPJ (2017) Vitamin D status in wild toque macaques (Macaca sinica) in Sri Lanka. Am J Primatol. 79:e22655.
  12. Vieth R (2006) Critique of the considerations for establishing the tolerable upper intake level for vitamin D: critical need for revision upwards. J Nutr, 136:1117-1122.

VITAMIN C and IODINE – Dr Sarah Myhill
The Potential of Coconut Oil and its Derivatives as Effective and Safe Antiviral Agents Against the Novel Coronavirus (nCoV-2019),
Jan 31, 2020:

IHCAN Summit
The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic
Brain, Behavior, and Immunity 2022, Vol 102, May, 89-97:!.

Oxidized Phospholipids Cause Changes in Jejunum Mucus that Induce Dysbiosis and Systemic InflammationJournal of Lipid Research 2021; 100153 DOI: 10.1016/j.jlr.2021.100153.

Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Medicine 2022, 20, 24, Open Access:

1.         Lugo JP, Saiyed ZM, Lau FC, et al. Undenatured type II collagen (UC-II®) for joint support: A randomized, double-blind, placebo-controlled study in healthy volunteers. J Int Soc Sports Nutr. Published online 2013. doi:10.1186/1550-2783-10-48

  1. Sengupta K, Alluri K V, Satish AR, et al. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther. 2008;10(4):R85. doi:10.1186/ar2461
  2. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific Opinion on the substantiation of a health claim related to vitamin D and contribution to the normal function of the immune system pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal 2015;13(5):4096, 7 pp. doi:10.2903/j.efsa.2015.4096
  3. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to vitamin B12 and red blood cell formation (ID 92, 101), cell division (ID 93), energy-yielding metabolism (ID 99, 190) and function of the immune system (ID 107) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009;7(10). doi:10.2903/J.EFSA.2009.1223
  4. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to vitamin A and contribution to normal development and function of the immune system pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2013;11(7). doi:10.2903/j.efsa.2013.3334
  5. Busch R, Gruenwald J, Dudek S. Randomized, Double Blind and Placebo Controlled Study Using a Combination of Two Probiotic Lactobacilli to Alleviate Symptoms and Frequency of Common Cold. Food Nutr Sci. 2013;04(11):13-20. doi:10.4236/fns.2013.411a003
  6. Berggren A, Lazou Ahrén I, Larsson N, Önning G. Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur J Nutr. Published online 2011. doi:10.1007/s00394-010-0127-6
  7. Morgan A, Stevens J. Does bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J Altern Complement Med. 2010;16(7):753-759. doi:10.1089/acm.2009.0342
  8. Pravina K, Ravindra KR, Goudar KS, et al. Safety evaluation of BacoMindTM in healthy volunteers: A phase I study. Phytomedicine. 2007;14(5):301-308. doi:10.1016/j.phymed.2007.03.010
  9. Barbhaiya HC, Desai RP, Saxena VS, et al. Efficacy and tolerability of BacoMind® on memory improvement in elderly participants – A double blind placebo controlled study. J Pharmacol Toxicol. 2008;3(6):425-434. doi:10.3923/jpt.2008.425.434
  10. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;0:1-12. doi:10.1002/mnfr.201300724
  11. Kocher A, Schiborr C, Behnam D, Frank J. The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods. 2015;14:183-191. doi:10.1016/j.jff.2015.01.045
  12. Kaszkin-Bettag M, Ventskovskiy BM, Solskyy S, et al. Confirmation of the efficacy of ERr 731 in perimenopausal women with menopausal symptoms. Altern Ther Health Med. 2009;15(1):24-34.
  13. Kell G, Rao A, Beccaria G, Clayton P, Inarejos-García AM, Prodanov M. affron ® a novel saffron extract ( Crocus sativus L .) improves mood in healthy adults over 4 weeks in a double-blind, parallel, randomized, placebo-controlled clinical trial. Complement Ther Med. 2017;33:58-64. doi:10.1016/j.ctim.2017.06.001
  14. Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol Rev. 2016;68(4):1026-1073. doi:10.1124/pr.115.010843
  15. Reddy MB, Armah SM, Stewart JW, O’Brien KO. Iron Absorption from Iron-enriched Aspergillus oryzae is Similar to Ferrous Sulfate in Healthy Female Subjects. Curr Dev Nutr. Published online January 29, 2018. doi:10.1093/cdn/nzy004
  16. Bries A, Wang C, Wels B, et al. Assessment of Gastrointestinal Symptoms and Non-transferrin Bound Iron After Oral Ferrous Sulfate and Iron-enriched Aspergillus Oryzae Supplementation in Women (P24-039-19). Curr Dev Nutr. 2019;3(Supplement_1). doi:10.1093/cdn/nzz044.p24-039-19
  17. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to iron and formation of red blood cells and haemoglobin (ID 374, 2889), oxygen transport (ID 255), contribution to normal energy-yielding metabolism (ID 255), reduction of tiredness and fatigue (ID 255, 374, 2889), biotransformation of xenobiotic substances (ID 258), and “activity of heart, liver and muscles” (ID 397) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010;8(10). doi:10.2903/j.efsa.2010.1740
  18. Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of Ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med. 2012;34(3):255-262. doi:10.4103/0253-7176.106022
  19. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to riboflavin (vitamin B2) and contribution to normal energy-yielding metabolism pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2013;11(10). doi:10.2903/j.efsa.2013.3410
  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on substantiation of health claims related to pantothenic acid and energy-yielding metabolism (ID 56, 59, 60, 64, 171, 172, 208), mental performance (ID 57), maintenance of bone (ID 61), maintenance of teeth (ID 61), maintenance of hair (ID 61), maintenance of skin (ID 61), maintenance of nails (ID 61) and synthesis and metabolism of steroid hormones, vitamin D and some neurotransmitters (ID 181) pursuant to Article 13 of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA Journal 2009; 7(9):1218. [19 pp.]. doi:10.2903/j.efsa.2009.1218
  21. Kelly GS. Rhodiola rosea: A possible plant adaptogen. Altern Med Rev. 2001;6(3):293-302.
  22. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to zinc and function of the immune system (ID 291, 1757), DNA synthesis and cell division (ID 292, 1759), protection of DNA, proteins and lipids from oxidative damage (ID 294, 1758), mainte. EFSA J. 2009;7(10):1229. doi:10.2903/j.efsa.2009.1229
  23. Marco ML, Heeney D, Binda S, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94-102. doi:10.1016/j.copbio.2016.11.010
  24. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to vitamin D and maintenance of bone and teeth (ID 150, 151, 158), absorption and utilisation of calcium and phosphorus and maintenance of normal blood calcium concentrations (ID 152, 157), cell division (ID 153), and thyroid function (ID 156) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA Journal 2009; 7(9):1227. [19 pp.]. doi:10.2903/j.efsa.2009.1227
  25. Lehmann U, Hirche F, Stangl GI, Hinz K, Westphal S, Dierkes J. Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2013;98(11):4339-4345. doi:10.1210/jc.2012-4287

1. COVID-19 and Multisystem Inflammatory Syndrome, or is it Mast Cell Activation Syndrome?  J Biol Regul Homeost Agents 2020, Sep-Oct, 34(5):1633-1636.
2. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis 2021, Nov;112:217-226. Open Access:
3. Potential inhibitor of COVID‐19 main protease (Mpro) from several medicinal plant compounds by molecular docking studyPreprints 2020:

  1. Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds.Mol Inform 2020:
    5. Brain “fog”, inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci 2015:
    6. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin. Cent Eur J Immunol 2018, 43(4): 476–481. Published online 2018 Dec 31, doi: 10.5114/ceji.2018.81347.
    7. Luteolin supplements: All that glitters is not gold. Biofactors 2021, Mar;47(2):242-244:
    8. Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Horm Cancer 2013, October, 4(5):

Micronutrients for Attention-Deficit/Hyperactivity Disorder in Youths: A Placebo-Controlled Randomized Clinical Trial
Journal of the American Academy of Child & Adolescent Psychiatry, 2022; 61 (5): 647 DOI: 10.1016/j.jaac.2021.07.005.

Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environmentNat Microbiol 2022 DOI: 10.1038/s41564-022-01091-2.

Experimental colonization with Blastocystis ST4 is associated with protective immune responses and modulation of gut microbiome in a DSS-induced colitis mouse modelCellular and Molecular Life Sciences, 2022; 79 (5) DOI: 10.1007/s00018-022-04271-9.

The gut microbiome influences host diet selection behaviorProceedings of the National Academy of Sciences, 2022; 119 (17) DOI: 10.1073/pnas.2117537119.

Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron 2022, In Press, Corrected Proof Published online: March 15.

April 2022

Sulphoraphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice.
 Communications Biology 2022; 5 (1) DOI: 10.1038/s42003-022-03189-z.
Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative Medicine and Cellular Longevity 2019:
Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 2022, March 16.
A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host & Microbe 2021, August 19:
The prognostic role of micronutrient status and supplements in COVID-19 outcomes: A systematic review. Food Chem Toxicol 2022, Apr; 162: 112901,  doi: 10.1016/j.fct.2022.112901.
Promising Effects of 3-Month Period of Quercetin Phytosome® Supplementation in the Prevention of Symptomatic COVID-19 Disease in Healthcare Workers: A Pilot Study. Life (Basel) 2022, Jan 4;12(1):66.
Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 2021, 599, 283–289.
Menopause Is Associated With Postprandial Metabolism, Metabolic Health and Lifestyle: The ZOE PREDICT Study. Lancet 2022 pre-print: or
Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022. DOI: 10.1038/s41586-022-04502-w.

A (growing) list of references and commentary is online at Her books Deep Nutrition: Why Your Genes Need Traditional Food and The Fatburn Fix are fully-referenced (Deep Nutrition has more than 650 citations).
Other relevant resources are: Interesterification leads to elevated glucose:
Refining Steps:, and
Eva Södergren’s PhD dissertation is online at Lipid peroxidation in vivo. Evaluation and application of methods for measurement. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 949. 78 pp. Uppsala. ISBN 91-554-4791-0.


A novel functional mast cell assay for the detection of allergies. Biologics And Immunotherapy 2022, 149, 3: 1018-30.E11, March 1:
Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications 2022:
Faecal transfer: Rima Rachid, MD, lead investigator and co-director of the Food Allergy Program at Boston Children’s, presented results February 26 at the American Academy of Allergy, Asthma & Immunology (AAAAI) annual meeting.
Microbiota Therapy Acts Via a Regulatory T Cell MyD88/RORγt Pathway to Suppress Food Allergy. Nature Med 2019, Jul; 25(7): 1164–1174, doi: 10.1038/s41591-019-0461-z.
Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin Immunol 2020, 16, 36:


  1. Morris G, Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med. 2015;13:68.
  2. Fusco R, Siracusa R, Genovese T, Cuzzocrea S, Di Paola R. Focus on the Role of NLRP3 Inflammasome in Diseases. Int. J. Mol. Sci. 2020;21:4223.
  3. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010;13:1763–1811.
  4. Trovato A, Siracusa R, Di Paola R et al. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: Relevance to Alzheimer’s disease pathogenesis. Immun. Ageing 2016;13:23.
  5. Kim YK, Shin JS, Nahm MH. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med. J. 2016;57:5–14.
  6. Gugliandolo E, Fusco R, Ginestra G et al. Involvement of TLR4 and PPAR-alpha receptors in host response and NLRP3 inflammasome activation, against pulmonary infection with Pseudomonas Aeruginosa. Shock 2019;51:221–227.
  7. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011;29:707–735.
  8. Trovato Salinaro A, Pennisi M, Di Paola R et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: Modulation by nutritional mushrooms. Immun. Ageing 2018;15:8.
  9. Fusco R, Gugliandolo E, Biundo F, Campolo M, Di Paola R, Cuzzocrea S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy. FASEB J. 2017;31:3497–3511.
  10. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta 2014;1842:1240–1247.
  11. Venegas C, Kumar S, Franklin BS et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 2017;552:355–361.
  12. Ising C, Venegas C, Zhang S et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019;575:669–673.
  13. Stancu IC, Cremers N, Vanrusselt H et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 2019;137:599–617.
  14. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U. Amyloid-beta and mitochondria in aging and Alzheimer’s disease: Implications for synaptic damage and cognitive decline. J. Alzheimer’s Dis. 2010;20(Suppl S2):S499–S512.
  15. Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Abeta production: Implications for Alzheimer’s disease pathogenesis. J. Neuroinflamm. 2011;8:150.
  16. Liang B, Guo Z, Zhao A. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. Complementary and Alternative Medicine 2013;13:253.
  17. Trovato A, Siracusa R, Di Paola R et al. (2016). Redox modulation of cellular stress response and lipoxin A4 expression by Hericium erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun. Ageing 2016;13:23. doi: 10.1186/s12979-016-0078-8.
  18. D’Amico R, Trovato A, Fusco R et al. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants 2021;10:898.
  19. Cordaro M, Trovato A, Siracusa R et al. Key mechanisms and potential implications of Hericium erinaceus in NLRP3 inflammasome activation by reactive oxygen species during Alzheimer’s disease. Antioxidants 2021;10:1664.
  20. Ali AA, Ahmed HI, Abu-Elfotuh K. Modeling stages mimic Alzheimer’s disease induced by different doses of aluminium in rats: Focus on progression of the disease in response to time. J. Alzheimer’s Dis, Parkinsonism 2016;1:1-11.
  21. Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. 2009;674:137–147.
  22. Di Paola R, Fusco R, Gugliandolo E et al. The antioxidant activity of pistachios reduces cardiac tissue injury of acute ischemia/reperfusion (I/R) in diabetic streptozotocin (STZ)-induced hyperglycaemic rats. Front. Pharm. 2018;9:51.
  23. Fusco R, Siracusa R, D’Amico, R et al. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: An evaluation of pain, oxidative stress, and inflammation. Antioxidants 2019;8:628.
  24. Peritore AF, Siracusa R, Fusco R et al. Ultramicronized palmitoylethanolamide and paracetamol, a new association to relieve hyperalgesia and pain in a sciatic nerve injury model in rat. Int. J. Mol. Sci. 2020;21:3509.
  25. Fusco R, Cordaro M, Siracusa R et al. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury. Antioxidants 2020;9:781.
  26. Travelli C, Aprile S, Rahimian R et al. Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity. J. Med. Chem. 2017;60:1768–1792.
  27. Cordaro M, Siracusa R, Impellizzeri D et al. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoylglucosamine in preclinical models of inflammation and osteoarthritis pain. Arthritis Res. Ther. 2019;21:254.
  28. Di Paola R, Fusco R, Impellizzeri D et al. Adelmidrol, in combination with hyaluronic acid, displays increased anti-inflammatory and analgesic effects against monosodium iodoacetateinduced osteoarthritis in rats. Arthritis Res. Ther. 2016;18:291.
  29. Fusco R, Cordaro M, Genovese T et al. Adelmidrol: A new promising antioxidant and anti-inflammatory therapeutic tool in pulmonary fibrosis. Antioxidants 2020;9:601.
  30. Fusco R, Gugliandolo E, Campolo M, Evangelista M, Di Paola R, Cuzzocrea S. Effect of a new formulation of micronized and ultramicronized N-palmitoylethanolamine in a tibia fracture mouse model of complex regional pain syndrome. PLoS ONE 2017;12:e0178553.
  31. Fusco R, Gugliandolo E, Siracusa R et al. Formyl peptide receptor 1 signalling in acute inflammation and neural differentiation induced by traumatic brain injury. Biology 2020;9:238.

Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) SupplementationAntioxidants, 2021; 11 (1): 50 DOI: 10.3390/antiox11010050.

Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr 2011, Sep; 94 (3): 847-53.

GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic DamageNutrients 202214, 1114.

GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging  Journal of Nutrition 2021, Dec, 151, 12: 3606–16:

Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity
International Journal of Molecular Sciences 2022; 23 (5): 2643.  DOI: 10.3390/ijms23052643.

Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022; 3 (2): 119. DOI: 10.1016/j.medj.2021.12.008.
A comparison over 2 decades of disability-free life expectancy at age 65 years for those with long-term conditions in England: Analysis of the 2 longitudinal Cognitive Function and Ageing Studies. PLOS Medicine 2022, 19 (3): e1003936. DOI: 10.1371/journal.pmed.1003936.
Impact of Alpha-linolenic Acid, the Vegetable Omega-3 Fatty Acid, on Cardiovascular Disease and Cognition. Advances in Nutrition 2022. DOI: 10.1093/advances/nmac016.
Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8(+) T Lymphocytes. Immunity 2015, 42(5), 929–41:
Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 2019, 572, 481–7):
KIR+CD8+ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022, Mar 8: eabi9591. Epub ahead of print:
Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Research in Cardiology 2022; 117 (1). DOI: 10.1007/s00395-022-00911-0.
Daily consumption of cranberry improves endothelial function in healthy adults: a double blind randomized controlled trial. Food & Function 2022. DOI: 10.1039/D2FO00080F.
Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exerciseJournal of Physiology 2022. DOI: 10.1113/JP282677.
Effect of cocoa flavanol supplementation for prevention of cardiovascular disease events: The COSMOS randomized clinical trial.
American Journal of Clinical Nutrition 2022. DOI: 10.1093/ajcn/nqac055.
Multivitamins in the prevention of cancer and cardiovascular disease: The COSMOS randomized clinical trial. American Journal of Clinical Nutrition 2022. DOI: 10.1093/ajcn/nqac056.

Long COVID news extra
Quantitative Chest CT Assessment of Small Airways Disease in Post-Acute SARS-CoV-2 InfectionRadiology 2022. DOI: 10.1148/radiol.212170.
What Are the Long-term Pulmonary Sequelae of COVID-19 Infection? Radiology 2022. DOI: 10.1148/radiol.220449.
Mild COVID-19 imprints a long-term inflammatory eicosanoid- and chemokine memory in monocyte-derived macrophagesMucosal Immunology 2022. DOI: 10.1038/s41385-021-00482-8.
Exercise as a Moderator of Persistent Neuroendocrine Symptoms of COVID-19Exercise and Sport Sciences Reviews 2022, Publish Ahead of Print. DOI: 10.1249/JES.0000000000000284.






In Focus April 2022


Hannah Braye:

  1. FMCG Gurus Report. FMCG Gurus. FMCG Gurus Report (2021).
  2. NHS Health Scotland. Low mood and depression | NHS inform. NHS (2021). Available at:
  3. Context | Depression in adults: recognition and management | Guidance | NICE. National Institute for Health and Care Excellence (2009).
  4. McManus, S., Bebbington, P., Jenkins, R. & Brugha T. Adult Psychiatric Morbidity in England – 2007, Results of a household survey – NHS Digital. (2014). Available at: (Accessed: 10th March 2022)
  5. [ARCHIVED CONTENT] Adult Psychiatric Morbidity Survey: Survey of Mental Health and Wellbeing, England, 2014 – NHS Digital. Available at: (Accessed: 10th March 2022)
  6. WHO. Depression.
  7. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).
  8. Karin, O. et al. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol. Syst. Biol. 16, (2020).
  9. Horchar, M. J. & Wohleb, E. S. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain. Behav. Immun. 81, 329–340 (2019).
  10. Reale, M. et al. Network between Cytokines , Cortisol and Occupational Stress in Gas and Oilfield Workers. Int. J. Mol. Sci. 21, 1118 (2020).
  11. Koelsch, S. et al. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood. Sci. Rep. 6, 1–11 (2016).
  12. Wang, X. et al. Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed. Pharmacother. 137, 111065 (2021).
  13. Shattuck, E. C. & Muehlenbein, M. P. Towards an integrative picture of human sickness behavior. Brain. Behav. Immun. 57, 255–262 (2016).
  14. Suneson, K., Lindahl, J., Chamli Hårsmar, S., Söderberg, G. & Lindqvist, D. Inflammatory Depression—Mechanisms and Non-Pharmacological Interventions. Int. J. Mol. Sci. 22, 1640 (2021).
  15. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).
  16. Scriven, M., Dinan, T. G., Cryan, J. F. & Wall, M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Dis. (Basel, Switzerland) 6, (2018).
  17. Kikuchi, A. M., Tanabe, A. & Iwahori, Y. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. J. Diet. Suppl. (2020). doi:10.1080/19390211.2020.1746725
  18. Waclawiková, B. & El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals 11, (2018).
  19. Arnone, D. et al. Role of Kynurenine pathway and its metabolites in mood disorders: A systematic review and meta-analysis of clinical studies. Neurosci. Biobehav. Rev. 92, 477–485 (2018).
  20. Vodička, M. et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain. Behav. Immun. 73, 615–624 (2018).
  21. Bonaz, B., Bazin, T. & Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 12, 49 (2018).
  22. Zhang, Q. E. et al. Depressive symptoms in patients with irritable bowel syndrome: A meta-analysis of comparative studies. Int. J. Biol. Sci. 14, 1504–1512 (2018).
  23. Safadi, J. M., Quinton, A. M. G., Lennox, B. R., Burnet, P. W. J. & Minichino, A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol. Psychiatry 1–13 (2021). doi:10.1038/s41380-021-01032-1
  24. Scheri, G. C. et al. Modulation of tryptophan/serotonin pathway by probiotic supplementation in human immunodeficiency virus-positive patients: Preliminary results of a new study approach. Int. J. Tryptophan Res. 10, (2017).
  25. Messaoudi, M. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764 (2011).
  26. Milajerdi, A. et al. The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. Eur. J. Nutr. 59, 633–649 (2020).
  27. Wallace, C. J. K. & Milev, R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry 16, 14 (2017).
  28. Silva, Y. P., Bernardi, A. & Frozza, R. L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology 11, 25 (2020).
  29. Wu, M. et al. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl. Psychiatry 10, 1–10 (2020).
  30. Liu, R. T., Walsh, R. F. L. & Sheehan, A. E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and Biobehavioral Reviews 102, 13–23 (2019).
  31. Baião, R. et al. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychol. Med. 1–11 (2022). doi:10.1017/S003329172100550X


Lissa Leader:

  1. Santoro, N., Epperson, CN., & Mathews, SB. (2015). ‘Menopausal Symptoms and Their Management’. Endocrinology and metabolism clinics of North America, 44(3), 497–515.
  2. Vieira, AT et al. (2017). ‘Influence of Oral and Gut Microbiota in the Health of Menopausal Women’. Frontiers in Microbiology, 28 September 2017
  3. Baker, JM et al. (2017). ‘Estrogen–gut microbiome axis: Physiological and clinical implications’. Maturitas, Volume 103, P45-53, September 01.
  4. Zhao,H et al. (2019). ‘Compositional and functional features of the female premenopausal and postmenopausal gut microbiota’. FEBS Letters, Volume 593, Issue 18, P2655-2664.
  5. Xu, C., Zhu, H. & Qiu, P.(2019). ‘Aging progression of human gut microbiota’. BMC Microbiol 19, 236 (2019).
  6. Saraswati, S., & Sitaraman, R. (2015). ‘Aging and the human gut microbiota-from correlation to causality’. Frontiers in Microbiology, 5, 764.
  7. Auriemma, RS et al. (2021). ‘The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life’. Front. Cell. Infect. Microbiol., 06 July 2021 |
  8. Barrientos-Durán, A et al. (2020). ‘Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis’. Nutrients, 12(2), 419.
  9. Jung, C., & Brubaker, L. (2019). ‘The etiology and management of recurrent urinary tract infections in postmenopausal women’. Climacteric: the Journal of the International Menopause Society, 22(3), 242–249.
  10. Mulheisen, A., & Herbst-Kravoletz, M (2016). ‘Menopause and the vaginal microbiome’. Maturitas, Volume 91, P42-50, September 01.
  11. Gliniewicz, K et al. (2019). ‘Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women’. Frontiers in Microbiology, 14 February 2019.
  12. Kozakowski, J., Gietka-Czernel, M., Leszczyńska, D., & Majos, A. (2017). ‘Obesity in menopause – our negligence or an unfortunate inevitability?’. Przeglad menopauzalny = Menopause review, 16(2), 61–65.
  13. Stachowiak, G., Pertyński, T., & Pertyńska-Marczewska, M. (2015). ‘Metabolic disorders in menopause’. Przeglad menopauzalny = Menopause review, 14(1), 59–64.
  14. MacBride, MB., Rhodes, DJ., & Shuster, L. T. (2010). ‘Vulvovaginal atrophy’. Mayo Clinic proceedings85(1), 87–94.
  15. Naumova, I., & Castelo-Branco, C. (2018). ‘Current treatment options for postmenopausal vaginal atrophy’. International journal of women’s health, 10, 387–395.
  16. Hoffmann, JN et al. (2014), ‘Prevalence of Bacterial Vaginosis and Candida among Postmenopausal Women in the United States’. The Journals of Gerontology: Series B, Volume 69, Issue Suppl_2, November 2014, Pages S205–S214,
  17. Baker, JM et al. (2017). ‘Estrogen–gut microbiome axis: Physiological and clinical implications’. Maturitas, Volume 103, P45-53, September 01.
  18. Heitkemper, MM., & Chang, L. (2009). ‘Do fluctuations in ovarian hormones affect gastrointestinal symptoms in women with irritable bowel syndrome?’. Gender medicine, 6 Suppl 2(Suppl 2), 152–167.
  19. Lenhart, A  et al. (2020). ‘Postmenopausal women with irritable bowel syndrome (IBS) have more severe symptoms than premenopausal women with IBS’. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society, 32(10), e13913.
  20. Young Seo, A et al. (2013). ‘Abdominal bloating: pathophysiology and treatment.’ Journal of Neurogastroenterology and Motility, Vol. 19,4 (2013): 433-53. DOI:10.5056/jnm.2013.19.4.433
  21. Singh, R et al. (2021). ‘Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders.’  J Neurogastroenterol Motil 2021;27:19-34.  DOI:
  22. Dalal, P. K., & Agarwal, M. (2015). ‘Postmenopausal syndrome’. Indian journal of psychiatry, 57(Suppl 2), S222–S232.
  23. Ji, M. X., & Yu, Q. (2015). ‘Primary osteoporosis in postmenopausal women’. Chronic diseases and translational medicine, 1(1), 9–13.
  24. Tella, S. H., & Gallagher, J. C. (2014). ‘Prevention and treatment of postmenopausal osteoporosis’. The Journal of steroid biochemistry and molecular biology, 142, 155–170.
  25. Ding, K., Hua, F., & Ding, W. (2020). ‘Gut Microbiome and Osteoporosis’. Aging and disease, 11(2), 438–447.
  26. Xu, Z et al. (2020). ‘Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis’. Front. Cell. Infect. Microbiol., 21 April 2020 |
  27. Beerepoot et al. (2012), ‘Lactobacilli vs antibiotics to prevent urinary tract infections: a randomized, double-blind, non-inferiority trial in postmenopausal women’. Arch Intern Med., 172(9):704-12.
  28. Macklaim et al., (2015), ‘Changes in vaginal microbiota following antimicrobial and probiotic therapy’. Microbial Ecology in Health and Disease, 26:27799.
  29. Madempudi, R et al. (2019). Randomised clinical trial: ‘The effect of probiotic Bacillus coagulans Unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults’. Scientific Reports. 9: 12210. doi: 10.1038/s41598-019-48554-x
  30. Faber, S. M. (2000). ‘Treatment of abnormal gut flora improves symptoms in patients with irritable bowel syndrome.’ American Journal of Gastroenterology. 95(9): 2533.
  31. Lyra et al. (2016). ‘Irritable bowel syndrome symptom severity improves equally with probiotic and placebo.’ World Journal of Gastroenterology. 22. (48): 10631–10642.
  32. Rousseaux C. et al. (2007). ‘Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors.’ Nature Medicine, 13(1):35-7. DOI:10.1038/nm1521


