REFERENCES

A full online archive of references

September 2021

WELCOME

Time to assume that health research is fraudulent until proven otherwise? BMJ 2021, July 5. https://blogs.bmj.com/bmj/2021/07/05/time-to-assume-that-health-research-is-fraudulent-until-proved-otherwise.

“Drug Companies & Doctors: A Story of Corruption”, by Marcia Angell. The New York Review, January 15, 2009: https://www.nybooks.com/articles/2009/01/15/drug-companies-doctorsa-story-of-corruption.

The knowledge system underpinning healthcare is not fit for purpose and must change. BMJ 2015; 350 doi: https://doi.org/10.1136/bmj.h2463.

Peer review: a flawed process at the heart of science and journals. J R Soc Med 2006 Apr; 99(4): 178–182. doi: 10.1258/jrsm.99.4.178

Why Most Published Research Findings Are False. PloS Medicine 2005: https://doi.org/10.1371/journal.pmed.0020124.

Prevalence of questionable research practices, research misconduct and their potential explanatory factors: a survey among academic researchers in The Netherlands. MetaArXiv 2021, July 6. doi:10.31222/osf.io/vk9yt.

NEWS

K.Vita: a feasibility study of a blend of medium chain triglycerides to manage drug-resistant epilepsy. Brain Communications 2021, fcab160, https://doi.org/10.1093/braincomms/fcab160.

Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut Published Online First: 06 July 2021. Doi: 10.1136/gutjnl-2021-325010.

Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring CohortThe American Journal of Clinical Nutrition, 2021; DOI: 10.1093/ajcn/nqab195.

Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021). https://doi.org/10.1038/s41586-021-03671-4.

Characterizing long COVID in an international cohort: 7 months of symptoms and their impactEClinicalMedicine, 2021; 101019 DOI: 10.1016/j.eclinm.2021.101019.

SPMs: Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in Covid-19. Circulation Researchhttps://doi.org/10.1161/CIRCRESAHA.121.319142.

The Women’s Study for the Alleviation of Vasomotor Symptoms (WAVS), Menopause  2021, July 12, doi: 10.1097/GME.0000000000001812.

Vitamin K2 Holds Promise for Alzheimer’s Prevention and Treatment. Nutrients 2021, 13(7), 2206; https://doi.org/10.3390/nu13072206.

Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health 2021, 20, 84. https://doi.org/10.1186/s12940-021-00768-1.

 

BEN BROWN

 