Marta Anhelush:

  1. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nature reviews Microbiology. 2011;9(4):265-278. doi:10.1038/NRMICRO2538
  2. Brown AJP, Budge S, Kaloriti D, et al. Stress adaptation in a pathogenic fungus. The Journal of experimental biology. 2014;217(Pt 1):144-155. doi:10.1242/JEB.088930
  3. Berman J, Sudbery PE. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nature reviews Genetics. 2002;3(12):918-930. doi:10.1038/NRG948
  4. Loke P, Lim YAL. Helminths and the microbiota: parts of the hygiene hypothesis. Parasite immunology. 2015;37(6):314. doi:10.1111/PIM.12193
  5. Tan KSW. New Insights on Classification, Identification, and Clinical Relevance of Blastocystis spp. Clinical Microbiology Reviews. 2008;21(4):639. doi:10.1128/CMR.00022-08
  6. (PDF) Reid G, Howard J, Gan BS.. Can bacterial interference prevent infection? Trends Microbiol 9: 424-428. Accessed March 7, 2022.
  7. Ormsby MJ, Logan M, Johnson SA, et al. Inflammation associated ethanolamine facilitates infection by Crohn’s disease-linked adherent-invasive Escherichia coli. EBioMedicine. 2019;43:325-332. doi:10.1016/J.EBIOM.2019.03.071/ATTACHMENT/EE26E89C-52C7-4FD3-A8B1-D2E6965EAF94/MMC1.PDF
  8. Miller MB, Bassler BL. Quorum Sensing in Bacteria. 2003;55:165-199. doi:10.1146/ANNUREV.MICRO.55.1.165
  9. Bures J, Cyrany J, Kohoutova D, et al. Small intestinal bacterial overgrowth syndrome. World Journal of Gastroenterology : WJG. 2010;16(24):2978. doi:10.3748/WJG.V16.I24.2978
  10. Yao CK, Tuck CJ. The clinical value of breath hydrogen testing. Journal of gastroenterology and hepatology. 2017;32 Suppl 1:20-22. doi:10.1111/JGH.13689
  11. Rosania R, Giorgio F, Principi M, et al. Effect of probiotic or prebiotic supplementation on antibiotic therapy in the small intestinal bacterial overgrowth: a comparative evaluation. Current clinical pharmacology. 2013;8(2):169-172. doi:10.2174/15748847113089990048
  12. Posserud I, Stotzer PO, Björnsson ES, Abrahamsson H, Simrén M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56(6):802-808. doi:10.1136/GUT.2006.108712
  13. Huaman JW, Mego M, Manichanh C, et al. Effects of Prebiotics vs a Diet Low in FODMAPs in Patients With Functional Gut Disorders. Gastroenterology. 2018;155(4):1004-1007. doi:10.1053/J.GASTRO.2018.06.045
  14. Tursi A, Brandimarte G, Giorgetti GM, Elisei W. Assessment of small intestinal bacterial overgrowth in uncomplicated acute diverticulitis of the colon. World Journal of Gastroenterology : WJG. 2005;11(18):2773. doi:10.3748/WJG.V11.I18.2773
  15. Deloose E, Janssen P, Depoortere I, Tack J. The migrating motor complex: control mechanisms and its role in health and disease. Nature reviews Gastroenterology & hepatology. 2012;9(5):271-285. doi:10.1038/NRGASTRO.2012.57
  16. Roland BC, Ciarleglio MM, Clarke JO, et al. Low ileocecal valve pressure is significantly associated with small intestinal bacterial overgrowth (SIBO). Digestive diseases and sciences. 2014;59(6):1269-1277. doi:10.1007/S10620-014-3166-7
  17. Wacklin P, Mäkivuokko H, Alakulppi N, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PloS one. 2011;6(5). doi:10.1371/JOURNAL.PONE.0020113
  18. Juge N. Microbial adhesins to gastrointestinal mucus. Trends in microbiology. 2012;20(1):30-39. doi:10.1016/J.TIM.2011.10.001


Graeme Jones:



Ben Makeham:

(1) 10.1038/s41574-019-0246-y
(3) Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, et al. Intestinal microbiota: A potential target for the treatment of postmenopausal osteoporosis. Bone Res [Internet]. 2017;5(July):1–18. Available from:
(4) Infante, M., Fabi, A., Cognetti, F. et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res 38, 12 (2019).
(7) Villa CR, Ward WE, Comelli EM. Gut microbiota-bone axis. Crit Rev Food Sci Nutr. 2017;57(8):1664–72.
(10) Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.
(11) Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9(3).
(12) Zhang J, Lu Y, Wang Y, Ren X, Han J. The impact of the intestinal microbiome on bone health. Intractable Rare Dis Res. 2018;7(3):148–55.

March 2022

Vitamin D supplementation for the treatment of COVID-19: a living systematic review.
Cochrane Database Syst Rev 2021 May 24;5(5):CD015043, doi: 10.1002/14651858.CD015043.


Mucosal fungi promote gut barrier function and social behaviour via Type 17 immunity. Cell 2022. DOI: 10.1016/j.cell.2022.01.017.

Could there be a link between oral hygiene and the severity of SARS-CoV-2 infections? Br Dent J 2020, 228, 971–975:

Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022, 376 doi:

Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022:

Disrupted Peyer’s Patch Microanatomy in COVID-19 Including Germinal Centre Atrophy Independent of Local VirusFrontiers in Immunology, 2022; 13 DOI: 10.3389/fimmu.2022.838328.

Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am J Psychiatry 2019, Published Online 21 May:

Clinical significance of micronutrient supplements in patients with coronavirus disease 2019: A comprehensive systematic review and meta-analysisClinical Nutrition ESPEN, 2022; DOI: 10.1016/j.clnesp.2021.12.033.

Zinc, Vitamin D and Vitamin C: Perspectives for COVID-19 With a Focus on Physical Tissue Barrier Integrity. Front Nutr 2020, Dec:

Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illnessPLOS ONE, 2022; 17 (2): e0263069 DOI: 10.1371/journal.pone.0263069.

Echinacea as a Potential Force against Coronavirus Infections? A Mini-Review of Randomized Controlled Trials in Adults and Children. Microorganisms 2022, 10, 211.
Echinacea purpurea for the Long-term Prevention of Viral Respiratory Tract Infections during COVID-19 Pandemic: A Randomized, Open, Controlled, Exploratory Clinical Study. medRxiv 2021,12.10.21267582; doi: (Pre-print before peer-review.)

NEWS extra (page 54)
Long-term cardiovascular outcomes of COVID-19
Nature Medicine 2022, DOI: 10.1038/s41591-022-01689-3.
Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 2022, 376, e068414; doi: (published 09 February).
Investigating phenotypes of pulmonary COVID-19 recovery – a longitudinal observational prospective multicenter trialeLife, 2022; 11 DOI: 10.7554/eLife.72500.

EBV – Rose Holmes

  1. Longnecker R, Neipel F (2007) Chapter 22 Introduction to the human γ-herpesviruses, in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al, editors. Cambridge: Cambridge University Press.  Available online: Introduction to the human γ-herpesviruses – Human Herpesviruses – NCBI Bookshelf (
  2. Draborg A, Izarzugaza JMG, Houen G (2016) How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr Opin Rheumatol 28(4):398-404.
  3. Moreno MA, Or-Geva N, Aftab BT, Khanna R, Croze E, Steinman L, Han MH (2018) Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol Neuroimmunol Neuroinflamm 5(4):e466.
  4. Longnecker R, Neipel F (2007) Chapter 22 Introduction to the human γ-herpesviruses, in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al, editors. Cambridge: Cambridge University Press.  Available online: Introduction to the human γ-herpesviruses – Human Herpesviruses – NCBI Bookshelf (
  5. Young LS, Rickinson AB (2004) Epstein-Barr Virus: 40 Years On. Nature Reviews 4:757-768.
  6. Young LS, Rickinson AB (2004) Epstein-Barr Virus: 40 Years On. Nature Reviews 4:757-768.
  7. Chen T, Song J, Liu H, Zheng H, Chen C (2021) Positive Epstein-Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci Rep 11:10902.
  8. Longnecker R, Neipel F (2007) Chapter 22 Introduction to the human γ-herpesviruses, in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al, editors. Cambridge: Cambridge University Press.  Available online: Introduction to the human γ-herpesviruses – Human Herpesviruses – NCBI Bookshelf (
  9. Li H, Li Y,Hu J et al (2021) (-)-Epigallocatechin-3-Gallate Inhibits EBV Lytic Replication via Targeting LMP1-Mediated MAPK Signal Axes. Oncology Research 28:763—778.
  10. Lin T-P, Chen S-Y, Duh P-D, Chang L-K, Liu Y-N (2008) Inhibition of the Epstein-Barr Virus Lytic Cycle by Andrographolide. Biol Pharm Bull 31(11)2018-2023.
  11. Lewis WH, Okunade AL, Elvin-Lewis MPF (2005) Pau d’Arco or Lapacho (Tabebuia) in Encyclopedia of Dietary Supplements, edited by Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD (2005) New York: Marcel Dekker.
  12. Kapadia GJ, Azuine MA, Tokuda H, Hang E, Mukainaka T, Hishino H, Sridhar R (2002) Inhibitory effect of herbal remedies on 12-o-tetradecanolphorbol-13-acetate-promoted Epstein-Barr virus early antigen activation. Pharmacological Research 45(3):213-220.
  13. Konoshima T, Kodumai M, Kozuka M, et al (1992) Studies on inhibitors of skin tumor promotion. XI. Inhibitory effects of flavonoids from Scutellaria baicalensis on Epstein-Barr virus activation and their anti-tumor-promoting activities. Chem Pharm Bull (Tokyo) 40(2):531-533.
  14. Vimala S, Norhanom AW, Yadav M (1999) Anti-tumour promoter activity in Malaysian ginger rhizobia used in traditional medicine. British Journal of Cancer 80(1/2):110-116.
  15. Yamamoto Y Miura Y, Kinoshita Y, et al (1995) Screening of Tissue Cultres and Thalli of Lichens and Some of Their Active Constituents for Inhibitio of Tumor Promoter-Induced Epstein-Barr Virus Activation. Chem Pharm Bull 43(8):1388-1390.
  16. Lee M-H, Chiou J-F, Yen K-Y, Yang L-L (2000) EBV DNA polymerase inhibition of tannins from Eugenia uniflora. Cancer Letters 154(2):131-136.
  17. Konoshima T, Takasaki M, Tatsumoto T et al (1994) Inhibitory effects of cucurbitane triterpenoids on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumors. Biol Pham Bull 17(5):668-671.
  18. Silva IT, Costa GM, Stoco PH et al (2010) In vitro antiherpes effects of C-glycosylflavoid-enriched fraction of Cecropia glaziovii Seth. Letters in Applied Microbiology 51:143-148.
  19. Palanisamy JK, Ponnu S, Mani S, Balakrishnan S (2018) A Critical Review of Traditional Herbal Drugs: An Emerging Alternative Drug for Varicose Veins. World Journal of Pharmacological Research 7(5):316-338.
  20. Bentz GL, Lowrey AJ, Horne DC et al (2019) Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLOS ONE 14(5):e0217578.

Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivorsScience Translational Medicine 2022; 14 (631) DOI: 10.1126/scitranslmed.abi5229.
1. The Association of Low Vitamin K Status with Mortality in a Cohort of 138 Hospitalized Patients with COVID-19Nutrients 2021, Jun 9;13(6):1985. doi: 10.3390/nu13061985.



Superfoods: Recent Data on their Role in the Prevention of Diseases. Curr Res Nutr Food Sci 2018, DOI :

  1. Spence J. Challenges related to the composition of functional foods. J Food Comp Anal. 2005;19: S4-S6.
  2. Devalaraja S., Jain S., Yadav H. Exotic fruits as therapeutic complementsfor diabetes, obesity and metabolic syndrome. Food Res Int. 2011;44: 1856-1865.
  3. Wolfe D. Superfoods: The food and medicine of the future. California: North Atlantic Books. 2009:10-49.
  4. Muhammada I., Zhaoa J., Dunbara C., Khana I. Constituents of Lepidium meyenii emacai. 2002;59(1): 105-110.
  5. Bensmira M, Jiang B. Effect of some operating variables on the microstructureand physical properties of a novel Kefir formulation. J Food Eng. 2012;108(4):579-584.
  6. Daugherty B. Superfoods: The Healthiest Foods on the Planet. J Nutr Educ Behav. 2011;43(3):207.e7
  7. Lorent M. E., Fernandez de Cordova M., Ortega B. P., Ruiz M. A. Characterization and comparison of the chemical composition of exotic superfoods. J. 2013;137:23-29.
  8. Wang Z. H., Gao Q. Y., Fang J. Y. Green tea and incidence of colorectal cancer: evidence from prospective cohort studies. Nutr Cancer. 2012;64(8):1143-1152.
  9. Sanlier N., Goksen B. B., Altug M. Tea consumption and disease correlation. Trends food Sci Technol. 2018; 78:98-106.
  10. Cabrera A., Artacho R., Gimenez R. Beneficial Effects of Green Tea-Areview. J Amer Coll Nutr. 2006;25(2):79-99.
  11. Zhang R., Tsao R. Dietary polyphenols, oxidativestress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33-42.
  12. Koutelidakis A., Kapsokefalou M. Holistic approaches of tea bioactivity: interactions of tea and meal components studied in vitro and in vivo. In: Preedy V, Tea in health and disease prevention. London, Elsevier. 2012:143-149.
  13. Ahmad N., Mukhtar H. Green tea polyphenols and cancer: biologicalmechanisms and practical implications. Nutr. 1999; 57(3):78-83.
  14. Forester S. C., Lambert J. D. Cancer Preventive Effects of Green Tea Polyphenols. In: Watson R. R., Preedy V. R., Zibadi S. Polyphenols in Human Health and Disease Polyphenols in Human Health and Disease. London, Academic Press. 2014: 1309-1322.
  15. Kwak N., Jukes D. Functional foods. Part 2. The impact of current regulatory terminology. Food Contr. 2001;12:109-117.
  16. Koutelidakis A. E., Rallidis L., Koniar K., Panagiotakos D., Komaitis M., Zampelas A., Anastasiou-Nana M., Kapsokefalou M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C Reactive Protein and glucose levels in patients with coronary artery disease. Eur J Nutr. 2013;53(2):479-86.
  17. Das S., Takuria N., Kanodia L. Biological actions and medical applicationsof tea (Camelia Sinensis). J Clin Diagn Res. 2008;2:1215-1225.
  18. Pichiah P, Moon H,Park J. Ethanolic extract of seabuckthorn (Hippophaerhamnoides L) prevents high-fat diet – induced obesity in mice through downregulationof adipogenic and lipogenic gene expression. Nutr Res. 2012;32(11): 856-864.
  19. Zeb A. Chemical and nutritional constituents of sea buckthorn juice. J Nutr. 2004;2:99-106.
  20. Roidaki A., Kollia E., Panagopoulou E., Chiou A., Varzakas T., Markaki P., Proestos C. Super foods and Super herbs: Antioxidant and Antifungal Activity. Curr Res Nutr Food Sci 2016;4(Special Issue Confernce October 2016). doi :
  21. Composition of Foods Raw. USDA National Nutrient Database for Standard Reference. 2013; Release 26.
  22. Norbertoa S., Silvab S., Meirelesa M., Fariaa A., Pintado M., Calhau C. Blueberryanthocyanins in health promotion: A metabolic overview. J Funct Foods. 2013;15:18-1528.
  23. Isidorov V., Czyzewska U., Jankowska E., Bakier S. Determination of royaljelly acids in honey. Food Chem. 2011;124(1): 387-391.
  24. Stocker A., Schramel P., Kettrup A., Bengsch E. Trace and mineral elements in royal jelly and homeostatic effects. J Trace Elem Med Biol. 2005;19(2-3):183-189.
  25. Sabatini A., Marcazzan G., Caboni M., Bogdanov S., De Almeida – Muradian L.Quality and standardisation of Royal Jelly. J ApiProdApiMed Sci. 2009;1(1):1-6.
  26. Fontana R., Mendes M., De Souza B., Konno K., César L., Malaspina O., PalmaM. Jelleines: a family of antimicrobial peptides from the royal jelly ofhoneybees (Apis mellifera). Peptides. 2004;5(6):919-928.
  27. Hayashi K., Hayashi T., Morita N., Kojima I. An extract from Spirulinaplatensis is a selective inhibitor of herpes simplex virus type 1 penetration intoHeLa cells. Phytoth Res. 1993;7(1):76-80.
  28. Hayashi T., Hayashi K., Maeda M., Kojima I. Calcium spirulan, an inhibitorof enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod. 1996;59(1):83-87.
  29. Mani U., Desai S., Iyer U. Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceut Funct Med Foods. 2000;2(3):25-32.
  30. Al-Dhabi N. Heavy metal analysis in commercial Spirulina products for human consumption. Saudi J Biolog Sci. 2013; 20(4): 383-388.
  31. Parikh P., Mani U., Iyer U. Role of Spirulina in the control of glycemia andlipidemia in type 2 diabetes mellitus. J Med Food. 2001;4(4):193-199.
  32. Mao T., Van de Water J., Gershwin M. Effect of Spirulina on the secretionof cytokines from peripheral blood mononuclear cells. J MedFood. 2000;3(3):135-140.
  33. Al-Batshan H., Al-Mufarrej S., Al-Homaidan A., Qureshi M. Enhancementof chicken macrophage phagocytic function and nitrite production bydietary Spirulinaplatensis. Immunopharmacol & Immunotoxicol. 2001;23(2):281-289.
  34. Barron B., Torres – Valencia J., Chamorro – Cevallos G., Zuniga – Estrada A. Spirulina as an antiviral agent. In: Belay G, Belay A. Spirulina in human nutrition and health. CRC Press, Taylor & Francis Group. 2008: 227-242.
  35. Gershwin M., Belay A. Spirulina in human nutrition and health. London, CRC Press, Taylor & Francis Group. 2008; 28-50.
  36. Argandora V., Corcuera L. Distribution of hydroxamic acids in zea mays tissues. Phymchemimy. 1985;24(1):177-178.
  37. Wilson C., Soltani N., Tardif F., Swanton C., Sikkema P. Control of volunteercereals with post-emergence herbicides in maize (Zea mays L.). Crop Prot. 2010;29(1):1389-1395.
  38. USDA Nutriton facts.Availableat:, day access 21.03.2014.
  39. Yovanoudi M., Dimitreli G., Raphaelides S., Antoniou K. Flow behaviorstudies of kefir type systems. J Food Eng. 2013;118(1):41-48.
  40. AnfiteatroD. N. Nutritional & chemical composition of milk kefir Available at: 2017.
  41. Bensmira M., Jiang B. Effect of some operating variables on the microstructure and physical properties of a novel Kefir formulation. J Food Eng. 2012;108(4):579-584.
  42. Valentova K., Stejskal D., Bartek J. Maca (Lepidium meyenii) and yacon (Smallanthus sonchifolius) in combination with silymarin as food supplements: In vivo safety assessment. Food Chem Toxicol. 2008:46(3):1006-1013.
  43. Zikria M., Goldman R., Ansell J. Cranberry juice and warfarin: When badpublicity trumps science. The Amer J Med. 2010; 123(5):384-392.
  44. Kalgaonkar S., Gross H., Yokoyama W., Keen C. Effects of a flavonolrich diet on select cardiovascular parameters in a Golden Syrian hamster model.J Med Food. 2010;13(1):108-115.
  45. Ruel G., Pomerleau S., Couture P., Lemieux S., Lamarche B., Couillard C. Favourable impact of low – calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. BritJNutr. 2006;96:357-364.
  46. Lee I., Chan Y., Lin C., Lee W., Sheu W. Effect of cranberry extracts on lipidprofiles in subjects with type 2 diabetes. Diabetic Med. 2008;25(12):1473-1477.
  47. Qin Y., Xia M., Ma J., Hao Y., Liu J., Mou H., Cao L., Ling W. (2009). Anthocyanin supplementation improves serum LDL – and HDL – cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Amer J Clin Nutr.2009. 90(3):485-92.
  48. Apostolidis E., Kwon Y., Shetty K. Potential of cranberry – based herbal synergies for diabetes and hypertension management. Asia Pac J ClinNutr.2006. 15(3):433-441.
  49. Manach C., Mazur A., Scalbert A. Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol. 2005;16:77-84.
  50. Southgate DAT. Food composition tables and nutritional databases. In: Garrow J, Ralph A. Human nutrition and dietetics, Edinburgh: Churchill Livingstone. 2000:45-68.
  51. Schauss A., Clewella A., Balogh L., Szakonyic I., Financsekd I. Safetyevaluation of an acai – fortified fruit and berry functional juice beverage. Toxicol. 2010;278(1):46-54.
  52. Phillips K. Brazilian acai berry antioxidants absorbed by human body. TexasA&M University – Agricultural Communications. 2008.
  53. Lopez-Matas M., Carnes J., Larramend C. Goji berries, a novel potent allergenic source with high cross-reactivity with other fruits. J Allergy Clin Immunol. 2012;129(2):232.
  54. Roizman T. Goji berries health benefits. Available at: 2013
  55. O’ Neill M. Food by ginger. Articles paper New York Times. 21.09.1997.
  56. Srivastava K. Effect of onion and ginger consumption on platelet thromboxane production in humans. Prostaglandins Leukotriens Essential Fatty Acids. 1989;35(3):183-185.
  57. Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutr. 2017; 5(1):18-28.
  58. Stowe C B. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract. 2011;17(2):113-115.
  59. Asgary S., Keshvari M., Sahebuar A., Hashemi M., Rafieian-Kopaei M. Clinical investigation of the acute effects of pomegranate juice on blood pressure and endothelial function in hypertensive individuals. Arya atheroscler. 2013;9.
  60. Shema-Didi L., Kristal B., Sela S., Geron R., Ore L. Does pomegranate intake attenuate cardiovascular risk factors in hemodialysis patients? Nutr J. 2014;13: 10-19.
  61. Tafaro A., Magrone T., Jirillo F., Martemucci G., D’Alessandro A. G., Amati L., JirilloE. Immunological properties of donkey’s milk: its potential use in the prevention of atherosclerosis. Curr Pharm Des.2007. 13(36):3711-3717.
  62. Jirillo F., Jirillo E., Magrone T. Donkeys and Goats Milk Consumption and Benefits to Human Health with Special Reference to the Inflammatory Status.Curr Pharm Des. 2010;16 (7):859-863.
  63. Nazzaro F., Orlando P., Fratianni F., Coppola R. Isolation of Components with Antimicrobial Property from the Donkey Milk: A Preliminary Study. TheOpen Food Sci J. 2010;4:43-47.




3: 4:

  1. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000, Apr;149(2):251-66.


Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?-A Systematic Review from 2000 to 2021. Animals (Basel) 2021, May 29;11(6):1608,
gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytesCommunications Biology, 2022; 5 (1) DOI: 10.1038/s42003-021-02944-y.
Fat Mass Has Negative Effects on Bone, Especially in Men: A Cross-Sectional Analysis of NHANES 2011-2018.  Journal of Clinical Endocrinology & Metabolism, 2022, Feb 10, online ahead of print:
The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022 Jan 3:nmab162. Epub ahead of print.

1. Buitenhuis HC et al. Biochim Biophys Acta. 1990;1034:170-175.
2. Knapen MH et al. Osteoporos Int. 2013 Sep;24(9):2499-507.
3. Knapen MH et al. Thrombosis and Haemostasis. 2015; 19;113(5).
4. Marjo H. J. et al. J Nutr Sci. 2015; 4: e35. Published online 2015 Oct 16.
5. Cummings SR et al. Lancet.1993 Jan 9;341(8837):72–5.
6. Shea MK et al. J Nutr. 2011 Aug;141(8):1529-34.
7. Theuwissen E et al. Food & Function 2014, The Royal Society of Chemistry.
8. van Summeren MJH et al. Br J Nutr. 2009; 102(8):1171-8.
9. Proper Calcium Use: Vitamin K2 as a Promoter of Bone and Cardiovascular Health. Integr Med (Encinitas) 2015, Feb; 14(1): 34–39:



Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunityImmunity, 2022; 55 (2): 324 DOI: 10.1016/j.immuni.2022.01.006.

Effect and Tolerability of a Nutritional Supplement Based on a Synergistic Combination of β-Glucans and Selenium- and Zinc-Enriched Saccharomyces cerevisiae (ABB C1®) in Volunteers Receiving the Influenza or the COVID-19 Vaccine: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2021, 13(12), 4347; Open Access.

Caloric restriction in humans reveals immunometabolic regulators of health span. Science 2022, 10 Feb, 375 (6581), 671-7. DOI: 10.1126/science.abg7292.

February 2022

From about late March/early April…
“Strong new evidence suggests a virus triggers multiple sclerosis”, by Megan Molteni, Jan 13:  

Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol 2020,
Quercetin-induced apoptosis prevents EBV infection. Oncotarget 2015, 6(14):12603-24,   

Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.
Science 2022, Jan 13, 375 (6578), 296-301:

Increased Serological Response Against Human Herpesvirus 6A Is Associated With Risk for Multiple SclerosisFrontiers in Immunology 2019,10. DOI: 10.3389/fimmu.2019.02715.

Vitamin D, Epstein-Barr virus, and endogenous retroviruses in multiple sclerosis – facts and hypotheses.
J Integr Neurosci 2021, Mar 30;20(1):233-238:

An investigation into the Effects of Intravenous Vitamin C on Pulmonary CT Findings and Clinical Outcomes of Patients with COVID 19 Pneumonia A Randomized Clinical Trial. Urol J  2021, Nov 8; 6863.

Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Network Open. 2021, 4, e210369. 134:

Vitamin C may increase the recovery rate of outpatient cases of SARS-CoV-2 infection by 70%: Reanalysis of the COVID A to Z randomized clinical trial. Front. Immunol. 2021, 12, 674681:
Bias against Vitamin C in Mainstream Medicine: Examples from Trials of Vitamin C for Infections. Life (Basel) 2022, Jan 3;12(1):62. DOI: 10.3390/life12010062.

“Covid-19: FDA expert panel recommends authorising molnupiravir but also voices concerns”. BMJ 2021, 375, doi: (Published 02 December 2021).

Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat Food 2021, 2, 1005–1013:

Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycinCell Metabolism 2021. DOI: 10.1016/j.cmet.2021.10.016.

Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health 2022, Jan 6:

Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances 2022, Jan 20,

Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches.
Biochem Pharmacol 2020, Dec;182:114225.

Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clin Transl Med 2021, Feb;11(2): e281.

An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants. Front Pharmacol 2021, Aug 20.

Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells. bioRxiv 2020, posted as preprint Sept 16.

The combination of Bromelain and Acetylcysteine (BromAc) synergistically inactivates SARS-CoV-2. bioRxiv 2020, 09.07.286906.

Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Communications 2022, 4:1, fcab295:

Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Pre-print of study accepted by Cell 2022, Jan 19. DOI: 10.1016/j.cell.2022.01.014.

Frequency of Adverse Events in the Placebo Arms of COVID-19 Vaccine Trials: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5(1):e2143955.

Joe Rogan interview with Dr Robert Malone – transcript here: 

Does Science Advance One Funeral at a Time? 2019.
American Economic Review 2019,  109(8), 2889-2920
Ultra-processed food targets bone quality via endochondral ossification. Bone Res 2021, 9, 14.
“Sweetgreen CEO criticized after connecting the pandemic to unhealthy eating: ‘Incredibly fat-phobic’”: Sept 2, 2021.
Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016Metabolic Syndrome and Related Disorders, 2018, doi: 10.1089/met.2018.0105.
Trends in the Prevalence of Metabolic Syndrome in the United States, 2011-2016. JAMA 2020, 323(24):2526-2528, doi:10.1001/jama.2020.4501.


Mike Ash

  1. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013; 13: 1057-1098.

“Omicron is not globally endemic right now…”

“Dysbiosis appears to be a significant contributory factor in the severity of COVID infection…”Gut Reactions: Microbes in the Digestive Tract Influence COVID Severity:

  1. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021 Apr;70(4):698-706.
  2. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front Immunol 2021, 12: 635471:


  3. Daily Lactobacillus Probiotic versus Placebo in COVID-19-Exposed Household Contacts (PROTECT-EHC): A Randomized Clinical Trial. medRxiv 2022:
  4. The Influence of a blend of Probiotic Lactobacillus and Prebiotic Inulin on the Duration and Severity of Symptoms among Individuals with Covid-19. Infect Dis Diag Treat 2021, 5: 182. DOI 10.29011/2577-1515.100182.
  5. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 2022, 11, e1260:
  6. Vitamin D and COVID-19: evidence and recommendations for supplementation. R. Soc. Open Sci 2022:
  7. Effects of Vitamin D and K on Interleukin-6 in COVID-19. Front. Nutr 2022, Jan 17, 8:761191:
  8. Vitamin A: The key to a tolerant immune system? Clinical Education 2010:
  9. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. Membranes 2021, Membranes (Basel) 2021, Dec, 11(12), 944: doi: 10.3390/membranes11120944.


Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults
JAMA Network Open, 2022; 5 (1): e2144279 DOI: 10.1001/jamanetworkopen.2021.44279.

Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover TrialDiabetes Care 2022. DOI: 10.2337/dc21-1314.

Abundance or stress? Faunal exploitation patterns and subsistence strategies: The case study of Brush Hut 1 at Ohalo II, a submerged 23,000-year-old camp in the Sea of Galilee, Israel. PLOS ONE 2022. DOI: 10.1371/journal.pone.0262434.

Population-Based Penetrance of Deleterious Clinical VariantsJAMA 2022; 327 (4): 350. DOI: 10.1001/jama.2021.23686.

Perceived Physical Fatigability Predicts All-Cause Mortality in Older Adults.
 Journal of Gerontology: Series A 2021. DOI: 10.1093/gerona/glab374.

Late‐life exercise mitigates skeletal muscle epigenetic aging. Aging Cell 2021; 21 (1) DOI: 10.1111/acel.13527.

Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022, Jan 26, 376 doi:

Twelve‐year sarcopenia trajectories in older adults: results from a population‐based study
Journal of Cachexia, Sarcopenia and Muscle, 2021; DOI: 10.1002/jcsm.12875.

Effect of a Home-Based Exercise Program on Subsequent Falls Among Community-Dwelling High-Risk Older Adults After a Fall: A Randomized Clinical Trial. JAMA 2019; 321(21): 2092–2100, doi:10.1001/jama.2019.5795.



January 2022


Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol 2021:


Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in miceNature Metabolism, 2021; 3 (9): 1202 DOI: 10.1038/s42255-021-00458-9.
Probiotics Improve Gastrointestinal Function and Life Quality in PregnancyNutrients, 2021; 13 (11): 3931 DOI: 10.3390/nu13113931.
Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens 2021, Jun 17;10(6):763. doi: 10.3390/pathogens10060763.
Positive Epstein-Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci Rep 2021;11(1):10902, May 25. doi: 10.1038/s41598-021-90351-y.
Sequelae in Adults at 6 Months After COVID-19 InfectionJAMA Netw Open. 2021;4(2):e210830:
Persistent dyspnea 1 year after COVID-19 infection in apparently healthy subjects: a potential indicator of subclinical cardiac dysfunction was presented during EuroEcho 2021:
Cardiac involvement in consecutive unselected hospitalized COVID-19 population: In-hospital evaluation and one-year follow-upInt J Cardiol. 2021;339:235–242.
Persistent symptoms and lab abnormalities in patients who recovered from COVID-19. Sci Rep. 2021;11:12775.
SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis. J Am Coll Cardiol Basic Trans Science. 2021 Apr, 6 (4) 331–345.
Metabolic disorders, COVID-19 and vaccine-breakthrough infections. Nat Rev Endocrinol 2021,
COVID-19 Post-Acute Sequelae Among Adults: 12 Month Mortality Risk. Front Med 2021 December:
Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals. mSphere 2021, Dec 1:

Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs.
Front. Immunol 2021,
Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2020;16(5):442-449. doi: 10.2174/1573399815666191024085838.
Dietary influences on intestinal immunity. Nat Rev Immunol. 2012 Oct;12(10):696-708.


  1. Irritable bowel syndrome in adults: diagnosis and management | Guidance and guidelines | NICE.
  2. Arzani M, Jahromi SR, Ghorbani Z, et al. Gut-brain Axis and migraine headache: A comprehensive review. J Headache Pain. 2020;21(1). doi:10.1186/s10194-020-1078-9
  3. Drossman DA. Functional gastrointestinal disorders: History, pathophysiology, clinical features, and Rome IV. Gastroenterology. 2016;150(6). doi:10.1053/j.gastro.2016.02.032
  4. Harper A, Naghibi M, Garcha D. The Role of Bacteria, Probiotics and Diet in Irritable Bowel Syndrome. Foods. 2018;7(2):13. doi:10.3390/foods7020013
  5. Young VB. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ. 2017;356. doi:10.1136/bmj.j831
  6. Jalanka-Tuovinen J, Salonen A, Nikkilä J, et al. Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One. 2011;6(7). doi:10.1371/journal.pone.0023035
  7. Mari A, Abu Baker F, Mahamid M, Sbeit W, Khoury T. The Evolving Role of Gut Microbiota in the Management of Irritable Bowel Syndrome: An Overview of the Current Knowledge. J Clin Med. 2020;9(3). doi:10.3390/jcm9030685
  8. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi:10.1038/nature08821
  9. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16). doi:10.1007/s00018-017-2509-x
  10. Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol. 1998;10(1):59-62.
  11. Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (80- ). 2016;352(6285):565-569. doi:10.1126/science.aad3369
  12. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J Gastroenterol. 2014;20(39):14105-14125. doi:10.3748/wjg.v20.i39.14105
  13. Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SM. Incidence and Epidemiology of Irritable Bowel Syndrome After a Large Waterborne Outbreak of Bacterial Dysentery. Gastroenterology. 2006;131(2):445-450. doi:10.1053/j.gastro.2006.05.053
  14. Wang L, Alammar N, Singh R, et al. Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. J Acad Nutr Diet. 2020;120(4). doi:10.1016/j.jand.2019.05.015
  15. Hardy H, Harris J, Lyon E, Beal J, Foey AD. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients. 2013;5(6):1869-1912. doi:10.3390/nu5061869
  16. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe. 2012;18(5):530-538. doi:10.1016/j.anaerobe.2012.08.004
  17. Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients. 2021;13(6). doi:10.3390/nu13062112
  18. Klein A, Friedrich U, Vogelsang H, Jahreis G. Lactobacillus acidophilus 74-2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr. 2008;62(5):584-593. doi:10.1038/sj.ejcn.1602761
  19. Dogi CA, Weill F, Perdigón G. Immune response of non-pathogenic Gram(+) and Gram(-) bacteria in inductive sites of the intestinal mucosa. Study of the pathway of signaling involved. Immunobiology. 2010;215(1):60-69. doi:10.1016/j.imbio.2009.01.005
  20. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7(FEB). doi:10.3389/fmicb.2016.00185
  21. Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8(1):80-93. doi:10.1038/mi.2014.44
  22. Ford AC, Quigley EMM, Lacy BE, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(10):1547-1562. doi:10.1038/ajg.2014.202
  23. Didari T. Effectiveness of probiotics in irritable bowel syndrome: Updated systematic review with meta-analysis. World J Gastroenterol. 2015;21(10):3072. doi:10.3748/wjg.v21.i10.3072
  24. Dale HF, Rasmussen SH, Asiller ÖÖ, Lied GA. Probiotics in irritable bowel syndrome: An up-to-date systematic review. Nutrients. Published online 2019. doi:10.3390/nu11092048
  25. McKenzie YA, Thompson J, Gulia P, Lomer MCE. British Dietetic Association systematic review of systematic reviews and evidence-based practice guidelines for the use of probiotics in the management of irritable bowel syndrome in adults (2016 update). J Hum Nutr Diet. 2016;29(5):576-592. doi:10.1111/jhn.12386
  26. Ishaque SM, Khosruzzaman SM, Ahmed DS, Sah MP. A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-Kult®) in the management of diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 2018;18(1). doi:10.1186/s12876-018-0788-9


Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut Published Online First: 22 November 2021.
(Lee et al quoted: Characteristics of fecal metabolic profiles in patients with irritable bowel syndrome with predominant diarrhea investigated using 1 H-NMR coupled with multivariate statistical analysisNeurogastroenterol Motil 2020;32:e13830. doi:10.1111/nmo.13830.
Association between Brachyspira and irritable bowel syndrome with diarrhoeaGut, 2020; gutjnl-2020-321466 DOI: 10.1136/gutjnl-2020-321466.
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clinical Microbiology Reviews 2017, DOI: 10.1128/CMR.00087-17.

Long-Term Air Pollution Exposure and COVID-19 Mortality: A Patient-Level Analysis from New York City.
Am J Respir Crit Care Med 2021, Dec 9. DOI: 10.1164/rccm.202104-0845OC.
Adverse Events and Labeling Issues Related to Suspected Sesame Allergy Reported in an Online Survey. Ann Allergy Asthma Immunol 2021, Dec 6;S1081-1206(21)01303-X:
Combining stretching and gallic acid to decrease inflammation indices and promote extracellular matrix production in osteoarthritic human articular chondrocytes. Exp Cell Res. 2021 Nov 15;408(2):112841. DOI: 10.1016/j.yexcr.2021.112841.
Epithelial cells remove precancerous cells by cell competition via MHC class I–LILRB3 interaction. Nature Immunology 2021. DOI:
Personal care products: Demographic characteristics and maternal hormones in pregnant women from Puerto RicoEnvironmental Research, 2021; 112376 DOI: 10.1016/j.envres.2021.112376.
Structural basis of DegP protease temperature-dependent activationScience Advances, 2021; 7 (50) DOI: 10.1126/sciadv.abj1816.
A hormone complex of FABP4 and nucleoside kinases regulates islet functionNature, 2021; DOI: 10.1038/s41586-021-04137-3.

December 2021

Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: results of a randomized controlled dietary intervention trialThe American Journal of Clinical Nutrition, 2021; nqab308.

Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 2021, 599, 543:

The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespansProceedings of the National Academy of Sciences, 2021; 118 (50): e2107621118 DOI: 10.1073/pnas.2107621118.

The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Science of The Total Environment, 2021; 151041 DOI: 10.1016/j.scitotenv.2021.151041

Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology, 2021; DOI: 10.1053/j.gastro.2021.11.006.

Weeklong improved colour contrasts sensitivity after single 670 nm exposures associated with enhanced mitochondrial function. Scientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-02311-1.

Peripheral microcirculatory alterations are associated with the severity of acute respiratory distress syndrome in COVID-19 patients admitted to intermediate respiratory and intensive care units. Critical Care, 2021; 25 (1) DOI: 10.1186/s13054-021-03803-2.



  1. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am J Gastroenterol. 2011 Sep;106(9):1582-91
  2. Pare P, Ferrazzi S, Thompson WG, et al. An epidemiological survey of constipation in Canada: Definitions, rates, demographics, and predictors of health care seeking. Am J Gastroenterol. 2001;96:3130–7.
  3. Irvine EJ, Ferrazzi S, Pare P, et al. Health-related quality of life in functional GI disorders: Focus on constipation and resource utilization. Am J Gastroenterol. 2002;97:1986–93.
  4. Heaton KW, Radvan J, Cripps H, et al. Defecation frequency and timing, and stool form in the general population: A prospective study. Gut. 1992;33:818–24.
  5. Belsey J, Greenfield S, Candy D, Geraint M. Systematic review: Impact of constipation on quality of life in adults and children. Aliment Pharmacol Ther. 2010;31:938–49.
  6. Bassotti G. Being constipated: A bad omen for your cardiovascular system? Atherosclerosis. 2016 Feb;245:240-1.
  7. Vermorken AJ, Andrès E, Cui Y. Bowel movement frequency, oxidative stress and disease prevention. Mol Clin Oncol. 2016 Oct;5(4):339-342.
  8. Sumida K, Molnar MZ, Potukuchi PK, Thomas F, Lu JL, Yamagata K, Kalantar-Zadeh K, Kovesdy CP. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2018 Dec 23;281:114-120.


  1. Rao SS, Rattanakovit K, Patcharatrakul T. Diagnosis and management of chronic  constipation in adults. Nat Rev Gastroenterol Hepatol. 2016 May;13(5):295-305.
  2. Lembo A, Camilleri M. Chronic constipation. N Engl J Med. 2003 Oct 2;349(14):1360-8.
  3. Andromanakos NP, Pinis SI, Kostakis AI. Chronic severe constipation: current pathophysiological aspects, new diagnostic approaches, and therapeutic options. Eur J Gastroenterol Hepatol. 2015 Mar;27(3):204-14.
  4. Lam C, Chaddock G, Marciani L, et al. Colonic response to laxative ingestion as assessed by MRI differs in constipated irritable bowel syndrome compared to functional constipation. Neurogastroenterol Motil. 2016 Jun;28(6):861-70.
  5. Whitehead WE, Palsson OS, Simrén M. Biomarkers to distinguish functional constipation from irritable bowel syndrome with constipation. Neurogastroenterol Motil. 2016 Jun;28(6):783-92.
  6. Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology,  Clinical Features and Rome IV. Gastroenterology. 2016 Feb 19. pii: S0016-5085(16)00223-7. doi: 10.1053/j.gastro.2016.02.032. [Epub ahead of print]
  7. Foxx-Orenstein AE, McNally MA, Odunsi ST. Update on constipation: one treatment does not fit all. Cleve Clin J Med. 2008 Nov;75(11):813–24.
  8. Basilisco G, Coletta M. Chronic constipation: a critical review. Dig Liver Dis. 2013 Nov;45(11):886-93.
  9. Rao SS, Meduri K. What is necessary to diagnose constipation? Best Pract Res Clin Gastroenterol. 2011 Feb;25(1):127-40.
  10. Sharma A, Rao S. Constipation: Pathophysiology and Current Therapeutic Approaches. Handb Exp Pharmacol. 2017;239:59-74.
  11. Christodoulides S, Dimidi E, Fragkos KC, Farmer AD, Whelan K, Scott SM. Systematic review with meta-analysis: effect of fibre supplementation on chronic  idiopathic constipation in adults. Aliment Pharmacol Ther. 2016 Jul;44(2):103-16.
  12. Alsalimy N, Madi L, Awaisu A. Efficacy and safety of laxatives for chronic constipation in long-term care settings: A systematic review. J Clin Pharm Ther.  2018 Oct;43(5):595-605.
  13. Paré P, Fedorak RN. Systematic review of stimulant and nonstimulant laxatives  for the treatment of functional constipation. Can J Gastroenterol Hepatol. 2014 Nov;28(10):549-57.
  14. Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther. 2007 Mar 1;25(5):599-608.
  15. Comas Vives A., Polanco Allué I. Case-control study of risk factors associated with childhood constipation. The FREI study. Anales de Pediatria. 2005;62(4):340–345.
  16. Nakaji S, Tokunaga S, Sakamoto J, Todate M, Shimoyama T, Umeda T, Sugawara K. Relationship between lifestyle factors and defecation in a Japanese population. Eur J Nutr. 2002 Dec;41(6):244-8.
  17. Inan M, Aydiner CY, Tokuc B, Aksu B, Ayvaz S, Ayhan S, Ceylan T, Basaran UN. Factors associated with childhood constipation. J Paediatr Child Health. 2007 Oct;43(10):700-6.
  18. Okubo H, Sasaki S, Murakami K, Kim MK, Takahashi Y, Hosoi Y, Itabashi M; Freshmen in Dietetic Courses Study II Group. Dietary patterns associated with functional constipation among Japanese women aged 18 to 20 years: a cross-sectional study. J Nutr Sci Vitaminol (Tokyo). 2007 Jun;53(3):232-8.
  19. Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M; Freshmen in Dietetic Courses Study II Group. Association between dietary fiber, water and magnesium intake and functional constipation among young Japanese women. Eur J Clin Nutr. 2007 May;61(5):616-22.
  20. Lee WT, Ip KS, Chan JS, Lui NW, Young BW. Increased prevalence of constipation in pre-school children is attributable to under-consumption of plant foods: A community-based study. J Paediatr Child Health. 2008 Apr;44(4):170-5.
  21. Jennings A, Davies GJ, Costarelli V, Dettmar PW. Dietary fibre, fluids and physical activity in relation to constipation symptoms in pre adolescent children. J Child Health Care. 2009 Jun;13(2):116-27.
  22. Sujatha B., Velayutham D. R., Deivamani N., Bavanandam S. Normal bowel pattern in children and dietary and other precipitating factors in functional constipation. Journal of Clinical and Diagnostic Research. 2015;9(6):SC12–SC15.
  23. Yang XJ, Zhang M, Zhu HM, Tang Z, Zhao DD, Li BY, Gabriel A. Epidemiological study: Correlation between diet habits and constipation among elderly in Beijing  region. World J Gastroenterol. 2016 Oct 21;22(39):8806-8811.
  24. de Moraes JG, Motta ME, Beltrão MF, Salviano TL, da Silva GA. Fecal Microbiota and Diet of Children with Chronic Constipation. Int J Pediatr. 2016;2016:6787269.
  25. Asakura K, Masayasu S, Sasaki S. Dietary intake, physical activity, and time management are associated with constipation in preschool children in Japan. Asia  Pac J Clin Nutr. 2017 Jan;26(1):118-129.
  26. Huang L, Jiang H, Zhu M, Wang B, Tong M, Li H, Lin MB, Li L. Prevalence and Risk Factors of Chronic Constipation Among Women Aged 50 Years and Older in Shanghai, China. Med Sci Monit. 2017 May 31;23:2660-2667.
  27. Ostaszkiewicz J, Hornby L, Millar L, Ockerby C. The effects of conservative treatment for constipation on symptom severity and quality of life in community-dwelling adults. J Wound Ostomy Continence Nurs. 2010;37:193–8.
  28. Speed C, Heaven B, Adamson A, Bond J, Corbett S, Lake AA, May C, Vanoli A, McMeekin P, Moynihan P, Rubin G, Steen IN, McColl E. LIFELAX – diet and LIFEstyle versus LAXatives in the management of chronic constipation in older people: randomised controlled trial. Health Technol Assess. 2010 Nov;14(52):1-251.
  29. Nour-Eldein H, Salama HM, Abdulmajeed AA, Heissam KS. The effect of lifestyle  modification on severity of constipation and quality of life of elders in nursing homes at Ismailia city, Egypt. J Family Community Med. 2014 May;21(2):100-6
  30. Tantawy SA, Kamel DM, Abdelbasset WK, Elgohary HM. Effects of a proposed physical activity and diet control to manage constipation in middle-aged obese women. Diabetes Metab Syndr Obes. 2017 Dec 14;10:513-519.
  31. Rao SS, Yu S, Fedewa A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment Pharmacol Ther. 2015 Jun;41(12):1256-70.
  32. Müller-Lissner SA, Kamm MA, Scarpignato C, Wald A. Myths and misconceptions about chronic constipation. Am J Gastroenterol. 2005 Jan;100(1):232-42.
  33. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am J Gastroenterol 2011;106:1582–91.
  34. McRorie JW, Chey WD. Fermented Fiber Supplements Are No Better Than Placebo for a Laxative Effect. Dig Dis Sci. 2016 Nov;61(11):3140-3146.
  35. McRorie JW Jr, McKeown NM. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J Acad Nutr Diet. 2017 Feb;117(2):251-264
  36. Voderholzer WA, Schatke W, Mühldorfer BE, Klauser AG, Birkner B, Müller-Lissner SA. Clinical response to dietary fiber treatment of chronic constipation. Am J Gastroenterol. 1997 Jan;92(1):95-8.
  37. Mertz H, Naliboff B, Mayer E. Physiology of refractory chronic constipation. Am J Gastroenterol. 1999 Mar;94(3):609-15.
  38. Eswaran S, Muir J, Chey WD. Fiber and functional gastrointestinal disorders. Am J Gastroenterol. 2013 May;108(5):718-27.
  39. Ho KS, Tan CY, Mohd Daud MA, Seow-Choen F. Stopping or reducing dietary fiber  intake reduces constipation and its associated symptoms. World J Gastroenterol. 2012 Sep 7;18(33):4593-6.
  40. Vanhauwaert E, Matthys C, Verdonck L, De Preter V. Low-residue and low-fiber diets in gastrointestinal disease management. Adv Nutr. 2015 Nov 13;6(6):820-7.
  41. Fujitani A, Sogo T, Inui A, Kawakubo K. Prevalence of Functional Constipation  and Relationship with Dietary Habits in 3- to 8-Year-Old Children in Japan. Gastroenterol Res Pract. 2018 Feb 27;2018:3108021
  42. Taba Taba Vakili S, Nezami BG, Shetty A, Chetty VK, Srinivasan S. Association  of high dietary saturated fat intake and uncontrolled diabetes with constipation: evidence from the National Health and Nutrition Examination Survey. Neurogastroenterol Motil. 2015 Oct;27(10):1389-97.
  43. Nezami BG, Mwangi SM, Lee JE, Jeppsson S, Anitha M, Yarandi SS, et al. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology. 2014;146(2):473 e3–483 e3.
  44. Bertrand RL, Senadheera S, Tanoto A, Tan KL, Howitt L, Chen H, Murphy TV, Sandow SL, Liu L, Bertrand PP. Serotonin availability in rat colon is reduced during a Western diet model of obesity. Am J Physiol Gastrointest Liver Physiol.  2012 Aug 1;303(3):G424-34.
  45. Anitha M, Reichardt F, Tabatabavakili S, Nezami BG, Chassaing B, Mwangi S, Vijay-Kumar M, Gewirtz A, Srinivasan S. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol. 2016 May;2(3):328-339.
  46. Rao SS, Kavelock R, Beaty J, Ackerson K, Stumbo P. Effects of fat and carbohydrate meals on colonic motor response. Gut. 2000 Feb;46(2):205-11.
  47. Crowley E., Williams L., Roberts T., Jones P., Dunstan R. Evidence for a role of cow’s milk consumption in chronic functional constipation in children: Systematic review of the literature from 1980 to 2006. Nutr. Diet. 2008;65:29–35.
  48. Iacono G, Cavataio F, Montalto G, Florena A, Tumminello M, Soresi M, Notarbartolo A, Carroccio A. Intolerance of cow’s milk and chronic constipation in children. N Engl J Med. 1998 Oct 15;339(16):1100-4.
  49. Crowley ET, Williams LT, Roberts TK, Dunstan RH, Jones PD. Does milk cause constipation? A crossover dietary trial. Nutrients. 2013 Jan 22;5(1):253-66.
  50. Rush EC, Patel M, Plank LD, Ferguson LR. Kiwifruit promotes laxation in the elderly. Asia Pac J Clin Nutr. 2002;11(2):164-8.
  51. Chan AO, Leung G, Tong T, Wong NY. Increasing dietary fiber intake in terms of kiwifruit improves constipation in Chinese patients. World J Gastroenterol. 2007  Sep 21;13(35):4771-5.
  52. Chang CC, Lin YT, Lu YT, Liu YS, Liu JF. Kiwifruit improves bowel function in  patients with irritable bowel syndrome with constipation. Asia Pac J Clin Nutr. 2010;19(4):451-7.
  53. Udani JK, Bloom DW. Effects of Kivia powder on gut health in patients with occasional constipation: a randomized, double-blind, placebo-controlled study. Nutr J. 2013 Jun 8;12:78. doi: 10.1186/1475-2891-12-78.
  54. Ansell J, Butts CA, Paturi G, Eady SL, Wallace AJ, Hedderley D, Gearry RB. Kiwifruit-derived supplements increase stool frequency in healthy adults: a randomized, double-blind, placebo-controlled study. Nutr Res. 2015 May;35(5):401-8.
  55. Kindleysides S, Kuhn-Sherlock B, Yip W, Poppitt SD. Encapsulated green kiwifruit extract: a randomised controlled trial investigating alleviation of constipation in otherwise healthy adults. Asia Pac J Clin Nutr. 2015;24(3):421-9.
  56. Weir I, Shu Q, Wei N, Wei C, Zhu Y. Efficacy of actinidin-containing kiwifruit extract Zyactinase on constipation: a randomised double-blinded placebo-controlled clinical trial. Asia Pac J Clin Nutr. 2018;27(3):564-571.
  57. Chey SW, Chey WD, Jackson K, Eswaran S. Exploratory Comparative Effectiveness Trial of Green Kiwifruit, Psyllium, or Prunes in US Patients With Chronic Constipation. Am J Gastroenterol. 2021 Jun 1;116(6):1304-1312.
  58. Dahl WJ, Lockert EA, Cammer AL, Whiting SJ. Effects of flax fiber on laxation and glycemic response in healthy volunteers. J Med Food. 2005 Winter;8(4):508-11. doi: 10.1089/jmf.2005.8.508. PMID: 16379563.
  59. Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TM, Jenkins DJ. Nutritional attributes of traditional flaxseed in healthy young adults. Am J Clin Nutr. 1995 Jan;61(1):62-8. doi: 10.1093/ajcn/61.1.62. PMID: 7825540.


  1. Sun J, Bai H, Ma J, Zhang R, Xie H, Zhang Y, Guo M, Yao J. Effects of flaxseed supplementation on functional constipation and quality of life in a Chinese population: A randomized trial. Asia Pac J Clin Nutr. 2020;29(1):61-67.
  2. Tarpila S, Tarpila A, Gröhn P, Silvennoinen T, Lindberg L. Efficacy of ground flaxseed on constipation in patients with irritable bowel syndrome. Curr Top Nutraceutical Res. 2004; 2:119-25
  3. Cockerell KM, Watkins AS, Reeves LB, Goddard L, Lomer MC. Effects of linseeds on the symptoms of irritable bowel syndrome: a pilot randomised controlled trial. J Hum Nutr Diet. 2012 Oct;25(5):435-43.
  4. Muss C, Mosgoeller W, Endler T. Papaya preparation (Caricol®) in digestive disorders. Neuro Endocrinol Lett. 2013;34(1):38-46.
  5. Attaluri A, Donahoe R, Valestin J, Brown K, Rao SS. Randomised clinical trial: dried plums (prunes) vs. psyllium for constipation. Aliment Pharmacol Ther. 2011  Apr;33(7):822-8.
  6. Baek HI, Ha KC, Kim HM, Choi EK, Park EO, Park BH, Yang HJ, Kim MJ, Kang HJ, Chae SW. Randomized, double-blind, placebo-controlled trial of Ficus carica paste for the management of functional constipation. Asia Pac J Clin Nutr. 2016;25(3):487-96.
  7. Venancio VP, Kim H, Sirven MA, Tekwe CD, Honvoh G, Talcott ST, Mertens-Talcott SU. Polyphenol-rich Mango (Mangifera indica L.) Ameliorate Functional Constipation Symptoms in Humans beyond Equivalent Amount of Fiber. Mol Nutr Food  Res. 2018 Jun;62(12):e1701034.
  8. Yanaka A. Daily intake of broccoli sprouts normalizes bowel habits in human healthy subjects. J Clin Biochem Nutr. 2018 Jan;62(1):75-82. doi: 10.3164/jcbn.17-42. Epub 2017 Nov 3. PMID: 29371757; PMCID: PMC5773831.
  9. Arnaud MJ. Mild dehydration: a risk factor of constipation? Eur J Clin Nutr. 2003 Dec;57 Suppl 2:S88-95.
  10. Klauser AG, Beck A, Schindlbeck NE, Müller-Lissner SA. Low fluid intake lowers stool output in healthy male volunteers. Z Gastroenterol. 1990 Nov;28(11):606-9.
  11. Cuomo R, Grasso R, Sarnelli G, Capuano G, Nicolai E, Nardone G, Pomponi D, Budillon G, Ierardi E. Effects of carbonated water on functional dyspepsia and constipation. Eur J Gastroenterol Hepatol. 2002 Sep;14(9):991-9.
  12. Anti M, Pignataro G, Armuzzi A, Valenti A, Iascone E, Marmo R, Lamazza A, Pretaroli AR, Pace V, Leo P, Castelli A, Gasbarrini G. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology. 1998 May-Jun;45(21):727-32.
  13. Young RJ, Beerman LE, Vanderhoof JA. Increasing oral fluids in chronic constipation in children. Gastroenterol Nurs. 1998;21:156–161
  14. Mody R, Guérin A, Fok B, Lasch KL, Zhou Z, Wu EQ, Zhou W, Talley NJ. Prevalence and risk of developing comorbid conditions in patients with chronic constipation. Curr Med Res Opin. 2014 Dec;30(12):2505-13.
  15. Arya V, Singh S, Agarwal S, Ohri A. Resolution of constipation, anal stricture, and iron deficiency anemia after iron infusion: an analogy with Plummer Vinson syndrome. Springerplus. 2016 Nov 15;5(1):1976.
  16. Milman N, Jønsson L, Dyre P, Pedersen PL, Larsen LG. Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron  deficiency and anemia during pregnancy in a randomized trial. J Perinat Med. 2014 Mar;42(2):197-206.
  17. Abdel Moety GAF, Ali AM, Fouad R, Ramadan W, Belal DS, Haggag HM. Amino acid chelated iron versus an iron salt in the treatment of iron deficiency anemia with pregnancy: A randomized controlled study. Eur J Obstet Gynecol Reprod Biol. 2017  Mar;210:242-246.
  18. Dimidi E, Christodoulides S, Fragkos KC, et al. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014 Oct;100(4):1075-84.
  19. Ojetti V, Ianiro G, Tortora A, D’Angelo G, Di Rienzo TA, Bibbò S, Migneco A, Gasbarrini A. The effect of Lactobacillus reuteri supplementation in adults with  chronic functional constipation: a randomized, double-blind, placebo-controlled trial. J Gastrointestin Liver Dis. 2014 Dec;23(4):387-91.
  20. Ibarra A, Latreille-Barbier M, Donazzolo Y, Pelletier X, Ouwehand AC. Effects  of 28-day Bifidobacterium animalis subsp. lactis HN019 supplementation on colonic transit time and gastrointestinal symptoms in adults with functional constipation: A double-blind, randomized, placebo-controlled, and dose-ranging trial. Gut Microbes. 2018;9(3):236-251.
  21. Kim SE, Choi SC, Park KS, et al. Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation. J Neurogastroenterol Motil. 2015 Jan 1;21(1):111-20.
  22. Gottlieb K, Wacher V, Sliman J, Pimentel M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther. 2016 Jan;43(2):197-212.
  23. Ghoshal U, Shukla R, Srivastava D, Ghoshal UC. Irritable Bowel Syndrome, Particularly the Constipation-Predominant Form, Involves an Increase in Methanobrevibacter smithii, Which Is Associated with Higher Methane Production. Gut Liver. 2016 Nov 15;10(6):932-938.
  24. Ojetti V, Petruzziello C, Migneco A, et al. Effect of Lactobacillus reuteri (DSM 17938) on methane production in patients affected by functional constipation: a retrospective study. Eur Rev Med Pharmacol Sci. 2017 Apr;21(7):1702-1708.
  25. Yu T, Zheng YP, Tan JC, Xiong WJ, Wang Y, Lin L. Effects of Prebiotics and Synbiotics on Functional Constipation. Am J Med Sci. 2017 Mar;353(3):282-292.
  26. Teuri U., Korpela R.: Galacto-oligosaccharides relieve constipation in elderly people. Ann Nutr Metab 1998; 42: pp. 319-327.
  27. Sairanen U., Piirainen L., Nevala R., et. al.: Yoghurt containing galacto-oligosaccharides, prunes and linseed reduces the severity of mild constipation in elderly subjects. Eur J Nutr 2007; 61: pp. 1423-1428.
  28. Terue S., Keiko Y., Sachie N., et. al.: . Bioscience Microflora 2006; 104: pp. 1130-1134.
  29. Elli M, Cattivelli D, Soldi S, Bonatti M, Morelli L. Evaluation of prebiotic potential of refined psyllium (Plantago ovata) fiber in healthy women. J Clin Gastroenterol. 2008 Sep;42 Suppl 3 Pt 2:S174-6. doi: 10.1097/MCG.0b013e31817f183a. PMID: 18685505.


  1. Jalanka J, Major G, Murray K, Singh G, Nowak A, Kurtz C, Silos-Santiago I, Johnston JM, de Vos WM, Spiller R. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J Mol Sci. 2019 Jan 20;20(2):433.
  2. McRorie JW Jr, Fahey GC Jr, Gibb RD, Chey WD. Laxative effects of wheat bran and psyllium: Resolving enduring misconceptions about fiber in treatment guidelines for chronic idiopathic constipation. J Am Assoc Nurse Pract. 2020 Jan;32(1):15-23. doi: 10.1097/JXX.0000000000000346. PMID: 31764399.
  3. Yang C, Liu S, Li H, Bai X, Shan S, Gao P, Dong X. The effects of psyllium husk on gut microbiota composition and function in chronically constipated women of reproductive age using 16S rRNA gene sequencing analysis. Aging (Albany NY). 2021 Jun 3;13(11):15366-15383.
  4. Mori H, Tack J, Suzuki H. Magnesium Oxide in Constipation. Nutrients. 2021 Jan 28;13(2):421.
  5. Mori S, Tomita T, Fujimura K, Asano H, Ogawa T, Yamasaki T, Kondo T, Kono T, Tozawa K, Oshima T, Fukui H, Kimura T, Watari J, Miwa H. A Randomized Double-blind Placebo-controlled Trial on the Effect of Magnesium Oxide in Patients With Chronic Constipation. J Neurogastroenterol Motil. 2019 Oct 30;25(4):563-575
  6. Morishita D, Tomita T, Mori S, Kimura T, Oshima T, Fukui H, Miwa H. Senna Versus Magnesium Oxide for the Treatment of Chronic Constipation: A Randomized, Placebo-Controlled Trial. Am J Gastroenterol. 2021 Jan 1;116(1):152-161.
  7. Elgar K. Magnesium: A Review of Clinical Use and Efficacy. Nutr Med J. 2021 Dec; 1 (1): XXX
  8. Dupont C, Campagne A, Constant F. Efficacy and safety of a magnesium sulfate-rich natural mineral water for patients with functional constipation. Clin Gastroenterol Hepatol. 2014
  9. Constant F, Morali A, Arnaud MJ, et al. Treatment of idiopathic constipation in infants: comparative and randomized study of twa mineral waters (60 cases) J Pediatr Gastroenterol Nutr. 1999;28(5):551
  10. Gasbarrini G, Candelli M, Graziosetto RG, et al. Evaluation of thermal water in patients with functional dyspepsia and irritable bowel syndrome accompanying constipation. World J Gastroenterol. 2006;12(16):2556–2562
  11. Heizer WD, Sandler RS, Seal E, et al. Intestinal effects of sulfate in drinking water on normal human subjects. Dig Dis Sci. 1997;42(5):1055–106
  12. Naumann J, Sadaghiani C, Alt F, et al. Effects of Sulfate-Rich Mineral Water on Functional Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. Forsch Komplementmed. 2016;23(6):356-363.
  13. Bothe G, Coh A, Auinger A. Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a double-blind, randomized, placebo-controlled study. Eur J Nutr. 2017 Mar;56(2):491-499.

Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021; 160 (1) 99-114 e3.


  1. Pizzorno J.  Integr Med (Encinitas). 2014 Apr; 13(2): 8–15.
  2. Um J-H, Yun J. BMB Rep. 2017 Jun;50(6):299-307. 
  3. Duchen MR. Diabetes 2004 Feb; 53(suppl 1): S96-S102.
  4. Roberts RG. PLoS Biol. 2017 Mar; 15(3): e2002338.
  5. Ashrafi G, Schwarz TL. Cell Death Differ. 2013 Jan;20(1):31-42.  
  6. Marzetti E, Calvani R, Cesari M, et al. Int J Biochem Cell Biol. 2013;45(10):2288-2301.
  7. Chen G, Kroemer G, Kepp O. Front Cell Dev Biol. 2020;8:200. 
  8. Sebastián D, Sorianello E, Segalés J, et al. EMBO J. 2016;35(15):1677-1693.
  9. Ruetenik A, Barrientos A.  Biochim Biophys Acta. 2015 Nov; 1847(11): 1434–1447.
  10. Menzies KJ. J Biol Chem. 2013 Mar 8; 288(10): 6968–6979.
  11. Ryu D, Mouchiroud L, Andreux PA, et al. Nature Medicine 22:8, 2016;879-88.
  12. Andreux PA, Blanco-Bose W, Ryu D, et al. Nature Metabolism 1:2019;595-603. 
  13. Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F. Evid Based Complement Alternat Med. 2013;2013:270418.  
  14. Heim KC.  In:  Antioxidant Polymers: Synthesis, Properties, and Applications. Cirillo G, Iemma F, eds. Taylor and Francis, c. 2012
  15. García-Mantrana I et al. Nutrients. 2019 Oct; 11(10): 2483.
  16. Cortes-Martin A, Garcia-Villalba R, Gonzalez-Sarrias A, et al.  Food Funct. 2018, 9:4100-4106.
  17. Mitopure™ (Proprietary Urolithin A) Bioavailability in Healthy Adults (NOURISH). 2020.


November 2021

Effects of Lifestyle Modification on Patients With Resistant Hypertension: Results of the TRIUMPH Randomized Clinical TrialCirculation 2021, 144:1212–26, Sept 27. DOI: 10.1161/CIRCULATIONAHA.121.055329.

Dental biofilm of symptomatic COVID-19 patients harbours SARS-CoV-2. J Clin Periodontol 2021 Jul;48(7):880-885. DOI: 10.1111/jcpe.13471.
Scrubbing Wipes to Dislodge Dental Biofilm Can Remove and Inactivate Viruses from Tooth Surface: Perspectives for Covid-19 Prevention. Biomedical J Scientific Technical Res 2021, July 28.
Mucosal Biofilms Are an Endoscopic Feature of Irritable Bowel Syndrome and Ulcerative Colitis. Gastroenterology 2021, Oct;161(4):1245-1256.e20. Open Access. DOI: 10.1053/j.gastro.2021.06.024.
Evidence of transmission from fully vaccinated individuals in a large outbreak of the SARS-CoV-2 Delta variant in Provincetown, Massachusetts. medRxiv 2021.10.20.21265137.
Effects of Lifestyle Modification on Patients With Resistant Hypertension: Results of the TRIUMPH Randomized Clinical TrialCirculation 2021, 144:1212–26, Sept 27. DOI: 10.1161/CIRCULATIONAHA.121.055329.
Lactoferrin reduces the risk of respiratory tract infections: A meta-analysis of randomized controlled trials.
Clin Nutr ESPEN. 2021 Oct;45:26-32.  DOI: 10.1016/j.clnesp.2021.08.019.
Aspirin Use is Associated with Decreased Mechanical Ventilation, ICU Admission, and In-Hospital Mortality in Hospitalized Patients with COVID-19Anesthesia & Analgesia, 2020; Published Ahead of Print DOI: 10.1213/ANE.0000000000005292.
The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection. FEBS J 2021, 288: 5179-5189.

BEN BROWN – Atopic dermatitis

  1. Lee JH, Son SW, Cho SH. A Comprehensive Review of the Treatment of Atopic Eczema. Allergy Asthma Immunol Res. 2016 May;8(3):181-90.
  2. Megna M, Napolitano M, Patruno C, et al. Systemic Treatment of Adult Atopic Dermatitis: A Review. Dermatol Ther  (Heidelb). 2016 Dec 26. doi: 10.1007/s13555-016-0170-1. [Epub ahead of print]
  3. Furue M, Chiba T, Tsuji G, et al.Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and  new therapies. Allergol Int. 2017 Jan 2. pii: S1323-8930(16)30171-X.
  4. Bieber T. Atopic dermatitis. Ann Dermatol. 2010 May;22(2):125-37.
  5. Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016 Aug;138(2):336-49.
  6. Chu H, Shin JU, Park CO, et al. Clinical Diversity of Atopic Dermatitis: A Review of 5,000 Patients at a Single Institute. Allergy Asthma Immunol Res. 2017 Mar;9(2):158-168.
  7. Kim JE, Kim JS, Cho DH, Park HJ. Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci. 2016 Jul 30;17(8).
  8. LeBovidge JS, Elverson W, Timmons KG, et al. Multidisciplinary interventions in the management of atopic dermatitis. J Allergy Clin Immunol. 2016 Aug;138(2):325-34.
  9. Song H, Yoo Y, Hwang J, et al. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol. 2016 Mar;137(3):852-60
  10. Jyonouchi S, Brown-Whitehorn TA, Spergel JM. Association of eosinophilic gastrointestinal disorders with other atopic disorders. Immunol Allergy Clin North Am. 2009 Feb;29(1):85-97
  11. Kim M, Choi KH, Hwang SW, Lee YB, Park HJ, Bae JM. Inflammatory bowel disease  is associated with an increased risk of inflammatory skin diseases: A population-based cross-sectional study. J Am Acad Dermatol. 2017 Jan;76(1):40-48.
  12. Orivuori L, Mustonen K, de Goffau MC, et al. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin Exp Allergy. 2015 May;45(5):928-39.
  13. Arisawa T, Arisawa S, Yokoi T, Kuroda M, Hirata I, Nakano H. Endoscopic and histological features of the large intestine in patients with atopic dermatitis.  J Clin Biochem Nutr. 2007 Jan;40(1):24-30.
  14. Niwa Y, Sumi H, Akamatsu H. An association between ulcerative colitis and atopic dermatitis, diseases of impaired superficial barriers. J Invest Dermatol. 2004;123:999-1000
  15. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM. Intestinal permeability–a new target for disease prevention  and therapy. BMC Gastroenterol. 2014 Nov 18;14:189.
  16. Rosenfeldt V, Benfeldt E, Valerius NH, Paerregaard A, Michaelsen KF. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr. 2004 Nov;145(5):612-6.
  17. Iemoli E, Trabattoni D, Parisotto S, et al. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol. 2012 Oct;46 Suppl:S33-40.
  18. Darlenski R, Kazandjieva J, Hristakieva E, Fluhr JW. Atopic dermatitis as a systemic disease. Clin Dermatol. 2014 May-Jun;32(3):409-13.
  19. Thomsen SF. Epidemiology and natural history of atopic diseases. Eur Clin Respir J. 2015 Mar 24;2.
  20. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105:99–106.
  21. Bieber T. Atopic dermatitis. N Engl J Med 2008;358(14):1483–94
  22. Eyerich K, Huss-Marp J, Darsow U,et al. Pollen grains induce a rapid and biphasic eczematous immune response in atopic eczema patients. Int Arch Allergy Immunol. 2008;145(3):213-23.
  23. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol. 2010 Feb;125(2  Suppl 2):S116-25.
  24. Auriemma M, Vianale G, Amerio P, Reale M. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw. 2013 Mar;24(1):37-44.
  25. Lucas RM, Gorman S, Geldenhuys S, et al. Vitamin D and immunity. F1000Prime Rep. 2014 Dec 1;6:118.
  26. van der Meulen TA, Harmsen H, Bootsma H, et al. The microbiome-systemic diseases connection. Oral Dis. 2016 Nov;22(8):719-734.
  27. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015 Apr;1851(4):469-84.
  28. Roesner LM, Werfel T, Heratizadeh A. The adaptive immune system in atopic dermatitis and implications on therapy. Expert Rev Clin Immunol. 2016 Jul;12(7):787-96.
  29. Ji H, Li XK. Oxidative Stress in Atopic Dermatitis. Oxid Med Cell Longev. 2016;2016:2721469.
  30. Sivaranjani N, Rao SV, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagn Res. 2013 Dec;7(12):2683-5.
  31. Song S, Paek D, Park C, Lee C, Lee JH, Yu SD. Exposure to ambient ultrafine particles and urinary 8-hydroxyl-2-deoxyguanosine in children with and without eczema. Sci Total Environ. 2013 Aug 1;458-460:408-13.
  32. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflamm Allergy. 2005 Aug;4(4):517-9.
  33. Chang YS, Chiang BL. Mechanism of Sleep Disturbance in Children with Atopic Dermatitis and the Role of the Circadian Rhythm and Melatonin. Int J Mol Sci. 2016 Mar 29;17(4):462.
  34. Toyran M, Kaymak M, Vezir E, et al.  Trace element levels in children with atopic dermatitis. J Investig Allergol Clin Immunol. 2012;22(5):341-4.
  35. Chung J, Kwon SO, Ahn H et al. Association between Dietary  Patterns and Atopic Dermatitis in Relation to GSTM1 and GSTT1 Polymorphisms in Young Children. Nutrients. 2015 Nov 13;7(11):9440-52.
  36. Bengtsson A, Lundberg M, Avila-Cariño J, et al. Thiols decrease cytokine levels and down-regulate the expression of CD30 on human allergen-specific T helper (Th) 0 and Th2 cells. Clin Exp Immunol. 2001 Mar;123(3):350-60.
  37. Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol. 2014 Nov;134(5):993-9; discussion 1000.
  38. Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: A systematic review and meta-analysis. J Am Acad Dermatol. 2016 Dec;75(6):1119-1125.
  39. Kim EH, Kim S, Lee JH, Kim J, Han Y, Kim YM, Kim GB, Jung K, Cheong HK, Ahn K. Indoor air pollution aggravates symptoms of atopic dermatitis in children. PLoS One. 2015 Mar 17;10(3):e0119501.
  40. Chang YS, Chou YT, Lee JH, et al. Atopic dermatitis, melatonin, and sleep disturbance. Pediatrics. 2014 Aug;134(2):e397-405.
  41. Chang YS, Chiang BL. Mechanism of Sleep Disturbance in Children with Atopic Dermatitis and the Role of the Circadian Rhythm and Melatonin. Int J Mol Sci. 2016 Mar 29;17(4):462.
  42. Chang YS, Lin MH, Lee JH, et al. Melatonin Supplementation for Children With Atopic Dermatitis and Sleep Disturbance: A Randomized Clinical Trial. JAMA Pediatr. 2016 Jan;170(1):35-42.
  43. Senra MS, Wollenberg A. Psychodermatological aspects of atopic dermatitis. Br  J Dermatol. 2014 Jul;170 Suppl 1:38-43.
  44. Alexopoulos A, Chrousos GP. Stress-related skin disorders. Rev Endocr Metab Disord. 2016 Sep;17(3):295-304.
  45. Buske-Kirschbaum A, Geiben A, Höllig H, et al. Altered  responsiveness of the hypothalamus-pituitary-adrenal axis and the sympathetic adrenomedullary system to stress in patients with atopic dermatitis. J Clin Endocrinol Metab. 2002 Sep;87(9):4245-51.
  46. Katta R, Schlichte M. Diet and dermatitis: food triggers. J Clin Aesthet Dermatol. 2014 Mar;7(3):30-6.
  47. Breuer K, Heratizadeh A, Wulf A, Baumann U, Constien A, Tetau D, Kapp A, Werfel T. Late eczematous reactions to food in children with atopic dermatitis. Clin Exp Allergy. 2004 May;34(5):817-24.
  48. Bath-Hextall F, Delamere FM, Williams HC. Dietary exclusions for established atopic eczema. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD005203.
  49. Lever R, MacDonald C, Waugh P, Aitchison T. Randomised controlled trial of advice on an egg exclusion diet in young children with atopic eczema and sensitivity to eggs. Pediatr Allergy Immunol. 1998 Feb;9(1):13-9.
  50. Norrman G, Tomicić S, Böttcher MF, Oldaeus G, Strömberg L, Fälth-magnusson K.  Significant improvement of eczema with skin care and food elimination in small children. Acta Paediatr. 2005 Oct;94(10):1384-8.
  51. Rokaite R, Labanauskas L, Balciūnaite S, Vaideliene L. Significance of dietotherapy on the clinical course of atopic dermatitis. Medicina (Kaunas). 2009;45(2):95-103.
  52. Hon KL, Poon TC, Pong NH, Wong YH, Leung SS, Chow CM, Leung TF. Specific IgG and IgA of common foods in Chinese children with eczema: friend or foe. J Dermatolog Treat. 2014 Dec;25(6):462-6.
  53. Worm M, Ehlers I, Sterry W, et al. Clinical relevance of food additives in adult patients with atopic dermatitis. Clin Exp Allergy. 2000 Mar;30(3):407-14
  54. Lee JM, Jin HJ, Noh G, Lee SS. Effect of processed foods on serum levels of eosinophil cationic protein among children with atopic dermatitis. Nutr Res Pract. 2011 Jun;5(3):224-9.
  55. Zauli D, Grassi A, Granito A, et al. Prevalence of silent coeliac disease in atopics. Dig Liver Dis. 2000 Dec;32(9):775-9.
  56. Ress K, Annus T, Putnik U, et al. Celiac disease in children with atopic dermatitis. Pediatr Dermatol. 2014 Jul-Aug;31(4):483-8.
  57. Ciacci C, Cavallaro R, Iovino P, et al. Allergy prevalence in adult celiac disease. J Allergy Clin Immunol. 2004 Jun;113(6):1199-203.
  58. Kim SH, Lee JH, Ly SY. Children with atopic dermatitis in Daejeon, Korea: individualized nutrition intervention for disease severity and nutritional status. Asia Pac J Clin Nutr. 2016 Dec;25(4):716-728.
  59. Young MC. Elimination Diets in Eczema–A Cautionary Tale. J Allergy Clin Immunol Pract. 2016 Mar-Apr;4(2):237-8.
  60. Kouda K, Tanaka T, Kouda M, Takeuchi H, Takeuchi A, Nakamura H, Takigawa M. Low-energy diet in atopic dermatitis patients: clinical findings and DNA damage.  J Physiol Anthropol Appl Human Sci. 2000 Sep;19(5):225-8.
  61. Tanaka T, Kouda K, Kotani M, Takeuchi A, Tabei T, Masamoto Y, Nakamura H, Takigawa M, Suemura M, Takeuchi H, Kouda M. Vegetarian diet ameliorates symptoms  of atopic dermatitis through reduction of the number of peripheral eosinophils and of PGE2 synthesis by monocytes. J Physiol Anthropol Appl Human Sci. 2001 Nov;20(6):353-61.
  62. Nakamura H, Shimoji K, Kouda K, Tokunaga R, Takeuchi H. An adult with atopic dermatitis and repeated short-term fasting. J Physiol Anthropol Appl Human Sci. 2003 Sep;22(5):237-40.
  63. Kim KS, Nam HJ. Detoxification combining fasting with fluid therapy for refractory cases of severe atopic dermatitis. Evid Based Complement Alternat Med. 2013;2013:561290.
  64. Betsi GI, Papadavid E, Falagas ME. Probiotics for the treatment or prevention of atopic dermatitis: a review of the evidence from randomized controlled trials. Am J Clin Dermatol. 2008;9(2):93-103.
  65. Avershina E, Cabrera Rubio R, Lundgård K, Perez Martinez G, Collado MC, Storrø O, Øien T, Dotterud CK, Johnsen R, Rudi K. Effect of probiotics in prevention of  atopic dermatitis is dependent on the intrinsic microbiota at early infancy. J Allergy Clin Immunol. 2016 Dec 5. pii: S0091-6749(16)31443-9.
  66. Panduru M, Panduru NM, Sălăvăstru CM, Tiplica GS. Probiotics and primary prevention of atopic dermatitis: a meta-analysis of randomized controlled studies. J Eur Acad Dermatol Venereol. 2015 Feb;29(2):232-42.
  67. Foolad N, Brezinski EA, Chase EP, Armstrong AW. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids. JAMA Dermatol. 2013 Mar;149(3):350-5.
  68. Kalliomäki M, Salminen S, Poussa T, Isolauri E. Probiotics during the first 7  years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007 Apr;119(4):1019-21
  69. Wickens K, Black P, Stanley TV, Mitchell E, Barthow C, Fitzharris P, Purdie G, Crane J. A protective effect of Lactobacillus rhamnosus HN001 against eczema in the first 2 years of life persists to age 4 years. Clin Exp Allergy. 2012Jul;42(7):1071-9.
  70. Kim JY, Kwon JH, Ahn SH, et al. Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr Allergy Immunol. 2010 Mar;21(2 Pt 2):e386-93.
  71. Dotterud CK, Storrø O, Johnsen R, Oien T. Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br J Dermatol. 2010 Sep;163(3):616-23.
  72. Gerasimov SV, Vasjuta VV, Myhovych OO, Bondarchuk LI. Probiotic supplement reduces atopic dermatitis in preschool children: a randomized, double-blind, placebo-controlled, clinical trial. Am J Clin Dermatol. 2010;11(5):351-61.
  73. Fuchs-Tarlovsky V, Marquez-Barba MF, Sriram K. Probiotics in dermatologic practice. Nutrition. 2016 Mar;32(3):289-95.
  74. Kim SO, Ah YM, Yu YM, Choi KH, Shin WG, Lee JY. Effects of probiotics for the  treatment of atopic dermatitis: a meta-analysis of randomized controlled trials.  Ann Allergy Asthma Immunol. 2014 Aug;113(2):217-26.
  75. Betsi GI, Papadavid E, Falagas ME. Probiotics for the treatment or prevention  of atopic dermatitis: a review of the evidence from randomized controlled trials. Am J Clin Dermatol. 2008;9(2):93-103.
  76. Drago L, Iemoli E, Rodighiero V, Nicola L, De Vecchi E, Piconi S. Effects of Lactobacillus salivarius LS01 (DSM 22775) treatment on adult atopic dermatitis: a randomized placebo-controlled study. Int J Immunopathol Pharmacol. 2011 Oct-Dec;24(4):1037-48.
  77. Wang IJ, Wang JY. Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clin Exp Allergy. 2015 Apr;45(4):779-87.
  78. Woo SI, Kim JY, Lee YJ, Kim NS, Hahn YS. Effect of Lactobacillus sakei supplementation in children with atopic eczema-dermatitis syndrome. Ann Allergy Asthma Immunol. 2010 Apr;104(4):343-8.
  79. Arslanoglu S, Moro GE, Schmitt J, et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr. 2008;138(6):1091-1095.
  80. Shibata R, Kimura M, Takahashi H, Mikami K, Aiba Y, Takeda H, Koga Y. Clinical effects of kestose, a prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clin Exp Allergy. 2009 Sep;39(9):1397-403.
  81. Morse NL, Clough PM. A meta-analysis of randomized, placebo-controlled clinical trials of Efamol evening primrose oil in atopic eczema. Where do we go from here in light of more recent discoveries? Curr Pharm Biotechnol. 2006 Dec;7(6):503-24.
  82. Horrobin DF. Essential fatty acid metabolism and its modification in atopic eczema. Am J Clin Nutr. 2000 Jan;71(1 Suppl):367S-72S.
  83. Simon D, Eng PA, Borelli S, Kägi R, Zimmermann C, Zahner C, Drewe J, Hess L, Ferrari G, Lautenschlager S, Wüthrich B, Schmid-Grendelmeier P. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients  with atopic dermatitis. Adv Ther. 2014 Feb;31(2):180-8.
  84. Montserrat-de la Paz S, Marín-Aguilar F, García-Giménez MD, Fernández-Arche MA. Hemp ( Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction. J Agric Food Chem. 2014 Feb 5;62(5):1105-10.
  85. Gaby, AR. Eczema. Nutritional Medicine. 2011.
  86. Bamford JT, Ray S, Musekiwa A, van Gool C, Humphreys R, Ernst E. Oral evening  primrose oil and borage oil for eczema. Cochrane Database Syst Rev. 2013 Apr 30;(4):CD004416.
  87. Senapati S, Banerjee S, Gangopadhyay DN. Evening primrose oil is effective in  atopic dermatitis: a randomized placebo-controlled trial. Indian J Dermatol Venereol Leprol. 2008 Sep-Oct;74(5):447-52.
  88. Henz BM, Jablonska S, van de Kerkhof PC, et al. Double-blind, multicentre analysis of the efficacy of borage oil in patients with atopic eczema. Br J Dermatol. 1999 Apr;140(4):685-8.
  89. Callaway J, Schwab U, Harvima I, Halonen P, Mykkänen O, Hyvönen P, Järvinen T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J Dermatolog Treat. 2005 Apr;16(2):87-94.
  90. Linnamaa P, Savolainen J, Koulu L, et al. Blackcurrant seed oil for prevention of atopic dermatitis in newborns: a randomized, double-blind, placebo-controlled trial. Clin Exp Allergy. 2010;40(8):1247-1255.
  91. Bjørneboe A, Søyland E, Bjørneboe GE, Rajka G, Drevon CA. Effect of dietary supplementation with eicosapentaenoic acid in the treatment of atopic dermatitis. Br J Dermatol. 1987 Oct;117(4):463-9.
  92. Søyland E, Funk J, Rajka G, Sandberg M, Thune P, Rustad L, Helland S, Middelfart K, Odu S, Falk ES, et al. Dietary supplementation with very long-chain n-3 fatty acids in patients with atopic dermatitis. A double-blind, multicenter study. Br J Dermatol. 1994 Jun;130(6):757-64.
  93. Koch C, Dölle S, Metzger M, Rasche C, Jungclas H, Rühl R, Renz H, Worm M. Docosahexaenoic acid (DHA) supplementation in atopic eczema: a randomized, double-blind, controlled trial. Br J Dermatol. 2008 Apr;158(4):786-92.
  94. Gimenez-Arnau A, Barranco C, Alberola M, et al. Effects of linoleic acid supplements on atopic dermatitis. Adv Exp Med Biol 1997;433:285–289.
  95. Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G. Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol. 2002 Mar;41(3):146-50.
  96. Javanbakht MH, Keshavarz SA, Djalali M, Siassi F, Eshraghian MR, Firooz A, Seirafi H, Ehsani AH, Chamari M, Mirshafiey A. Randomized controlled trial using  vitamins E and D supplementation in atopic dermatitis. J Dermatolog Treat. 2011 Jun;22(3):144-50.
  97. Jaffary F, Faghihi G, Mokhtarian A, Hosseini SM. Effects of oral vitamin E on  treatment of atopic dermatitis: A randomized controlled trial. J Res Med Sci.2015 Nov;20(11):1053-7.
  98. Kim MJ, Kim SN, Lee YW, Choe YB, Ahn KJ. Vitamin D Status and Efficacy of Vitamin D Supplementation in Atopic Dermatitis: A Systematic Review and Meta-Analysis. Nutrients. 2016 Dec 3;8(12).
  99. Kim JE, Yoo SR, Jeong MG, et al. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Derm Venereol. 2014 Sep;94(5):558-62.
  100. Ewing CI, Gibbs AC, Ashcroft C, David TJ. Failure of oral zinc supplementation in atopic eczema. Eur J Clin Nutr. 1991 Oct;45(10):507-10.
  101. Sano M, Suzuki M, Miyase T, Yoshino K, Maeda-Yamamoto M. Novel antiallergic catechin derivatives isolated from oolong tea. J Agric Food Chem. 1999 May;47(5):1906-10.
  102. Uehara M, Sugiura H, Sakurai K. A trial of oolong tea in the management of recalcitrant atopic dermatitis. Arch Dermatol 2001;137:42–43
  103. Nguyen TA, Leonard SA, Eichenfield LF. An Update on Pediatric Atopic Dermatitis and Food Allergies. J Pediatr. 2015 Sep;167(3):752-6.
  104. Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacother. 2007 Jan;61(1):50-60.
  105. Majamaa H, Isolauri E. Evaluation of the gut mucosal barrier: evidence for increased antigen transfer in children with atopic eczema. J Allergy Clin Immunol. 1996 Apr;97(4):985-90.
  106. Rosenfeldt V, Benfeldt E, Valerius NH, Paerregaard A, Michaelsen KF. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr. 2004 Nov;145(5):612-6
  107. Singer S, Koenekoop J, Meddings J, Powell J, Desroches A, Seidman EG. Pancreatic Enzyme Supplementation in Patients with Atopic Dermatitis and Food Allergies: An Open-Label Pilot Study. Paediatr Drugs. 2019 Feb;21(1):41-45. doi: 10.1007/s40272-018-0321-1. PMID: 30556101.
  108. Intahphuak S, Khonsung P, Panthong A. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharm Biol. 2010 Feb;48(2):151-7.
  109. Verallo-Rowell VM, Dillague KM, Syah-Tjundawan BS. Novel antibacterial and emollient effects of coconut and virgin olive oils in adult atopic dermatitis. Dermatitis. 2008 Nov-Dec;19(6):308-15.
  110. Evangelista MT, Abad-Casintahan F, Lopez-Villafuerte L. The effect of topical  virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial. Int J Dermatol. 2014 Jan;53(1):100-8.
  111. Yousefi M, Barikbin B, Kamalinejad M, et al. Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema. J Eur Acad Dermatol Venereol. 2013 Dec;27(12):1498-504.
  112. Amin B, Hosseinzadeh H. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Med. 2016 Jan;82(1-2):8-16.


GUT research update

Ruminiclostridium 5, Parabacteroides distasonis, and bile acid profile are modulated by prebiotic diet and associate with facilitated sleep/clock realignment after chronic disruption of rhythmsBrain, Behavior, and Immunity 2021, 97: 150. DOI: 10.1016/j.bbi.2021.07.006.
T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. J Clin Invest 2021 Sep 1;131(17):e138230. DOI: 10.1172/JCI138230.
Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damageCell Host & Microbe, 2021; DOI: 10.1016/j.chom.2021.08.004.
Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancerCell Host & Microbe 2021; DOI: 10.1016/j.chom.2021.08.013.
Bifidobacterium animalis subsp. lactis BB-12 Protects against Antibiotic-Induced Functional and Compositional Changes in Human Fecal MicrobiomeNutrients 2021; 13 (8): 2814 DOI: 10.3390/nu13082814.
Acetate enhances IgA. Nat Immunol 2021, 22, 1071.
Acetate differentially regulates IgA reactivity to commensal bacteriaNature, 2021; DOI: 10.1038/s41586-021-03727-5.
Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 2017, May;18(5):552-562, doi: 10.1038/ni.3713.
Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. medRxiv 2021,.09.15.21263059; doi:
Bioaccumulation of therapeutic drugs by human gut bacteriaNature, 2021; DOI: 10.1038/s41586-021-03891-8.

LYME and BIOFILMS – Dr Marina Macdonald

[1] Centers for Disease Control and Prevention (CDC). Illnesses on the rise from mosquito, tick, and flea bites [Internet]. Atlanta (GA): U S Department of Health and Human Services; 2018 [cited 2021 Aug 26]. Available from: “Lyme disease in the UK: the continued rise of an emerging zoonotic infection”, May 11, 2021:


[2] Centers for Disease Control and Prevention (CDC). How many people get Lyme disease? [Internet]. Atlanta (GA): U S Department of Health and Human Services; 2021 [cited 2021 Aug 26]. Available from:

[3] Radolf JD, et al. Lyme disease in humans. Curr Issues Mol Biol. 2021;42:333-84.

[4] Hersh MH, et al. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PloS One. 2014 Jun 18;9(6):e99348.

[5] Srinavasan R, et al. Bacterial biofilm inhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol. 2021 May 12;12:676458.

[6] Chen L, Wen YM. The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci. 2011 Apr;3(2):66-73.

[7] Jamal M, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018 Jan;81(1):7-11.

[8] Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33.

[9] Zrelli K, et al. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death. New J Phys. 2013 Dec 20;15(12):125026.

[10] Hathroubi S, et al. Biofilms: microbial shelters against antibiotics. Microb Drug Resist. 2017 Mar;23(2):147-56.

[11] Vestby LK, et al. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel). 2020 Feb;9(2):59.

[12] Sapi E, et al. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist. 2011;4:97-113.

[13] Di Domenico EG, et al. The emerging role of microbial biofilm in Lyme neuroborreliosis. Front Neurol. 2018 Dec 3;9:1048.

[14] Wormser GP, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2006 Nov 1;43(9):1089-134.

[15] Stanek G, et al. Lyme borreliosis. Lancet. 2012 Feb 4;379(9814):461-73.

[16] Zubcevik N, et al. Symptom clusters and functional impairment in individuals treated for Lyme borreliosis. Front Med (Lausanne). 2020 Aug 21;7:464.

[17] Aucott JN, et al. Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int J Infect Dis. 2013 Jun;17(6):e443-9.

[18] Middelveen MJ, et al. Persistent Borrelia infection in patients with ongoing symptoms of Lyme disease. Healthcare (Basel). 2018 Apr 14;6(2):33.

[19] Sapi E, et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PloS One. 2012 Oct 24;7(10):e48277.

[20] Feng J, et al. Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: implications for understanding persistence, Post-treatment Lyme Disease Syndrome (PTLDS), and treatment failure. Discovery Med. 2019 Mar 28;27(148):125-38.

[21] Xavier JB, et al. Biofilm control strategies based on enzymic disruption of the extracellular polymeric substance matrix-a modeling study. Microbiology. 2005;151(12):3817-32.

[22] Gordon CA, et al. Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991 Jun;35(6):1258-60.

[23] Sun D, et al. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol. 2005 Jan;12(1):93-100.

[24] Molobela IP, et al. Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res. 2010;4(14):1515-24.

[25] Miyata K, et al. Serratia protease: Part I. Purification and general properties of the enzyme. Agric Biol Chem. 1970 Feb 1;34(2):310-8.

[26] Kotb E. Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol. 2013 Aug;97(15):6647-65.

[27] Selan L, et al. Proteolytic enzymes: a new treatment strategy for prosthetic infections? Antimicrob Agents Chemother. 1993 Dec;37(12):2618-21.

[28] Papa R, et al. A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microb Pathog. 2013;63:44-53.

[29] Jadhav SB, et al. Serratiopeptidase: insights into the therapeutic applications. Biotechnol Rep (Amst). 2020 Oct 17:e00544.

[30] Rouhani M, et al. Production and expression optimization of heterologous serratiopeptidase. Iran J Pub Health. 2020 May;49(5):931.

[31] Artini M, et al. A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins. Int J Immunopathol Pharmacol. Jul-Sep 2011;24(3):661-72.

[32] Longhi C, et al. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog. 2008 Jul;45(1):45-52.

[33] Goc A, Rath M. The anti-borreliae efficacy of phytochemicals and micronutrients: an update. Ther Adv Infect Dis. 2016 Jun;3(3-4):75-82.

[34] Mecikoglu M, et al. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. J Bone Joint Surg Am. 2006 Jun 1;88(6):1208-14.

[35] Hogan S, et al. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect. 2017 Jun 1;96(2):177-82.

[36] Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: a promising area of biopharmaceuticals. Curr Res Biotechnol. 2021 Jun;3:195-208.

[37] Passariello C, et al. Clinical, microbiological and inflammatory evidence of the efficacy of combination therapy including serratiopeptidase in the treatment of periimplantitis. Eur J Inflam. 2012;10(3):463-72.

[38] Gupta PV, et al. Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: a novel antimicrobial and antibiofilm strategy. Nanomedicine. 2017;13(7):2371-84.

[39] Ishihara Y, et al. Experimental studies on distribution of cefotiam, a new beta-lactam antibiotic, in the lung and trachea of rabbits. II. Combined effects with serratiopeptidase. Jpn J Antibiot. 1983 Oct 1;36(10):2665-70.

[40] Koyama A, et al. Augmentation by serrapeptase of tissue permeation by cefotiam. Jpn J Antibiot. 1986 Mar 1;39(3):761-71.

[41] Aratani H, et al. [Studies on the distributions of antibiotics in the oral tissues: experimental staphylococcal infection in rats, and effect of serratiopeptidase on the distributions of antibiotics (author’s transl)][Article in Japanese]. Jpn J Antibiot. 1980 May;33(5):623-35.

[42] Artini M, et al. Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol. 2013;114(1):266-77.

[43] Miyata K, et al. Intestinal absorption of Serratia protease. J Appl Biochem. 1980;2(2):111-6.

[44] Majima Y, et al. The effect of an orally administered proteolytic enzyme on the elasticity and viscosity of nasal mucus. Arch. Otorhinolaryngol. 1988;244:355-9.

[45] Majima Y, et al. Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis. 1990;141:79-83.

[46] Kase Y, et al. A new method for evaluating mucolytic expectorant activity and its application. II. Application to two proteolytic enzymes, serratiopeptidase and seaprose. Arzneimittelforschung. 1982 Jan 1;32(4):374-8.

[47] Nakamura S, et al. Effect of the proteolytic enzyme serrapeptase in patients with chronic airway disease. Respirology. 2003;8:316-20.

[48] Mazzone A, et al. Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, double-blind, randomized trial versus placebo. J Int Med Res. 1990 Sep;18(5):379-88.

[49] Mouneshkumar Chappi D, et al. Comparison of clinical efficacy of methylprednisolone and serratiopeptidase for reduction of postoperative sequelae after lower third molar surgery. J Clin Exp Dent. 2015 Apr;7(2):e197.

[50] Tiwari M. The role of serratiopeptidase in the resolution of inflammation. Asian J Pharm Sci. 2017 May 1;12(3):209-15.

[51] Garg R, et al. A prospective comparative study of serratiopeptidase and aceclofenac in upper and lower limb soft tissue trauma cases. Int J Pharmacol Pharm Technol. 2012;1(2):11-6.

[52] Tamimi Z, et al. Efficacy of serratiopeptidase after impacted third molar surgery: a randomized controlled clinical trial. BMC Oral Health. 2021 Dec;21(1):1-9.

[53] Jadav SP, et al. Comparison of anti-inflammatory activity of serratiopeptidase and diclofenac in albino rats. J Pharmacol Pharmacother. 2010 Jul;1(2):116.

[54] Ramirez T, et al. Inflammatory potential of monospecies biofilm matrix components. Int Endod J. 2019 Jul;52(7):1020-7.

[55] Brennan GT, Saif MW. Pancreatic enzyme replacement therapy: a concise review. JOP. 2019;20(5):121-5.

[56] Gan C, et al. Efficacy and safety of pancreatic enzyme replacement therapy on exocrine pancreatic insufficiency: a meta-analysis. Oncotarget. 2017 Nov 7;8(55):94920.

[57] Ambrus JL, et al. Absorption of exogenous and endogenous proteolytic enzymes. Clin Pharmacol Ther. 1967 May;8(3):362-8.

[58] Lake B, et al. Metabolism of 125-I-labelled trypsin in man: evidence for recirculation. Gut. 1980;21:580-6.

[59] Lorkowski G. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Int J Physiol Pathophysiol Pharmacol. 2012;4(1):10.

[60] Shah D, Mital K. The role of trypsin: chymotrypsin in tissue repair. Adv Ther. 2018 Jan;35(1):31-42.

[61] Latha B, et al. Serum enzymatic changes modulated using trypsin: chymotrypsin preparation during burn wounds in humans. Burns. Nov-Dec 1997;23(7-8):560-4.

[62] Latha B, et al. Action of trypsin: chymotrypsin (Chymoral forte DS) preparation on acute-phase proteins following burn injury in humans. Burns. 1997 Mar 1;23:S3-7.

[63] Chandanwale A, et al. A randomized, clinical trial to evaluate efficacy and tolerability of trypsin: chymotrypsin as compared to serratiopeptidase and trypsin: bromelain: rutoside in wound management. Adv Ther. 2017 Jan 1;34(1):180-98.

[64] Esbelin J, et al. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. OMICS. 2018 Dec 1;22(12):779-87.

[65] Pirlar RF, et al. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. PloS One. 2020 Jun 25;15(6):e0235093.

[66] Banar M, et al. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PloS One. 2016 Oct 13;11(10):e0164622.

[67] López D, et al. Biofilms. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000398.

[68] Kang CI, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003 Sep 15;37(6):745-51.

[69] Moroni A, et al. Differential cleavage of surface proteins of Borrelia burgdorferi by proteases. Microbiologica. 1992 Apr 1;15(2):99-106.

[70] Davis MM, et al. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the Lyme disease spirochete. PLoS Pathog. 2021 May 13;17(5):e1009546.

[71] Codolo G, et al. Borrelia burgdorferi NapA driven Th17 cell inflammation in Lyme arthritis. Arthritis Rheum. 2008; 58(11):3609-17.

[72]Kühner D, et al. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci Rep. 2014 Dec 16;4:7494.

[73] Jutras BL, et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13498-507.

[74] Salehi B, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019 Aug 9;9(8):356.

[75] Rochette L, et al. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol. 2015 Dec;93(12):1021-7.

[76] Andrea Moura F, et al. Lipoic acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem. 2015 Mar 1;15(5):458-83.

[77] Biewenga GP, et al. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997 Sep;29(3):315-31.

[78] Sears ME. Chelation: harnessing and enhancing heavy metal detoxification–a review. ScientificWorldJournal. 2013 Apr 18;2013:219840.

[79] Çevik K, Ulusoy S. Inhibition of Pseudomonas aeruginosa biofilm formation by 2, 2’-bipyridyl, lipoic, kojic and picolinic acids. Iran J Basic Med Sci. 2015 Aug;18(8):758.

[80] Das T, et al. Conditions under which glutathione disrupts the biofilms and improves antibiotic efficacy of both ESKAPE and non-ESKAPE species. Front Microbiol. 2019 Aug 30;10:2000.

[81] Peacock BN, et al. New insights into Lyme disease. Redox Biol. 2015 Aug 1;5:66-70.

[82] Ong KS, et al. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev Anti Infect Ther. 2018 Nov;16(11):855-64.

[83] Pancewicz SA, et al. Role of reactive oxygen species (ROS) in patients with erythema migrans, an early manifestation of Lyme borreliosis. Med Sci Monit. 2001 Nov 1;7(6):1230-5.

[84] Gambino M, Cappitelli F. Mini-review: biofilm responses to oxidative stress. Biofouling. 2016;32(2):167-78.

[85] Łuczaj W, et al. Lipid peroxidation products as potential bioindicators of Lyme arthritis. Eur J Clin Microbiol Infect Dis. 2011 Mar;30(3):415-22.

[86] Moniuszko-Malinowska A, et al. Lipid peroxidation in the pathogenesis of neuroborreliosis. Free Radic Biol Med. 2016 Jul 1;96:255-63.

[87] Packer L, et al. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22:359-78.

[88] Packer L. α-Lipoic acid: a metabolic antioxidant which regulates NF-κB signal transduction and protects against oxidative injury. Drug Metab Rev. 1998 Jan 1;30(2):245-75.

[89] El-Beshbishy HA, et al. Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes. Eur J Pharmacol. 2011;668(1e2):278e284.

[90] Guerra C, et al. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PloS One. 2011 Dec 2;6(12):e28378.

[91] Guerra C, et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol. 2012 Apr;168(1):142-52.

[92] Morris D, et al. An elucidation of neutrophil functions against Mycobacterium tuberculosis infection. Clin Dev Immunol. 2013 Jan 1;2013:959650.

[93] Klare W, et al. Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4539-51.

[94] Shi C, et al. Antimicrobial effect of lipoic acid against Cronobacter sakazakii. Food Control. 2016 Jan 1;59:352-8.

[95] George T, Brady MF. Ethylenediaminetetraacetic acid (EDTA) [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2021 Aug 26]. Available from:

[96] Jones WL, et al. Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms. Biofouling. 2011 Feb;27(2):207-15.

[97] Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995 Sep;15(3):162-8.

[98] Orgad O, et al. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling. 2011 Jul 28;27(7):787-98.

[99] Körstgens V, et al. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol. 2001;43(6):49-57.

[100] Cavaliere R, et al. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiologyopen. 2014 Aug;3(4):557-67.

[101] Raad II, et al. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis. 2008 Aug 1;21(4):385-92.

[102] Banin E, et al. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72:2064–9.

[103] Percival SL, Salisbury AM. The efficacy of tetrasodium EDTA on biofilms. Adv Exp Med Biol. 2018;1057:101-10.


Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel)  2020;9(2):59. DOI: 10.3390/antibiotics9020059.
Effects of a Novel Probiotic Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms
mBio 2019; DOI: 10.1128/mBio.00338-19.
Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease. mBio 2016, 7 (5):


Dietary DHA prevents cognitive impairment and inflammatory gene expression in aged male rats fed a diet enriched with refined carbohydratesBrain, Behavior, and Immunity, 2021; 98: 198 DOI: 10.1016/j.bbi.2021.08.214.
An immunogenomic phenotype predicting behavioral treatment response: Toward precision psychiatry for mothers and children with trauma exposure. Brain, Behavior, and Immunity 2021, ISSN 0889-1591,
Phthalates and attributable mortality: A population-based longitudinal cohort study and cost analysis. Environmental Pollution 2021, 118021,

Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation 2021, Sep 21;144(12):916-929. DOI: 10.1161/CIRCULATIONAHA.121.055340.
Microbiota from young mice counteracts selective age-associated behavioral deficitsNature Aging, 2021; DOI: 10.1038/s43587-021-00093-9.
Migraine improvement during short lasting ketogenesis: A proof-of-concept study. European Journal of Neurology 2014, 22. 10.1111/ene.12550.
Genetic Profile of Endotoxemia Reveals an Association With Thromboembolism and Stroke. Journal of the American Heart Association 2021; 0:e022482, Oct 20.
Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity 2021, ISSN 1074-7613, online Oct 22.
The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012 Feb 1;42(2):99-117. DOI: 10.2165/11596860-000000000-00000.
Possible Involvement of Adipose Tissue in Patients With Older Age, Obesity, and Diabetes With Coronavirus SARS-CoV-2 Infection (COVID-19) via GRP78 (BIP/HSPA5): Significance of Hyperinsulinemia Management in COVID-19. Diabetes  2021 (Oct), db201094.
Cold exposure protects from neuroinflammation through immunologic reprogramming.
Cell Metabolism 2021, October 22. DOI:
Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc Natl Acad Sci USA 2014, 111(20):7379-7384, doi: 10.1073/pnas.1322174111.
Efficacy and tolerability of the ketogenic diet and its variations for preventing migraine in adolescents and adults: a systematic review. Nutr Rev 2021 Oct 19: nuab080. DOI: 10.1093/nutrit/nuab080.

In Focus October 2021

Lissa Leader:

  1. Yousef, H., Alhajj, M., Sharma, S. ‘Anatomy, Skin (Integument), Epidermis’. [Updated 2020 Mar 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from:
  2. Salem, I., Ramser, A., Isham, N., and Ghannoum, MA (2018).’The Gut Microbiome as a Major Regulator of the Gut-Skin Axis’. Front. Microbiol. 9:1459. doi: 10.3389/fmicb.2018.01459
  3. Murphrey, MB., Miao, JH., Zito, PM. ‘Histology, Stratum Corneum’. [Updated 2021 May 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from:
  4. West, H. C., & Bennett, C. L. (2018). ‘Redefining the Role of Langerhans Cells as Immune Regulators Within the Skin’. Frontiers in immunology8, 1941.
  5. Wikramanayake, TC., Stojadinovic, O., and Marjana, TC (2014). ‘Epidermal Differentiation in Barrier Maintenance and Wound Healing’. Advances in Wound Care (New Rochelle) 2014 Mar 1; 3(3): 272–280. doi: 10.1089/wound.2013.0503
  6. Byrd, A., Belkaid, Y. & Segre, J. ‘The Human Skin Microbiome’. Nat Rev Microbiol 16, 143–155 (2018).
  7. Lee, SY., Lee, E., Park, YM., Hong, SJ. ‘Microbiome in the Gut-Skin Axis in Atopic Dermatitis’. Allergy Asthma Immunol Res. 2018; 10(4): 354-362. doi:10.4168/aair.2018.10.4.354
  8. Berger, A. ‘Th1 and Th2 Responses: What are They?’. BMJ. 2000; 321(7258): 424. doi:10.1136/bmj.321.7258.424
  9. Rendon, A., Schäkel, K., ‘Psoriasis Pathogenesis and Treatment’. Int J Mol Sci. 2019; 20(6): 1475. Published 2019 Mar 23. doi:10.3390/ijms20061475
  10. Visser, MJE., Kell, DB., Pretorius, E., ‘Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris’. Front Cell Infect Microbiol. 2019; 9:7. Published 2019 Feb 4. doi:10.3389/fcimb.2019.00007
  11. Jäger, A., Kuchroo, VK. ‘Effector and Regulatory T-cell Subsets in Autoimmunity and Tissue Inflammation’. Scand J Immunol. 2010; 72(3): 173-184. doi:10.1111/j.1365-3083.2010.02432.x
  12. Vaughn, AR., Notay, M., Clark, AK., Sivamani, RK. ‘Skin-Gut Axis: The Relationship Between Intestinal Bacteria and Skin Health’. World J Dermatol 2017; 6(4): 52-58
  13. Lambring, C. B., Siraj, S., Patel, K., Sankpal, U. T., Mathew, S., & Basha, R. (2019). ‘Impact of the Microbiome on the Immune System’. Critical reviews in immunology39(5), 313–328.
  14. Ellis SR, Nguyen M, Vaughn AR, et al. ‘The Skin and Gut Microbiome and its Role in Common Dermatologic Conditions’. Microorganisms 2019; 7(11): 550. Published 2019 Nov 11. doi:10.3390/microorganisms7110550 

Adrienne Benjamin:


2 Fonseca W, Lukacs NW & Ptaschinski C 2018. Factors Affecting the Immunity to Respriatory Syncytial Virus: From Epigenetics to Microbiome. Front Immunol (Feb 2018)

3 Lambert L et al 2014. Immunity to RSV in Early-Life. Front Immunol 5:466

4 Breton CV et al 2009. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 180:462–7

5 Haberg SE et al 2009. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 94:180–4

6 Kristensen K et al (2015). Caesarean section and hospitalization for respiratory syncytial virus infection: a population-based study. Pediatr Infect Dis J (2015) 34:145–8

7 Vissers M, de Groot R, & Ferwerda G (2014). Severe viral respiratory infections: are bugs bugging? Mucosal Immunol (2014) 7:227–38

8 Wiertsema SP 2021. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout life and the Role of Nutrition in Optimizing Treatment Strategies. Nut 13;886

9 Aagaard K et al 2014 The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265

10 Rautava S et al 2012 Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol Oct 9(10):565-76

1[1] Ker J & Hartert TV 2009. The atopic march: what’s the evidence? Ann Allergy Asthma Immunol 103:282–9.

12 Allen SJ et al 2014 Probiotics in the prevention of eczema: a randomised controlled trial. Arch Dis Child 0:1-6

13 Kalliomäki M et al 2001. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357: 1076-1079

[1]4 Kim JY et al 2010 Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr Allergy Immunol 21: e386-e393

[1]5 Enaud R et al 2020. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol

16 Madan JC et al 2012. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 3, e00251–12

17 Gollwitzer ES et al 2014. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647

18 Chiu L et al 2017. Protective microbiota: from localized to long-reaching co-immunity. Front. Immunol. 8:1678

[1]9 Ipci K et al 2017. The possible mechanisms of the human microbiome in allergic diseases. Eur. Arch. Otorhinolaryngol. 274, 617–626

20 Hauptmann M & Schaible UE 201). Linking microbiota and respiratory disease. FEBS Lett. 590, 3721–3738

21 Anand, S & Mande, SS 2018. Diet, microbiota and gut-lung connection. Front. Microbiol. 9:2147

22 De Filippo C et al 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107, 14691–14696

23 Garaiova I 2021. Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3-10 years: randomised controlled trial. Ben Microbes DOI 10.3920/BM2020.0185 

Gayathri Neault:

  1. Defining the Human Microbiome K Ursell, Jessica L Metcalf, Laura Wegener Parfrey, Rob Knight
  2. Gut Bacteria and mind control: to fix your brain, fix your gut!                                                                                                                                Professor Simon Carding, Norwich Medical School
  3. Current Understanding of Dysbiosis in Disease in Human and Animal Models Arianna K. DeGruttola, B.S., Daren Low, Ph.D.,  Atsushi Mizoguchi, M.D., Ph.D.,2 and Emiko Mizoguchi, M.D., Ph.D.
  4. Microbial syntrophy: interaction for the common good                                                                                                                     Brandon E. L. Morris, Ruth Henneberger, Harald Huber, Christine Moissl-Eichinger
  5. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites Ara Koh, Filipe De Vadder, Petia Kovatcheva-Datchary, Fredrik Backhed
  6. Role of Normal Gut Microbiota Sai Manasa Jandhyala, Rupjyoti Talukdar, Chivkula Subramanyam, Harish Vuyyuru, Mitnala Sasikala and D Nageshwar Reddy
  7. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health Kaitlyn Oliphant & Emma Allen-Vercoe
  8. Dysfunction of the Intestinal Microbiome in inflammatory bowel disease and treatment Xochitl C Morgan, Timothy L Tickle, Harry Sokol, Dirk Gevers, Kathryn L Devaney, Doyle V Ward, Joshua A Reyes, Samir A Shah, Neal LeLeiko, Scott B Snapper, Athos Bousvaros, Joshua Korzenik, Bruce E Sands, Ramnik J Xavier, Curtis Huttenhower
  9. Embracing the Gut Microbiota: the new frontier for inflammatory and infectious diseases                                                                           Lieke WJ van den Elsen,  Hazel C Poyntz,  Laura S Weyrich,  Wayne Young,  Elizabeth E Forbes-Blom
  10. The Immune Response to Prevotella bacteria in chronic inflammatory disease                                                                                Jeppe Madura Larsen
  11. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions                                                                                                                                                                                                     Arthur J Kastl Jr., Natalie A Terry, Gary D Wu, Lindsey G Albenberg
  12. The Duodenal Microbiome is altered in small intestinal bacterial overgrowth
  13. Effects of Probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation Peera Hemarajata, James Versalovic

Samuel Peters:

Amaral, J. F., Foschetti, D. A., Assis, F. A., Menezes, J. S., Vaz, N. M., & Faria, A. M. C. (2006). Immunoglobulin production is impaired in protein-deprived mice and can be restored by dietary protein supplementation. Brazilian Journal of Medical and Biological Research, 39(12), 1581–1586.

Arsenescu, R., Bruno, M. E. C., Rogier, E. W., Stefka, A. T., McMahan, A. E., Wright, T. B., … & Kaetzel, C. S. (2008). Signature biomarkers in Crohn’s disease: toward a molecular classification. Mucosal immunology, 1(5), 399-411.

Jeong, S. C., Koyyalamudi, S. R., & Pang, G. (2012). Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition, 28(5), 527-531.

Li, Y., Jin, L., & Chen, T. (2020). The Effects of Secretory IgA in the Mucosal Immune System. BioMed Research International, 2020.

Lima, M. S., Ribeiro, P. P., Medeiros, J. M., Silva, I. F., Medeiros, A. C., & Dimenstein, R. (2012). Influence of postpartum supplementation with vitamin A on the levels of immunoglobulin A in human colostrum. Jornal de pediatria, 88(2), 115–118.

Mantis, N. J., Rol, N., & Corthésy, B. (2011). Secretory IgA’s Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunology, 4(6), 603.

Pabst, O., & Slack, E. (2019). IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunology 2019 13:1, 13(1), 12–21.

Palma, M. L., Zamith-Miranda, D., Martins, F. S., Bozza, F. A., Nimrichter, L., Montero-Lomeli, M., … & Douradinha, B. (2015). Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?. Applied microbiology and biotechnology, 99(16), 6563-6570.

Phillips, L. K., & Horowitz, M. (2006). Stressful life events are associated with low secretion rates of immunoglobulin A in saliva in the middle aged and elderly. Brain, Behavior, and Immunity, 20(2), 191–197.

Pritchard, B. T., Stanton, W., Lord, R., Petocz, P., & Pepping, G.-J. (2017). Factors Affecting Measurement of Salivary Cortisol and Secretory Immunoglobulin A in Field Studies of Athletes. Frontiers in Endocrinology, 0(JUL), 168.

Ren, W., Wang, K., Yin, J., Chen, S., Liu, G., Tan, B., … Yin, Y. (2016). Glutamine-Induced Secretion of Intestinal Secretory Immunoglobulin A: A Mechanistic Perspective. Frontiers in Immunology, 7(NOV), 503.

Sirisinha, S. (2015). The pleiotropic role of vitamin A in regulating mucosal immunity. Asian Pacific journal of allergy and immunology, 33(2).

Sirisinha, S., Suskind, R., Edelman, L. R., Asvapaka, C., & Olson, R. E. (1975). Secretory and serum IgA in children with protein-calorie malnutrition. Pediatrics, 55(2), 166-170.

  • Dr Peter Koeppel
  • Brady J., Horie S., Laffey J.G.

Intensive Care Med. Exp. 2020; 8, Suppl 1 

 Role of the adaptive immune response in sepsis

  • MSD Manual, Ausgabe für Patienten
  • McLeod, S. A.

Simply Psychology. (2010);

Stress, illness and the immune system.

  • Ragland S., Criss A.

PLoS Pathog. (2017) 21;13(9)

From bacterial killing to immune modulation: Recent insights into the functions of lysozyme

  • Ganz T

Curr Opin Immunol. (2009); 21 (1); 63-67

Iron in Innate Immunity: Starve the Invaders

  • Moreira A., Mesquita G., Gomes M.S.

Microorganisms 2020, 8(4), 589

Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions

  • The innate and adaptive immune systems; Last Update: July 30, 2020

  • Hess JR., Greenberg NA.,

Nutr Clin Pract. 2012 Apr; 27(2):281-94.

The role of nucleotides in the immune and gastrointestinal systems: potential clinical applications.

  • Carver JD.,

Acta Paediatr Suppl. 1999 Aug; 88(430):83-8.

 Dietary nucleotides: effects on the immune and gastrointestinal systems.

  • Gil A.,

European Journal of Clinical Nutrition (2002) 56, Suppl. 3, S1–S4

 Modulation of the immune response mediated by dietary nucleotides.

  • Davidson I., Fyfe L.,

EC Nutrition 4.1 (2016): 804-811

 A randomized Double-Blind Placebo Controlled Trial of a Nucleotide-Containing Supplement NuCell® on   Symptoms of Participants with the Common Cold – A Pilot Study

Richard Stead:

¹ “Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer”, Xiaoyan Fan, Yuelei Jin, Guang Chen, Xueqiang Ma, Lixia Zhang, Digestion 2021;102:508–515

² “Defining Dysbiosis for a Cluster of Chronic Diseases”, Lamont J. Wilkins, Manoj Monga & Aaron W. Miller, Scientific Reports Volume 9, Article number: 12918 (2019),

Caproni, M., Bonciolini, V., D’Errico, A., Antiga, E., & Fabbri, P. (2012). ‘Celiac Disease and Dermatologic Manifestations: Many Skin Clues to Unfold Gluten-Sensitive Enteropathy’. Gastroenterology research and practice2012, 952753.

  1. Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J., & Knippels, L. (2021). ‘The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies’. Nutrients13(3), 886.
  2. Hattori K et al. (2003). ‘Effects of Administration of Bifidobacteria on Faecal Microflora and Clinical Symptoms in Infants with Atopic Dermatitis’. Arerugi, 5, 387
  3. Taniuchi S et al., (2005). ‘Administration of Bifidobacterium to Infants with Atopic Dermatitis: Changes in Faecal Microflora and Clinical Symptoms’. The Journal of Applied Research. 5 (2): 387-396
  4. Waller et al. (2011). ‘Dose-Response Effect of Bifidobacterium lactis HN019 on Whole Gut Transit Time and Functional Gastrointestinal Symptoms in Adults’. Scandinavian Journal of Gastroenterology. 46: 1057-1064
  5. Gopal, PK., Prasad, J., Gill, HS. (2003).’ Effects of the Consumption of Bifidobacterium lactis HN019 (DR10TM) and Galacto-Oligosaccharides on the Microflora of the Gastrointestinal Tract in Human Subjects’. Nutrition Research. 23 (2003) 1313–1328. DOI:10.1016/S0271-5317(03)00134-9
  6. McFarland, LV. (2010).’Systematic Review and Meta-Analysis of Saccharomyces boulardii in Adult Patients’. World J. Gastroenterol. 14; 16(18): 2202-2222. doi: 10.3748/wjg.v16.i18.2202

Anne Catherine Færgemann:



































ADM Protexin: 

1         Hofmann SG, Wu JQ, Boettcher H. Effect of Cognitive Behavioral Therapy for Anxiety Disorders on Quality of Life: A Meta-Analysis. J Consuktant Clin Psychol 2014; 82: 375–91.

2         Vicente B, Kohn R, Rioseco P, Saldivia S, Levav I, Torres S. Lifetime and 12-month prevalence of DSM-III-R disorders in the Chile psychiatric prevalence study. Am J Psychiatry 2006; 163: 1362–70.

3         Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 2015; 17: 327–35.

4         Sareen J, Stein M. A review of the epidemiology and approaches to the treatment of social anxiety disorder. Drugs. 2000; 59: 497–509.

5         Koyuncu A, İnce E, Ertekin E, Tükel R. Comorbidity in social anxiety disorder: Diagnostic and therapeutic challenges. Drugs Context. 2019; 8. DOI:10.7573/dic.212573.

6         Gibson-Smith D, Bot M, Brouwer IA, Visser M, Penninx BWJH. Diet quality in persons with and without depressive and anxiety disorders. J Psychiatr Res 2018; 106: 1–7.

7         Davison KM, Kaplan BJ. Food intake and blood cholesterol levels of community-based adults with mood disorders. BMC Psychiatry 2012; 12. DOI:10.1186/1471-244X-12-10.

8         Masana MF, Tyrovolas S, Kolia N, et al. Dietary patterns and their association with anxiety symptoms among older adults: The ATTICA study. Nutrients 2019; 11. DOI:10.3390/nu11061250.

9         Ströhle A, Gensichen J, Domschke K. Diagnostik und Therapie von Angsterkrankungen. Dtsch Arztebl Int 2018; 115: 611–20.

10      The ICD-10 Classification of Mental and Behavioural Disorders Clinical descriptions and diagnostic guidelines World Health Organization. 2018.

11      Munir S, Takov V. Generalized Anxiety Disorder (GAD). 2020; published online June.

12      Rose GM, Tadi P. Social Anxiety Disorder. StatPearls Publishing, 2020.

13      DSM-5 Changes: Implications for Child Serious Emotional Disturbance [Internet] – PubMed. .

14      Spitzer C, Barnow S, Völzke H, John U, Freyberger HJ, Grabe HJ. Trauma, posttraumatic stress disorder, and physical illness: Findings from the general population. Psychosom Med 2009; 71: 1012–7.

15      Li C, Barker L, Ford ES, Zhang X, Strine TW, Mokdad AH. Diabetes and anxiety in US adults: Findings from the 2006 behavioral risk factor surveillance system. Diabet Med 2008; 25: 878–81.

16      Eaker ED, Sullivan LM, Kelly-Hayes M, D’Agostino RB, Benjamin EJ. Tension and anxiety and the prediction of the 10-year incidence of coronary heart disease, atrial fibrillation, and total mortality: The Framingham Offspring Study. Psychosom Med 2005; 67: 692–6.

17      Carroll D, Phillips AC, Thomas GN, Gale CR, Deary I, Batty GD. Generalized Anxiety Disorder Is Associated with Metabolic Syndrome in the Vietnam Experience Study. Biol Psychiatry 2009; 66: 91–3.

18      Scott KM, Bruffaerts R, Tsang A, et al. Depression-anxiety relationships with chronic physical conditions: Results from the World Mental Health surveys. J Affect Disord 2007; 103: 113–20.

19      Niles AN, Dour HJ, Stanton AL, et al. Anxiety and depressive symptoms and medical illness among adults with anxiety disorders. J Psychosom Res 2015; 78: 109–15.

20      Popa S-L, Dumitrascu DL. Anxiety and IBS Revisited : ten years later. Med Pharm Reports 2015; 88: 253–7.

21      Gut microbiota’s effect on mental health: The gut-brain axis. (accessed June 9, 2020).

22      Sejling AS, Kjaer TW, Pedersen-Bjergaard U, et al. Hypoglycemia- Associated changes in the electroencephalogram in patients with type 1 diabetes and normal hypoglycemia awareness or unawareness. Diabetes 2015; 64: 1760–9.

23      Paine NJ, Watkins LL, Blumenthal JA, Kuhn CM, Sherwood A. Association of depressive and anxiety symptoms with 24-hour urinary catecholamines in individuals with untreated high blood pressure. Psychosom Med 2015; 77: 136–44.

24      Aucoin M, Bhardwaj S. Generalized Anxiety Disorder and Hypoglycemia Symptoms Improved with Diet Modification. Case Rep Psychiatry 2016; 2016: 1–4.

25      Nardi AE, Lopes FL, Freire RC, et al. Panic disorder and social anxiety disorder subtypes in a caffeine challenge test. Psychiatry Res 2009; 169: 149–53.

26      Lee MA, Cameron OG, Greden JF. Anxiety and caffeine consumption in people with anxiety disorders. Psychiatry Res 1985; 15: 211–7.

27      Lam P, Hong CJ, Tsai SJ. Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci Lett 2005; 378: 98–101.

28      O’Neill CE, Newsom RJ, Stafford J, et al. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology 2016; 67: 40–50.

29      Lader M. Caffeine abstention in the management of anxiety disorders. Psychol Med 1989; 19: 211–4.

30      Kushner MG, Abrams K, Borchardt C. The relationship between anxiety disorders and alcohol use disorders: A review of major perspectives and findings. Clin Psychol Rev 2000; 20: 149–71.

31      Kliethermes CL. Anxiety-like behaviors following chronic ethanol exposure. Neurosci Biobehav Rev 2005; 28: 837–50.

32      Silberman Y, Bajo M, Chappell AM, et al. Neurobiological mechanisms contributing to alcohol-stress-anxiety interactions. Alcohol. 2009; 43: 509–19.

33      Trovato GM, Catalano D, Martines GF, Pace P, Trovato FM. Mediterranean diet: Relationship with anxiety and depression. Ann. Neurol. 2014; 75: 613.

34      Sadeghi O, Keshteli AH, Afshar H, Esmaillzadeh A, Adibi P. Adherence to Mediterranean dietary pattern is inversely associated with depression, anxiety and psychological distress. Nutr Neurosci 2019. DOI:10.1080/1028415X.2019.1620425.

35      Foster JA, Rinaman L, Cryan JF. Stress &amp; the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7: 124–36.

36      Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev 2004; 9: 180–97.

37      Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci 2003; 100: 9090–5.

38      Boyle NB, Lawton C, Dye L. The effects of magnesium supplementation on subjective anxiety and stress—a systematic review. Nutrients. 2017; 9. DOI:10.3390/nu9050429.

39      Jacka F, Overland S, Stewart R, Tell G, Bjelland I, Mykletun A. Association between magnesium intake and depression and anxiety in community-dwelling adults: The Hordaland health study. Aust N Z J Psychiatry 2009; 43: 45–52.

40      Held K, Antonijevic IA, Künzel H, et al. Oral Mg2+ supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry 2002; 35: 135–43.

41      Razzaque MS. Magnesium: Are we consuming enough? Nutrients. 2018; 10. DOI:10.3390/nu10121863.

42      McCabe D, Lisy K, Lockwood C, Colbeck M. The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: A systematic review. JBI Database Syst. Rev. Implement. Reports. 2017; 15: 402–53.

43      Australian Journal of Medical Herbalism – The Role of Adaptogens in Stress Management (Health Collection) – Informit. .

44      Singh N, Bhalla M, de Jager P, Gilca M. An overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. African J Tradit Complement Altern Med 2011; 8: 208–13.

45      Sarris J, McIntyre E, Camfield DA. Plant-based medicines for anxiety disorders, part 2: A review of clinical studies with supporting preclinical evidence. CNS Drugs. 2013; 27: 301–19.

46      Anghelescu IG, Edwards D, Seifritz E, Kasper S. Stress management and the role of Rhodiola rosea: a review. Int. J. Psychiatry Clin. Pract. 2018; 22: 242–52.

47      Montero-Marin J, Garcia-Campayo J, Pérez-Yus MC, Zabaleta-Del-Olmo E, Cuijpers P. Meditation techniques v. relaxation therapies when treating anxiety: a meta-analytic review. Psychol Med 2019; 49: 2118–33.

48      Britton WB. Can mindfulness be too much of a good thing? The value of a middle way. Curr Opin Psychol 2019; 28: 159–65.

49      Aylett E, Small N, Bower P. Exercise in the treatment of clinical anxiety in general practice – A systematic review and meta-analysis. BMC Health Serv Res 2018; 18: 1–18.

50      Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues Clin Neurosci 2015; 17: 337–46.

51      Self-care for anxiety | Mind, the mental health charity – help for mental health problems | Mind, the mental health charity – help for mental health problems. .

Jordan Haworth:

  1. Tam, C.C., Rodrigues, L.C., Viviani, L., Dodds, J.P., Evans, M.R., Hunter, P.R., Gray, J.J., Letley, L.H., Rait, G., Tompkins, D.S., Brien, S.J.: Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61(1), 69 (2012). doi:10.1136/gut.2011.238386
  2. Klem, F., Wadhwa, A., Prokop, L.J., Sundt, W.J., Farrugia, G., Camilleri, M., Singh, S., Grover, M.: Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroenterology 152(5), 1042-1054.e1041 (2017). doi:10.1053/j.gastro.2016.12.039
  3. Berumen, A., Lennon, R., Breen-Lyles, M., Griffith, J., Patel, R., Boxrud, D., Decuir, M., Farrugia, G., Smith, K., Grover, M.: Characteristics and Risk Factors of Post-Infection Irritable Bowel Syndrome After Campylobacter Enteritis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 19(9), 1855-1863.e1851 (2021). doi:10.1016/j.cgh.2020.07.033
  4. Kim, J.H., Nam, S.-J., Park, S.C., Lee, S.H., Kim, T.S., Lee, M., Park, J.M., Choi, D.H., Kang, C.D., Lee, S.J., Ryu, Y.J., Lee, K., Park, S.Y.: Association between interstitial cells of Cajal and anti-vinculin antibody in human stomach. Korean J Physiol Pharmacol 24(2), 185-191 (2020). doi:10.4196/kjpp.2020.24.2.185
  5. Takakura, W., Pimentel, M.: Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An Update. Frontiers in Psychiatry 11(664) (2020). doi:10.3389/fpsyt.2020.00664
  6. Leite, G., Morales, W., Weitsman, S., Celly, S., Parodi, G., Mathur, R., Barlow, G.M., Sedighi, R., Millan, M.J.V., Rezaie, A., Pimentel, M.: The duodenal microbiome is altered in small intestinal bacterial overgrowth. PLOS ONE 15(7), e0234906 (2020). doi:10.1371/journal.pone.0234906
  7. McFarland, L.V., Goh, S.: Are probiotics and prebiotics effective in the prevention of travellers’ diarrhea: A systematic review and meta-analysis. Travel medicine and infectious disease 27, 11-19 (2019). doi:10.1016/j.tmaid.2018.09.007
  8. Constante, M., De Palma, G., Lu, J., Jury, J., Rondeau, L., Caminero, A., Collins, S.M., Verdu, E.F., Bercik, P.: Saccharomyces boulardii CNCM I-745 modulates the microbiota–gut–brain axis in a humanized mouse model of Irritable Bowel Syndrome. Neurogastroenterology & Motility 33(3), e13985 (2021). doi:


Andrew XXXX:




[1]             Ibid

[1]             Henderson, A.J.; Ollila, C.A.; Kumar, A.; Borresen, E.C.; Raina, K.; Agarwal, R.; Ryan, E.P. Chemopreventive properties of dietary rice bran: Current status and future prospects. Adv. Nutr. 2012, 3, 643–653.

[1]          Ghoneum, M. Enhancement of human natural killer cell activity by modified arabinoxylane from rice bran (MGN-3). Int. J. Immunother. 1998, 14, 89–99.

[1]          Ghoneum, M.; Brown, J. NK Immunorestoration and cancer patients by MGN-3, a modified aracbynoxylan rice bran (Study of 32 patients followed for up to 4 years). In Anti-Aging Medical Therapeutics Vol III; Klatz, R.M., Goldman, R., Eds.; Health Quest Publications: Marina del Rey, CA, USA, 1999; Chapter 30; pp. 217–226.

[1]          Ghoneum, M.; Agrawal, S. MGN-3 enhances generation of cytotoxic CD8+ T cells via upregulation of DEC-205 expression on dendritic cells. Int. J. Immunopathol. Pharmacol. 2014, 27, 523–530.

[1]          Lissoni, P.; Messina, G.; Brivio, F.; Fumagalli, L.; Rovelli, F.; Maruelli, L.; Miceli, M.; Marchiori, P.; Porro, G.; Held, M.; et al. Modulation of the anticancer immunity by natural agents: Inhibition of T regulatory lymphocyte generation by arabinoxylan in patients with locally limited or metastatic solid tumors. Cancer Ther. 2008, 6, 1011–1016.

[1]          Ghoneum, M. From bench to bedside: The growing use of arabinoxylan rice bran in cancer immunotherapy. Austin Immunol. 2016, 1, 1006.

[1]          Ichihashi, K. Experience with administration of BioBran in patients with chronic rheumatism. Clin. Pharmacol. Ther. 2004, 14, 459–463

[1]          Noaman, E.; Badr El-Din, N.K.; Bibars, M.A.; Abou Mossallam, A.A.; Ghoneum, M. Antioxidant potential by arabinoxylan rice bran, MGN-3, represents a mechanism for its oncostatic effect against murine solid Ehrlich carcinoma. Cancer Lett. 2008, 268, 348–359.

[1]          Zhu, X.; Okubo, A.; Igari, N.; Ninomiya, K.; Egashira, Y. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways. Biosci. Microbiota Food Health 2017, 36, 45–53.

[1]          Hong, S. Development of immunostimulation materials from rice bran. Food Ind. Nutr. 2005, 10, 42–47.

[1]          The summary of MGM-3. In MGN-3 (Rice Bran Arabinoxylan Compound): Basic and Clinical Application to Integrative Medicine, 2nd ed.; BioBran Research Foundation: Tokyo, Japan, 2013; Chapter I-1; pp. 3–8.

[1]          Ghoneum  M,  Brown  J.  NK  immunorestoration  of  cancer  patients  by  MGN-3, a modified arabinoxylan rice bran (study of 32 patients followed for up to 4 years). Watson RR, Preedy V, Zibadi S. In: Wheat and rice in disease prevention  and  health.  Anti-aging  medical  therapeutics.  Vol.  III.  Klatz  R, Goldman R. 1999; 217-226.

[1]          14. Ghoneum M. Immunostimulation and cancer prevention. 7th Int Congress on Anti-aging and Biomedical Technologies. December 11th-13th; Las Vegas, NV USA. 1999.

[1]          Effect of Long-term Administration of Immunomodulatory Food on Cancer Patients Completing Conventional Treatments. Hiroshi Tsunekawa, Tsunekawa Gastrointestinal Clinic, published in Clinical Pharmacology and Therapy Vol. 14/No.3.

[1]          Oral administration of hydrolyzed rice bran prevents the common cold syndrome in the elderly based on its immunomodulatory action. H. Maeda, K. lchihashi, T. Fujii, K. Omura, X. Zhu, M. Anazawa and K. Tazawa. BioFactors 21 (2004) 185-187

[1]          Arabinoxylan rice bran suppresses the viremia level in patients with chronic HCV infection: A randomized trial. Hosny Salama, Eman Medhat, Magda Shaheen, Abdel-Rahman N Zekri, Tarneem Darwish and Mamdooh Ghoneum. International Journal of Immunopathology and Pharmacology 1-7, 2016

[1]          Controlled pilot study for cancer patients suffering from chronic fatigue syndrome due to chemotherapy treated with BioBran (MGN-3- Arabinoxylane) and targeted radiofrequency heat therapy. Gabriel Petrovics, Gyula Szigeti, Szilárd Hamvas, Ágnes Máté, József Betlehem, Gabriella Hegyi. European Journal of Integrative Medicine,(607) 2016

[1]          The Effect of a Hydrolyzed Polysaccharide Dietary Supplement on Biomarkers in Adults with Nonalcoholic Fatty Liver Disease. John E. Lewis , Steven E. Atlas, Oscar L. Higuera, Andrea Fiallo, Ammar Rasul, Ashar Farooqi, Olga Kromo, Laura A. Lantigua, Eduard Tiozzo , Judi M. Woolger, Sharon Goldberg, Armando Mendez , Allan E. Rodriguez, and Janet Konefal. Hindawi: Evidence-Based Complementary and Alternative Medicine, Article ID 1751583. 2018

October 2021


Cholesterol jabs:

An appeal for an objective, open, and transparent scientific debate about the origin of SARS-CoV-2. The Lancet 2021, September 17:


“Good for you, good for us, good for everybody A plan to reduce overprescribing to make patient care better and safer, support the NHS, and reduce carbon emissions”. Department of Health and Social Care. September 22, 2021:

Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut 2021. Published Online First: 06 September, doi: 10.1136/gutjnl-2021-325353.

A randomized controlled trial of pharmacist-led therapeutic carbohydrate and energy restriction in type 2 diabetes. Nat Commun 202, 12, 5367.

Language extinction triggers the loss of unique medicinal knowledge. Proceedings of the National Academy of Sciences  2021, 118 (24) e2103683118;

The carbohydrate-insulin model: a physiological perspective on the obesity pandemicThe American Journal of Clinical Nutrition, 2021; DOI: 10.1093/ajcn/nqab270.

Gary Taubes quotes from “How a ‘fatally, tragically flawed’ paradigm has derailed the science of obesity”. STAT, Sept 13, 2021:

An observational and Mendelian randomisation study on vitamin D and COVID-19 risk in UK Biobank. Scientific Reports 2021, 11, 18262:

COVID data
PHE data reported in the Evening Standard, August 20:

Melatonin multifaceted pharmacological actions on melatonin receptors converging to abrogate COVID-19. J Pineal Res 2021, Aug; 71(1):e12732. DOI: 10.1111/jpi.12732.

Effects of Intermittent Fasting on Health, Aging, and DiseaseNew England Journal of Medicine 2019; 381 (26): 2541 DOI: 10.1056/NEJMra1905136.
Time-restricted eating for the prevention and management of metabolic diseasesEndocrine Reviews, 2021; DOI: 10.1210/endrev/bnab027.


  1. Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018 Jan 18;11:25-34. doi: 10.2147/JIR.S136742. PMID: 29403302; PMCID: PMC5783146.
  2. Liu M, Dudley SC Jr. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants (Basel). 2020 Sep 23;9(10):907. doi: 10.3390/antiox9100907. PMID: 32977544; PMCID: PMC7598282.
  3. Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacology. 2019 Aug;27(4):649-661. doi: 10.1007/s10787-019-00603-7. Epub 2019 Jun 6. PMID: 31172335.
  4. Dibaba DT, Xun P, He K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr. 2014 Apr;68(4):510-6. doi: 10.1038/ejcn.2014.7. Epub 2014 Feb 12. Erratum in: Eur J Clin Nutr. 2015 Mar;69(3):410. PMID: 24518747; PMCID: PMC3975661.
  5. Almoznino-Sarafian D, Berman S, Mor A, Shteinshnaider M, Gorelik O, Tzur I, Alon I, Modai D, Cohen N. Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr. 2007 Jun;46(4):230-7. doi: 10.1007/s00394-007-0655-x. Epub 2007 May 3. PMID: 17479208.
  6. Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, Van Horn LV. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr. 2016 Nov 15;7(6):977-993. doi: 10.3945/an.116.012765. PMID: 28140318; PMCID: PMC5105038.
  7. Fan L, Zhu X, Rosanoff A, Costello RB, Yu C, Ness R, Seidner DL, Murff HJ, Roumie CL, Shrubsole MJ, Dai Q. Magnesium Depletion Score (MDS) Predicts Risk of Systemic Inflammation and Cardiovascular Mortality among US Adults. J Nutr. 2021 Aug 7;151(8):2226-2235. doi: 10.1093/jn/nxab138. PMID: 34038556; PMCID: PMC8349125.
  8. Mazidi M, Rezaie P, Banach M. Effect of magnesium supplements on serum C-reactive protein: a systematic review and meta-analysis. Arch Med Sci. 2018 Jun;14(4):707-716. doi: 10.5114/aoms.2018.75719. Epub 2018 May 11. PMID: 30002686; PMCID: PMC6040119.
  9. DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018 Jan 13;5(1):e000668. doi: 10.1136/openhrt-2017-000668. Erratum in: Open Heart. 2018 Apr 5;5(1):e000668corr1. PMID: 29387426; PMCID: PMC5786912.
  10. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, Benjamin EJ, Harris WS, Robins SJ. Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort. Atherosclerosis. 2015 Jun;240(2):431-6.
  11. Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis. 2009 Aug;205(2):538-43. doi: 10.1016/j.atherosclerosis.2008.12.013. Epub 2008 Dec 14. PMID: 19185299; PMCID: PMC2717185.
  12. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, Benjamin EJ, Harris WS, Robins SJ. Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort. Atherosclerosis. 2015 Jun;240(2):431-6.
  13. Grenon SM, Conte MS, Nosova E, Alley H, Chong K, Harris WS, Vittinghoff E, Owens CD. Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. J Vasc Surg. 2013 Nov;58(5):1283-90. doi: 10.1016/j.jvs.2013.05.024. Epub 2013 Jul 2. PMID: 23830313; PMCID: PMC4207080.
  14. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017 Oct 15;45(5):1105-1115. doi: 10.1042/BST20160474. Epub 2017 Sep 12. PMID: 28900017.
  15. Djuricic I, Calder PC. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients. 2021 Jul 15;13(7):2421. doi: 10.3390/nu13072421. PMID: 34371930; PMCID: PMC8308533.
  16. DiNicolantonio JJ, O’Keefe JH. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart. 2018 Nov 26;5(2):e000946. doi: 10.1136/openhrt-2018-000946. PMID: 30564378; PMCID: PMC6269634.
  17. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018 May;132:41-48. doi: 10.1016/j.plefa.2018.03.004. Epub 2018 Mar 22. PMID: 29610056.
  18. Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One. 2014 Feb 5;9(2):e88103. doi: 10.1371/journal.pone.0088103. PMID: 24505395; PMCID: PMC3914936.
  19. Ramel A, Martinez JA, Kiely M, Bandarra NM, Thorsdottir I. Effects of weight loss and seafood consumption on inflammation parameters in young, overweight and obese European men and women during 8 weeks of energy restriction. Eur J Clin Nutr. 2010 Sep;64(9):987-93. doi: 10.1038/ejcn.2010.99. Epub 2010 Jun 16. PMID: 20551965.
  20. Costabile G, Della Pepa G, Vetrani C, Vitaglione P, Griffo E, Giacco R, Vitale M, Salamone D, Rivellese AA, Annuzzi G, Bozzetto L. An Oily Fish Diet Improves Subclinical Inflammation in People at High Cardiovascular Risk: A Randomized Controlled Study. Molecules. 2021 Jun 2;26(11):3369. doi: 10.3390/molecules26113369. PMID: 34199645; PMCID: PMC8199776.
  21. Su H, Liu R, Chang M, Huang J, Jin Q, Wang X. Effect of dietary alpha-linolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. 2018 Apr;57(3):877-891. doi: 10.1007/s00394-017-1386-2. Epub 2017 Mar 8. PMID: 28275869.
  22. Miles EA, Calder PC. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr. 2012 Jun;107 Suppl 2:S171-84.
  23. Calder PC. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases.  Mol Nutr Food Res. 2008 Aug;52(8):885-97.
  24. Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Casagrande R, Verri WA Jr. Specialized pro-resolving lipid mediators: A new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol Res. 2020 Jan;151:104549. doi: 10.1016/j.phrs.2019.104549. Epub 2019 Nov 17. PMID: 31743775.
  25. Souza PR, Marques RM, Gomez EA, Colas RA, De Matteis R, Zak A, Patel M, Collier DJ, Dalli J. Enriched Marine Oil Supplements Increase Peripheral Blood Specialized Pro-Resolving Mediators Concentrations and Reprogram Host Immune Responses: A Randomized Double-Blind Placebo-Controlled Study. Circ Res. 2020 Jan 3;126(1):75-90. doi: 10.1161/CIRCRESAHA.119.315506. Epub 2019 Dec 12. PMID: 31829100.
  26. Polus A, Zapala B, Razny U, Gielicz A, Kiec-Wilk B, Malczewska-Malec M, Sanak M, Childs CE, Calder PC, Dembinska-Kiec A. Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production. Biochim Biophys Acta. 2016 Nov;1861(11):1746-1755. doi: 10.1016/j.bbalip.2016.08.005. Epub 2016 Aug 12. PMID: 27531277.
  27. de Oliveira C, Biddulph JP, Hirani V, Schneider IJC. Vitamin D and inflammatory markers: cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J Nutr Sci. 2017 Jan 12;6:e1. doi: 10.1017/jns.2016.37. PMID: 28620476; PMCID: PMC5465858.
  28. Laird E, McNulty H, Ward M, Hoey L, McSorley E, Wallace JM, Carson E, Molloy AM, Healy M, Casey MC, Cunningham C, Strain JJ. Vitamin D deficiency is associated with inflammation in older Irish adults. J Clin Endocrinol Metab. 2014 May;99(5):1807-15. doi: 10.1210/jc.2013-3507. Epub 2014 Feb 25. PMID: 24606079.
  29. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001 Dec;15(14):2579-85. doi: 10.1096/fj.01-0433rev. PMID: 11726533.
  30. Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014 May 29;7:69-87. doi: 10.2147/JIR.S63898. PMID: 24971027; PMCID: PMC4070857.
  31. Cannell JJ, Grant WB, Holick MF. Vitamin D and inflammation. Dermatoendocrinol. 2015 Jan 29;6(1):e983401. doi: 10.4161/19381980.2014.983401. PMID: 26413186; PMCID: PMC4580066.
  32. Mousa A, Naderpoor N, Teede H, Scragg R, de Courten B. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2018 May 1;76(5):380-394. doi: 10.1093/nutrit/nux077. PMID: 29490085.
  33. Rodriguez AJ, Mousa A, Ebeling PR, Scott D, de Courten B. Effects of vitamin D supplementation on inflammatory markers in heart failure: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2018 Jan 18;8(1):1169. doi: 10.1038/s41598-018-19708-0. PMID: 29348609; PMCID: PMC5773527.
  34. Chen N, Wan Z, Han SF, Li BY, Zhang ZL, Qin LQ. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients. 2014 Jun 10;6(6):2206-16. doi: 10.3390/nu6062206. PMID: 24918698; PMCID: PMC4073144.
  35. Traber MG. Vitamin E inadequacy in humans: causes and consequences. Adv Nutr. 2014 Sep;5(5):503-14. doi: 10.3945/an.114.006254. PMID: 25469382; PMCID: PMC4188222.
  36. Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019 Apr;71(4):487-494. doi: 10.1002/iub.1976. Epub 2018 Nov 30. PMID: 30501009; PMCID: PMC7011499.
  37. Wallert M, Börmel L, Lorkowski S. Inflammatory Diseases and Vitamin E-What Do We Know and Where Do We Go? Mol Nutr Food Res. 2021 Jan;65(1):e2000097. doi: 10.1002/mnfr.202000097. Epub 2020 Jul 29. PMID: 32692879.
  38. Arablou T, Aryaeian N, Djalali M, Shahram F, Rasouli L. Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active Rheumatoid Arthritis patients. Int J Vitam Nutr Res. 2019 Nov;89(5-6):238-245. doi: 10.1024/0300-9831/a000255. Epub 2019 Apr 1. PMID: 30932790.
  39. Kooshki A, Samadipour E, Akbarzadeh R. The association between serum C-reactive protein and macronutrients and antioxidants intake in hemodialysis patients. J Med Life. 2015;8(Spec Iss 2):43-46. PMID: 28255396; PMCID: PMC5327710.
  40. Asbaghi O, Sadeghian M, Nazarian B, Sarreshtedari M, Mozaffari-Khosravi H, Maleki V, Alizadeh M, Shokri A, Sadeghi O. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Rep. 2020 Oct 14;10(1):17234. doi: 10.1038/s41598-020-73741-6.
  41. Khor BH, Tiong HC, Tan SC, Wong SK, Chin KY, Karupaiah T, Ima-Nirwana S, Abdul Gafor AH. Effects of tocotrienols supplementation on markers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2021 Jul 23;16(7):e0255205. doi: 10.1371/journal.pone.0255205. PMID: 34297765; PMCID: PMC8301652.
  42. Pervez MA, Khan DA, Slehria AUR, Ijaz A. Delta-tocotrienol supplementation improves biochemical markers of hepatocellular injury and steatosis in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled trial. Complement Ther Med. 2020 Aug;52:102494. doi: 10.1016/j.ctim.2020.102494. Epub 2020 Jun 23. PMID: 32951743.
  43. Skalny AV, Aschner M, Tinkov AA. Zinc. Adv Food Nutr Res. 2021;96:251-310. doi: 10.1016/bs.afnr.2021.01.003. Epub 2021 May 24. PMID: 34112355; PMCID: PMC8208231.
  44. Prasad AS. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr. 2014 Sep 1;1:14. doi: 10.3389/fnut.2014.00014. PMID: 25988117; PMCID: PMC4429650.
  45. Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004 Oct 15;37(8):1182-90. doi: 10.1016/j.freeradbiomed.2004.07.007.
  46. Mousavi SM, Djafarian K, Mojtahed A, Varkaneh HK, Shab-Bidar S. The effect of zinc supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol. 2018 Sep 5;834:10-16. doi: 10.1016/j.ejphar.2018.07.019. Epub 2018 Jul 19. PMID: 30012497.
  47. Costarelli L, Muti E, Malavolta M, Cipriano C, Giacconi R, Tesei S, Piacenza F, Pierpaoli S, Gasparini N, Faloia E, Tirabassi G, Boscaro M, Polito A, Mauro B, Maiani F, Raguzzini A, Marcellini F, Giuli C, Papa R, Emanuelli M, Lattanzio F, Mocchegiani E. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem. 2010 May;21(5):432-7. doi: 10.1016/j.jnutbio.2009.02.001. Epub 2009 May 7. PMID: 19427184.
  48. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front Med (Lausanne). 2018 Nov 27;5:316. doi: 10.3389/fmed.2018.00316. PMID: 30538987; PMCID: PMC6277637.
  49. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J Cell Physiol. 2018 Nov;233(11):8508-8525. doi: 10.1002/jcp.26791. Epub 2018 Jun 22. PMID: 29932219.
  50. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front Med (Lausanne). 2018 Nov 27;5:316. doi: 10.3389/fmed.2018.00316. PMID: 30538987; PMCID: PMC6277637.
  51. Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, Van Horn LV. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr. 2016 Nov 15;7(6):977-993. doi: 10.3945/an.116.012765. PMID: 28140318; PMCID: PMC5105038.
  52. Lebold KM, Ang A, Traber MG, Arab L. Urinary α-carboxyethyl hydroxychroman can be used as a predictor of α-tocopherol adequacy, as demonstrated in the Energetics Study. Am J Clin Nutr. 2012 Oct;96(4):801-9. doi: 10.3945/ajcn.112.038620. Epub 2012 Sep 5. PMID: 22952171; PMCID: PMC3441108.
  53. Traber MG. Vitamin E inadequacy in humans: causes and consequences. Adv Nutr. 2014 Sep;5(5):503-14. doi: 10.3945/an.114.006254. PMID: 25469382; PMCID: PMC4188222.

Pancreatic cancer story:
Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesisScience 2021; 373 (6561) DOI: 10.1126/science.abj0486.


Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of Candida albicans. Molecular and Cellular Biology 2021, 6 (3), doi:
NAD+ metabolism in health and disease. Trends Biochem Sci 2007 Jan;32(1):12-9,  doi:10.1016/j.tibs.2006.11.006.
Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 2021, Aug 16;7(8):664. DOI: 10.3390/jof7080664.
Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics 2020, 9(12), 866:
Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris.
J Fungi 2021, 7 (1), doi 10.3390/jof7010050. Open Access.


Jeannette Hyde

American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 2018, May 15;3(3):e00031-18. doi: 10.1128/mSystems.00031-18. Free online at


Human postprandial responses to food and potential for precision nutrition. Nature  Med 2020, 26, 964–973.
Meal-induced inflammation: postprandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in 1000 participantsThe American Journal of Clinical Nutrition 2021, 114, 3, 1028–1038,
Dietary inflammation:
“Professor Tim Spector’s top 5 tips for a healthier gut microbiome”:

Social environment drives sex and age‐specific variation in Drosophila melanogaster microbiome composition and predicted functionMolecular Ecology 2021; doi: 10.1111/mec.16149.

Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolitesPNAS, 2021 DOI: 10.1073/pnas.2022857118.

Human age-declined saliva metabolic markers determined by LC–MS. Scientific Reports 2021 11, 18135.

“Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system”.
Aging (Albany NY) 2021,13 (4): 18051-93:

Interplay between cognition and weight reduction in individuals following a Mediterranean Diet: Three-year follow-up of the PREDIMED-Plus trial. Clinical Nutrition 2021, Sep, 40(9):5221-37, doi: 10.1016/j.clnu.2021.07.020.

Microbiota from young mice counteracts selective age-associated behavioural deficits. Nature Aging 2021. DOI: 10.1038/s43587-021-00093-9. 


Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science 2021, 17 Sep, 373 (6561). DOI: 10.1126/science.abf9232.

Replacement of Nitrite in Meat Products by Natural Bioactive Compounds Results in Reduced Exposure to N‐Nitroso Compounds: The PHYTOME ProjectMolecular Nutrition & Food Research, 2021; 2001214 DOI: 10.1002/mnfr.202001214.

Quercetin in Tartary Buckwheat Induces Autophagy against Protein AggregationsAntioxidants, 2021; 10 (8): 1217 DOI: 10.3390/antiox10081217.

NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING.  Proceedings of the National Academy of Sciences 2021, Sep, 118 (37) e2011226118;
NAD+ Metabolism in Aging and Cancer. Annual Review of Cancer Biology 2019 3:1, 105-130:


September 2021


NICE pauses publication of updated guideline on diagnosis and management of ME/CFS. August 17, 2021:

Michiel Tack:

Clinical, immunological and virological SARS-CoV-2 phenotypes in obese and non-obese military health system beneficiaries. The Journal of Infectious Diseases 2021;, jiab396,

Obesity Increases the Duration of Influenza A Virus Shedding in Adults. The Journal of Infectious Diseases, 2018; DOI: 10.1093/infdis/jiy370.


Persistent Endotheliopathy in the Pathogenesis of Long COVID SyndromeJournal of Thrombosis and Haemostasis, 2021; doi: 10.1111/jth.15490.
Spontaneous bleeding associated with ginkgo biloba: a case report and systematic review of the literature. J Gen Intern Med 2005 Jul;20(7):657-61, doi: 10.1111/j.1525-1497.2005.0121.x.
Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J Clin Invest. 2012;122(6):2104-2113.
Antiatherothrombotic effects of nicotinic acid. Atherosclerosis. 2003 Nov;171(1):87-96. doi: 10.1016/j.atherosclerosis.2003.07.003. 
Dietary fructose improves intestinal cell survival and nutrient absorptionNature 2021, doi: 10.1038/s41586-021-03827-2.
Non-alcoholic Fatty Liver Disease: Growing Burden, Adverse Outcomes and Associations. Journal of Clinical and Translational Hepatology 2020, 8, 76–86. Published online 2019, doi: 10.14218/JCTH.2019.00051.
Experimental investigation of indoor aerosol dispersion and accumulation in the context of COVID-19: Effects of masks and ventilationPhysics of Fluids, 2021; 33 (7): 073315; doi: 10.1063/5.0057100.


  1. Couzin-Frankel J. Inflammation bares a dark side. Science. 2010 Dec 17;330(6011):1621. doi: 10.1126/science.330.6011.1621. PMID: 21163993.
  2. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front Med (Lausanne). 2018 Nov 27;5:316. doi: 10.3389/fmed.2018.00316. PMID: 30538987; PMCID: PMC6277637.
  3. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019 Dec;25(12):1822-1832. doi: 10.1038/s41591-019-0675-0. Epub 2019 Dec 5. PMID: 31806905; PMCID: PMC7147972.
  4. Calder PC, Albers R, Antoine JM, Blum S, Bourdet-Sicard R, Ferns GA, Folkerts G, Friedmann PS, Frost GS, Guarner F, Løvik M, Macfarlane S, Meyer PD, M’Rabet L, Serafini M, van Eden W, van Loo J, Vas Dias W, Vidry S, Winklhofer-Roob BM, Zhao J. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009 May;101 Suppl 1:S1-45. doi: 10.1017/S0007114509377867. PMID: 19586558.
  5. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009 Apr;22(2):240-73
  6. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004 Oct;5(10):987-95. doi: 10.1038/ni1112. PMID: 15454922.
  7. Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018 Aug 13;18(4):e27.
  8. Frevert CW, Felgenhauer J, Wygrecka M, Nastase MV, Schaefer L. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem. 2018 Apr;66(4):213-227. doi: 10.1369/0022155417740880. Epub 2018 Jan 1. PMID: 29290139; PMCID: PMC5958376.
  9. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM, Hotchkiss R, Joosten LAB, Kastner DL, Korte M, Latz E, Libby P, Mandrup-Poulsen T, Mantovani A, Mills KHG, Nowak KL, O’Neill LA, Pickkers P, van der Poll T, Ridker PM, Schalkwijk J, Schwartz DA, Siegmund B, Steer CJ, Tilg H, van der Meer JWM, van de Veerdonk FL, Dinarello CA. A guiding map for inflammation. Nat Immunol. 2017 Jul 19;18(8):826-831.
  10. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014 Jun 5;510(7503):92-101. doi: 10.1038/nature13479. PMID: 24899309; PMCID: PMC4263681.
  11. Recchiuti A, Isopi E, Romano M, Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int J Mol Sci. 2020 Sep 10;21(18):6637. doi: 10.3390/ijms21186637. PMID: 32927853; PMCID: PMC7555248.
  12. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019 Dec;25(12):1822-1832. doi: 10.1038/s41591-019-0675-0. Epub 2019 Dec 5. PMID: 31806905; PMCID: PMC7147972.
  13. Greer A. An anti-inflammatory diet: the next frontier in preventive medicine. JAAPA. 2012 Feb;25(2):38, 40, 42 passim. doi: 10.1097/01720610-201202000-00007. PMID: 22416553.
  14. Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013 Aug;71(8):511-27.
  15. Silva CA, Santos IDS, Shivappa N, Hebert JR, Crivellenti LC, Sartorelli DS. The role of food processing in the inflammatory potential of diet during pregnancy. Rev Saude Publica. 2019 Dec 20;53:113.
  16. Martínez Leo EE, Peñafiel AM, Hernández Escalante VM, Cabrera Araujo ZM. Ultra-processed diet, systemic oxidative stress, and breach of immunologic tolerance. Nutrition. 2021 Jul 19;91-92:111419.
  17. Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr. 2008 May;87(5):1188-93.
  18. Kalogeropoulos N, Panagiotakos DB, Pitsavos C, Chrysohoou C, Rousinou G, Toutouza M, Stefanadis C. Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin Chim Acta. 2010 Apr 2;411(7-8):584-91.
  19. Arya F, Egger S, Colquhoun D, Sullivan D, Pal S, Egger G. Differences in postprandial inflammatory responses to a ‘modern’ v. traditional meat meal: a preliminary study. Br J Nutr. 2010 Sep;104(5):724-8.
  20. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmune Rev. 2015 Jun;14(6):479-89
  21. Van Puyvelde K, Mets T, Njemini R, Beyer I, Bautmans I. Effect of advanced glycation end product intake on inflammation and aging: a systematic review. Nutr Rev. 2014 Oct;72(10):638-50.
  22. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jönsson LS, Kolb H, Lansink M, Marcos A, Margioris A, Matusheski N, Nordmann H, O’Brien J, Pugliese G, Rizkalla S, Schalkwijk C, Tuomilehto J, Wärnberg J, Watzl B, Winklhofer-Roob BM. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011 Dec;106 Suppl 3:S5-78.
  23. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jönsson LS, Latulippe ME, Marcos A, Moreines J, M’Rini C, Müller M, Pawelec G, van Neerven RJ, Watzl B, Zhao J. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013 Jan;109 Suppl 1:S1-34.
  24. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM, Hotchkiss R, Joosten LAB, Kastner DL, Korte M, Latz E, Libby P, Mandrup-Poulsen T, Mantovani A, Mills KHG, Nowak KL, O’Neill LA, Pickkers P, van der Poll T, Ridker PM, Schalkwijk J, Schwartz DA, Siegmund B, Steer CJ, Tilg H, van der Meer JWM, van de Veerdonk FL, Dinarello CA. A guiding map for inflammation. Nat Immunol. 2017 Jul 19;18(8):826-831.
  25. Raychaudhuri S, Gupta RM. Immunoprofiling comes of age. Nat Med. 2019 Mar;25(3):362-364. doi: 10.1038/s41591-019-0387-5. PMID: 30842672; PMCID: PMC6534817.
  26. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J Cell Physiol. 2018 Nov;233(11):8508-8525. doi: 10.1002/jcp.26791. Epub 2018 Jun 22. PMID: 29932219.
  27. Nanri A, Moore MA, Kono S. Impact of C-reactive protein on disease risk and its relation to dietary factors. Asian Pac J Cancer Prev. 2007 Apr-Jun;8(2):167-77. PMID: 17696726.
  28. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, Benjamin EJ, Harris WS, Robins SJ. Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort. Atherosclerosis. 2015 Jun;240(2):431-6.
  29. de Oliveira C, Biddulph JP, Hirani V, Schneider IJC. Vitamin D and inflammatory markers: cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J Nutr Sci. 2017 Jan 12;6:e1.
  30. Rodríguez-Morán M, Guerrero-Romero F. Serum magnesium and C-reactive protein levels. Arch Dis Child. 2008 Aug;93(8):676-80. doi: 10.1136/adc.2006.109371. Epub 2007 Jul 19. PMID: 17641003.
  31. Guerrero-Romero F, Rodríguez-Morán M. Relationship between serum magnesium levels and C-reactive protein concentration, in non-diabetic, non-hypertensive obese subjects. Int J Obes Relat Metab Disord. 2002 Apr;26(4):469-74. doi: 10.1038/sj.ijo.0801954. PMID: 12075573.
  32. Guerrero-Romero F, Bermudez-Peña C, Rodríguez-Morán M. Severe hypomagnesemia and low-grade inflammation in metabolic syndrome. Magnes Res. 2011 Jun;24(2):45-53.
  33. Hart MJ, Torres SJ, McNaughton SA, Milte CM. Dietary patterns and associations with biomarkers of inflammation in adults: a systematic review of observational studies. Nutr J. 2021 Mar 12;20(1):24. doi: 10.1186/s12937-021-00674-9. PMID: 33712009; PMCID: PMC7955619.
  34. Neale EP, Batterham MJ, Tapsell LC. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res. 2016 May;36(5):391-401. doi: 10.1016/j.nutres.2016.02.009. Epub 2016 Feb 22. PMID: 27101757.
  35. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014 Aug;17(8):1689-96. doi: 10.1017/S1368980013002115. Epub 2013 Aug 14. PMID: 23941862; PMCID: PMC3925198.
  36. van Woudenbergh GJ, Theofylaktopoulou D, Kuijsten A, Ferreira I, van Greevenbroek MM, van der Kallen CJ, Schalkwijk CG, Stehouwer CD, Ocké MC, Nijpels G, Dekker JM, Blaak EE, Feskens EJ. Adapted dietary inflammatory index and its association with a summary score for low-grade inflammation and markers of glucose metabolism: the Cohort study on Diabetes and Atherosclerosis Maastricht (CODAM) and the Hoorn study. Am J Clin Nutr. 2013 Dec;98(6):1533-42. doi: 10.3945/ajcn.112.056333. Epub 2013 Oct 23. PMID: 24153342.
  37. Garcia-Arellano A, Ramallal R, Ruiz-Canela M, Salas-Salvadó J, Corella D, Shivappa N, Schröder H, Hébert JR, Ros E, Gómez-Garcia E, Estruch R, Lapetra J, Arós F, Fiol M, Serra-Majem L, Pintó X, Babio N, González JI, Fitó M, Martínez JA, Martínez-González MA; Predimed Investigators. Dietary Inflammatory Index and Incidence of Cardiovascular Disease in the PREDIMED Study. Nutrients. 2015 May 29;7(6):4124-38. doi: 10.3390/nu7064124. PMID: 26035241; PMCID: PMC4488776.
  38. Shivappa N, Sandin S, Löf M, Hébert JR, Adami HO, Weiderpass E. Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br J Cancer. 2015 Sep 29;113(7):1099-103. doi: 10.1038/bjc.2015.304. Epub 2015 Sep 3. PMID: 26335605; PMCID: PMC4651132.
  39. Shivappa N, Jackson MD, Bennett F, Hébert JR. Increased Dietary Inflammatory Index (DII) Is Associated With Increased Risk of Prostate Cancer in Jamaican Men. Nutr Cancer. 2015;67(6):941-8. doi: 10.1080/01635581.2015.1062117. Epub 2015 Jul 30. PMID: 26226289; PMCID: PMC4596719.
  40. Shivappa N, Jackson MD, Bennett F, Hébert JR. Increased Dietary Inflammatory Index (DII) Is Associated With Increased Risk of Prostate Cancer in Jamaican Men. Nutr Cancer. 2015;67(6):941-8. doi: 10.1080/01635581.2015.1062117. Epub 2015 Jul 30. PMID: 26226289; PMCID: PMC4596719.
  41. Lucas M, Chocano-Bedoya P, Schulze MB, Mirzaei F, O’Reilly ÉJ, Okereke OI, Hu FB, Willett WC, Ascherio A. Inflammatory dietary pattern and risk of depression among women. Brain Behav Immun. 2014 Feb;36:46-53. doi: 10.1016/j.bbi.2013.09.014. Epub 2013 Oct 1. Erratum in: Brain Behav Immun. 2015 May;46:327. Shulze, Mathias B [corrected to Schulze, Matthias B]. PMID: 24095894; PMCID: PMC3947176.
  42. Kesse-Guyot E, Assmann KE, Andreeva VA, Touvier M, Neufcourt L, Shivappa N, Hébert JR, Wirth MD, Hercberg S, Galan P, Julia C. Long-term association between the dietary inflammatory index and cognitive functioning: findings from the SU.VI.MAX study. Eur J Nutr. 2017 Jun;56(4):1647-1655. doi: 10.1007/s00394-016-1211-3. Epub 2016 Apr 7. PMID: 27055851.
  43. Enrico TV. Dietary Inflammatory Index and chronic pain in an adult, noninstitutionalized civilian population of the US. Thesis; Division of Community Health and Humanities Faculty of Medicine Memorial University of Newfoundland. October 2017.
  44. García-Calzón S, Zalba G, Ruiz-Canela M, Shivappa N, Hébert JR, Martínez JA, Fitó M, Gómez-Gracia E, Martínez-González MA, Marti A. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015 Oct;102(4):897-904. doi: 10.3945/ajcn.115.116863. Epub 2015 Sep 9. PMID: 26354530; PMCID: PMC4588745.
  45. Garcia-Arellano A, Martínez-González MA, Ramallal R, Salas-Salvadó J, Hébert JR, Corella D, Shivappa N, Forga L, Schröder H, Muñoz-Bravo C, Estruch R, Fiol M, Lapetra J, Serra-Majem L, Ros E, Rekondo J, Toledo E, Razquin C, Ruiz-Canela M; SUN and PREDIMED Study Investigators. Dietary inflammatory index and all-cause mortality in large cohorts: The SUN and PREDIMED studies. Clin Nutr. 2019 Jun;38(3):1221-1231. doi: 10.1016/j.clnu.2018.05.003. Epub 2018 May 24. PMID: 30651193.
  46. Turner-McGrievy GM, Wirth MD, Shivappa N, Dunn CG, Crimarco A, Hurley TG, West DS, Hussey JR, Hébert JR. Impact of a 12-month Inflammation Management Intervention on the Dietary Inflammatory Index, inflammation, and lipids. Clin Nutr ESPEN. 2019 Apr;30:42-51. doi: 10.1016/j.clnesp.2019.02.008. Epub 2019 Mar 1. PMID: 30904228; PMCID: PMC6435295.
  47. Neuhouser ML, Schwarz Y, Wang C, Breymeyer K, Coronado G, Wang CY, Noar K, Song X, Lampe JW. A low-glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. J Nutr. 2012 Feb;142(2):369-74. doi: 10.3945/jn.111.149807. Epub 2011 Dec 21. PMID: 22190020; PMCID: PMC3260063.
  48. Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005 Nov;82(5):1052-8. doi: 10.1093/ajcn/82.5.1052. PMID: 16280438.
  49. Navarro SL, Schwarz Y, Song X, Wang CY, Chen C, Trudo SP, Kristal AR, Kratz M, Eaton DL, Lampe JW. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr. 2014 Nov;144(11):1850-7. doi: 10.3945/jn.114.197434. Epub 2014 Aug 27. PMID: 25165394; PMCID: PMC4195422.
  50. Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: Systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020 Jan;135:110922. doi: 10.1016/j.fct.2019.110922. Epub 2019 Oct 25. PMID: 31669599.
  51. Baye E, Kiriakova V, Uribarri J, Moran LJ, de Courten B. Consumption of diets with low advanced glycation end products improves cardiometabolic parameters: meta-analysis of randomised controlled trials. Sci Rep. 2017 May 23;7(1):2266. doi: 10.1038/s41598-017-02268-0. PMID: 28536448; PMCID: PMC5442099.



Associations between wildfire smoke exposure during pregnancy and risk of preterm birth in CaliforniaEnvironmental Research, 2021; 111872 DOI: 10.1016/j.envres.2021.111872

Photosynthetically Controlled Spirulina, but Not Solar Spirulina, Inhibits TNF-α Secretion: Potential Implications for COVID-19-Related Cytokine Storm Therapy.
Mar Biotechnol 2021, Feb;23(1):149-155; doi: 10.1007/s10126-021-10020-z. Epub 2021 Feb 10.

Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2021 Mar;83:111089; doi: 10.1016/j.nut.2020.111089. Free online at

The Nutritional Efficacy of Chlorella Supplementation Depends on the Individual Gut Environment: A Randomised Control Study. Front Nutr 2021, 8, 270:

INFLAMMATION – Metagenics Institute

  1. The New York Times Magazine. Mukherjee S. What we learn when two ruthless killers, heart disease and cancer, reveal a common root. Accessed May 14, 2019.
  2. Newman R. APA’s resilience initiative. Prof Psychol Res Pr. 2005;36(3):227-229.
  3. Levine S. Psychological and social aspects of resilience: a synthesis of risks and resources. Dialogues Clin Neurosci. 2003;5(3):273-280.
  4. Münzel T et al. Environmental stressors and their impact on health and disease with focus on oxidative stress. Antioxid Redox Signal. 2018;28(9):735-740.
  5. Smirnova L et al. Cellular resilience. ALTEX. 2015;32(4):247-260.
  6. Herman JP et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603-621.
  7. Muralidharan S et al. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol. 2013;94(6):1167-1184.
  8. Pomatto LCD et al. The role of declining adaptive homeostasis in ageing. J Physiol. 2017;595(24):7275-7309.
  9. Kirkland JL et al. Resilience in aging mice. J Gerontol A Biol Sci Med Sci. 2016;71(11):1407-1414.
  10. Epel ES et al. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S10-S16.
  11. Franceschi C et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-254.
  12. Kumar V et al. Chapter 2. Inflammation and Repair. Robbins Basic Pathology. 9th ed: Saunders; 2012.
  13. Prasad S et al. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med. 2012;54 Suppl:S29-37.
  14. Serhan CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol. 2004;122(4):305-321.
  15. Serhan CN et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192(8):1197-1204.
  16. Basil MC et al. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2016;16(1):51-67.
  17. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92-101.
  18. Weylandt KH. Docosapentaenoic acid derived metabolites and mediators – The new world of lipid mediator medicine in a nutshell. Eur J Pharmacol. 2016;785:108-115.
  19. Serhan CN et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21(2):325-332.
  20. Dalli J et al. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood. 2012;120(15):e60-72.
  21. Dalli J et al. Macrophage proresolving mediators-the when and where. Microbiol Spectr. 2016;4(3).
  22. Ariel A et al. New lives given by cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Front Immunol. 2012;3:4.
  23. Levy BD et al. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2(7):612-619.
  24. Recchiuti A. Immunoresolving lipid mediators and resolution of inflammation in aging. J Gerontol Geriat Res. 2014;3:151.
  25. Lawrence T et al. Chronic inflammation: a failure of resolution? Int J Exp Pathol. 2007;88(2):85-94.
  26. Arnardottir HH et al. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines. J Immunol. 2014;193(8):4235-4244.
  27. Arnardottir HH et al. Resolvin D3 Is dysregulated in arthritis and reduces arthritic inflammation. J Immunol. 2016;197(6):2362-2368.
  28. Titos E et al. Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J Immunol. 2016;197(8):3360-3370.
  29. Neuhofer A et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945-1956.
  30. Barden AE et al. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin. Am J Clin Nutr. 2015;102(6):1357-1364.
  31. López-Vicario C et al. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J. 2019:fj201802587R.
  32. Clària J et al. Pro-resolving actions of SPM in adipose tissue biology. Mol Aspects Med. 2017;58:83-92.
  33. Yaribeygi H et al. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152-8161.
  34. Goodpaster BH et al. Metabolic flexibility in health and disease. Cell Metab. 2017;25(5):1027-1036.
  35. Crouch MJ et al. Frontline science: a reduction in DHA-derived mediators in male obesity contributes toward defects in select B cell subsets and circulating antibody. J Leukoc Biol. 2018.
  36. Huttunen R et al. Obesity and the risk and outcome of infection. Int J Obes (Lond). 2013;37(3):333-340.
  37. Metagenics Institute. What excites you about the SPMs research you are involved in? Accessed May 14, 2019.

Time to assume that health research is fraudulent until proven otherwise?
BMJ 2021, July 5.

“Broken Science. What happens when cancer doctors, psychologists, and drug developers can’t rely on each other’s research?” February 2016:

HARKing: hypothesizing after the results are known. Pers Soc Psychol Rev 1998, 2(3):196-217, doi: 10.1207/s15327957pspr0203_4.

Power and sample size. Methods Mol Biol 2007;404:377-408, doi: 10.1007/978-1-59745-530-5_19.

“Most Scientific Findings Are Wrong or Useless. Science isn’t self-correcting, it’s self-destructing”. August 2016:

“Saving Science”, by Prof Daniel Sarewitz:

Why Most Published Research Findings Are False. PLoS Medicine 2005:
. Open Access.

Offline: What is medicine’s 5 sigma? The Lancet 2015, 385, 9976, p1380April 11:  

“Reproducibility and reliability of biomedical research: improving research practice”. British Academy of Medical Sciences symposium report, October 2015:

“Landmark research integrity survey finds questionable practices are surprisingly common”, by Jop de Vrieze. Science July 7, 2021:

Prevalence of Research Misconduct and Questionable Research Practices: A Systematic Review and Meta-Analysis. Sci Eng Ethics 2021, 27, 41:

Hundreds of thousands of zombie randomised trials circulate among us. Anaesthesia 2021, 76, 444–447: doi:10.1111/anae.15297.

Research Misconduct Policy in Biomedicine. Beyond the Bad-Apple Approach. By Prof Barbara K. Redman. (The MIT Press, 2013.)


Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 2021, August 17, doi:

Reinforcement learning links spontaneous cortical dopamine impulses to rewardCurrent Biology, 2021; doi: 10.1016/j.cub.2021.06.069.

The effectiveness and safety of isometric resistance training for adults with high blood pressure: a systematic review and meta-analysisHypertension Research, 2021; DOI: 10.1038/s41440-021-00720-3.

Impacts of deficiency in vitamin D derivatives on disease severity in adult bronchial asthma patients. Pulm Pharmacol Ther 2021 Aug 18:102073. doi: 10.1016/j.pupt.2021.102073.

Nucleus Type-Specific DNA Methylomics Reveals Epigenetic ‘Memory’ of Prior Adaptation in Skeletal MuscleFunction, 2021; doi: 10.1093/function/zqab038.

Vitamin C and scar strength: analysis of a historical trial and implications for collagen-related pathologies American Journal of Clinical Nutrition 2021, doi: 10.1093/ajcn/nqab262.

Time for nutrition in medical education. BMJ Nutrition, Prevention & Health 2020;; doi: 10.1136/bmjnph-2019-000049.

Increased risk of heart failure is associated with chronic habitual hypohydration that elevates serum sodium above 142 mmol/l suggesting lifelong optimal hydration as preventive measure. ESC Congress:
Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwideEur J Nutr. 2015;54 Suppl 2:S35–S43.
Individuality of the plasma sodium concentrationAm J Physiol Renal Physiol. 2014;306:F1534–F1543.

Microbial Diversity and Abundance of Parabacteroides Mediate the Associations Between Higher Intake of Flavonoid-Rich Foods and Lower Blood Pressure. Hypertension 2021; DOI: 10.1161/HYPERTENSIONAHA.121.17441.

Vitamin K Intake and Atherosclerotic Cardiovascular Disease in the Danish Diet, Cancer and Health Study. Journal of the American Heart Association 2021;10:e020551.

Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. Cell Reports, 2021; 36 (7): 109543 DOI: 10.1016/j.celrep.2021.109543.








August 2021


Time to assume that health research is fraudulent until proven otherwise? BMJ 2021, July 5.

“Drug Companies & Doctors: A Story of Corruption”, by Marcia Angell. The New York Review, January 15, 2009:

The knowledge system underpinning healthcare is not fit for purpose and must change. BMJ 2015; 350 doi:

Peer review: a flawed process at the heart of science and journals. J R Soc Med 2006 Apr; 99(4): 178–182. doi: 10.1258/jrsm.99.4.178

Why Most Published Research Findings Are False. PloS Medicine 2005:

Prevalence of questionable research practices, research misconduct and their potential explanatory factors: a survey among academic researchers in The Netherlands. MetaArXiv 2021, July 6. doi:10.31222/


K.Vita: a feasibility study of a blend of medium chain triglycerides to manage drug-resistant epilepsy. Brain Communications 2021, fcab160,

Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut Published Online First: 06 July 2021. Doi: 10.1136/gutjnl-2021-325010.

Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring CohortThe American Journal of Clinical Nutrition, 2021; DOI: 10.1093/ajcn/nqab195.

Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).

Characterizing long COVID in an international cohort: 7 months of symptoms and their impactEClinicalMedicine, 2021; 101019 DOI: 10.1016/j.eclinm.2021.101019.

SPMs: Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in Covid-19. Circulation Research

The Women’s Study for the Alleviation of Vasomotor Symptoms (WAVS), Menopause  2021, July 12, doi: 10.1097/GME.0000000000001812.

Vitamin K2 Holds Promise for Alzheimer’s Prevention and Treatment. Nutrients 2021, 13(7), 2206;

Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health 2021, 20, 84.