  1. Roy-Byrne P. Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues Clin Neurosci. 2015 Jun;17(2):191-206. doi: 10.31887/DCNS.2015.17.2/proybyrne. PMID: 26246793; PMCID: PMC4518702.
  2. Mörkl S, Stell L, Buhai DV, et al. ‘An Apple a Day’?: Psychiatrists, Psychologists and Psychotherapists Report Poor Literacy for Nutritional Medicine: International Survey Spanning 52 Countries. Nutrients. 2021 Mar 2;13(3):822
  3. Kris-Etherton PM, Petersen KS, Hibbeln JR, Hurley D, Kolick V, Peoples S, Rodriguez N, Woodward-Lopez G. Nutrition and behavioral health disorders: depression and anxiety. Nutr Rev. 2021 Feb 11;79(3):247-260. doi: 10.1093/nutrit/nuaa025. PMID: 32447382.
  4. Firth J, Marx W, Dash S, Carney R, Teasdale SB, Solmi M, Stubbs B, Schuch FB, Carvalho AF, Jacka F, Sarris J. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom Med. 2019 Apr;81(3):265-280. doi: 10.1097/PSY.0000000000000673. Erratum in: Psychosom Med. 2020 Jun;82(5):536. Erratum in: Psychosom Med. 2021 Feb-Mar 01;83(2):196. PMID: 30720698; PMCID: PMC6455094.
  5. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, Castle D, Dash S, Mihalopoulos C, Chatterton ML, Brazionis L, Dean OM, Hodge AM, Berk M. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017 Jan 30;15(1):23. doi: 10.1186/s12916-017-0791-y. Erratum in: BMC Med. 2018 Dec 28;16(1):236. PMID: 28137247; PMCID: PMC5282719.
  6. Francis HM, Stevenson RJ, Chambers JR, Gupta D, Newey B, Lim CK. A brief diet intervention can reduce symptoms of depression in young adults – A randomised controlled trial. PLoS One. 2019 Oct 9;14(10):e0222768. doi: 10.1371/journal.pone.0222768. PMID: 31596866; PMCID: PMC6784975.
  7. Jacka FN. Nutritional Psychiatry: Where to Next? EBioMedicine. 2017 Mar;17:24-29. doi: 10.1016/j.ebiom.2017.02.020. Epub 2017 Feb 21. PMID: 28242200; PMCID: PMC5360575.
  8. Prousky J. Anxiety: Orthomolecular Diagnosis and Treatment. CCNM Press; 1st edition (25 Feb. 2015).
  9. Nordahl TE, Semple WE, Gross M, Mellman TA, Stein MB, Goyer P, King AC, Uhde TW, Cohen RM. Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology. 1990 Aug;3(4):261-72. PMID: 2400544.
  10. Anderson RJ, Grigsby AB, Freedland KE, de Groot M, McGill JB, Clouse RE, Lustman PJ. Anxiety and poor glycemic control: a meta-analytic review of the literature. Int J Psychiatry Med. 2002;32(3):235-47. doi: 10.2190/KLGD-4H8D-4RYL-TWQ8. PMID: 12489699.
  11. Tsenkova VK, Albert MA, Georgiades A, Ryff CD. Trait anxiety and glucose metabolism in people without diabetes: vulnerabilities among black women. Diabet Med. 2012 Jun;29(6):803-6. doi: 10.1111/j.1464-5491.2011.3534.x. PMID: 22587407; PMCID: PMC3395206.
  12. Kose J, Cheung A, Fezeu LK, Péneau S, Debras C, Touvier M, Hercberg S, Galan P, Andreeva VA. A Comparison of Sugar Intake between Individuals with High and Low Trait Anxiety: Results from the NutriNet-Santé Study. Nutrients. 2021 Apr 30;13(5):1526. doi: 10.3390/nu13051526. PMID: 33946586; PMCID: PMC8147234.
  13. Sadeghi O, Hassanzadeh-Keshteli A, Afshar H, Esmaillzadeh A, Adibi P. The association of whole and refined grains consumption with psychological disorders among Iranian adults. Eur J Nutr. 2019 Feb;58(1):211-225. doi: 10.1007/s00394-017-1585-x. Epub 2017 Nov 30. PMID: 29189904.
  14. Rahimlou M, Morshedzadeh N, Karimi S, Jafarirad S. Association between dietary glycemic index and glycemic load with depression: a systematic review. Eur J Nutr. 2018 Oct;57(7):2333-2340. doi: 10.1007/s00394-018-1710-5. Epub 2018 May 9. PMID: 29744611. 10.3945/ajcn.114.103846. Epub 2015 Jun 24. PMID: 26109579; PMCID: PMC4515860.
  15. Aucoin M, Bhardwaj S. Generalized Anxiety Disorder and Hypoglycemia Symptoms Improved with Diet Modification. Case Rep Psychiatry. 2016;2016:7165425. doi: 10.1155/2016/7165425. Epub 2016 Jul 14. PMID: 27493821; PMCID: PMC4963565.
  16. Broderick P, Benjamin AB. Caffeine and psychiatric symptoms: a review. J Okla State Med Assoc. 2004 Dec;97(12):538-42. PMID: 15732884.
  17. Vilarim MM, Rocha Araujo DM, Nardi AE. Caffeine challenge test and panic disorder: a systematic literature review. Expert Rev Neurother. 2011 Aug;11(8):1185-95. doi: 10.1586/ern.11.83. PMID: 21797659.
  18. Dews PB, O’Brien CP, Bergman J. Caffeine: behavioral effects of withdrawal and related issues. Food Chem Toxicol. 2002 Sep;40(9):1257-61. doi: 10.1016/s0278-6915(02)00095-9. PMID: 12204389.
  19. James JE, Rogers PJ. Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology (Berl). 2005 Oct;182(1):1-8. doi: 10.1007/s00213-005-0084-6. Epub 2005 Jul 2. PMID: 16001109.
  20. Bruce MS, Lader M. Caffeine abstention in the management of anxiety disorders. Psychol Med. 1989 Feb;19(1):211-4. doi: 10.1017/s003329170001117x. PMID: 2727208.
  21. Schuckit MA. Alcohol, Anxiety, and Depressive Disorders. Alcohol Health Res World. 1996;20(2):81-85. PMID: 31798156; PMCID: PMC6876499.
  22. Valenzuela CF. Alcohol and neurotransmitter interactions. Alcohol Health Res World. 1997;21(2):144-8. PMID: 15704351; PMCID: PMC6826822.
  23. Kushner MG, Abrams K, Borchardt C. The relationship between anxiety disorders and alcohol use disorders: a review of major perspectives and findings. Clin Psychol Rev. 2000 Mar;20(2):149-71. doi: 10.1016/s0272-7358(99)00027-6. PMID: 10721495.
  24. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, Raizada MK. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018 Aug;67(8):1555-1557. doi: 10.1136/gutjnl-2017-314759. Epub 2017 Aug 16. PMID: 28814485; PMCID: PMC5851874.
  25. Busby E, Bold J, Fellows L, Rostami K. Mood Disorders and Gluten: It’s Not All in Your Mind! A Systematic Review with Meta-Analysis. Nutrients. 2018 Nov 8;10(11):1708. doi: 10.3390/nu10111708. PMID: 30413036; PMCID: PMC6266949.
  26. Addolorato G, Capristo E, Ghittoni G, Valeri C, Mascianà R, Ancona C, Gasbarrini G. Anxiety but not depression decreases in coeliac patients after one-year gluten-free diet: a longitudinal study. Scand J Gastroenterol. 2001 May;36(5):502-6. doi: 10.1080/00365520119754. PMID: 11346203.
  27. DAVISON HM. Cerebral allergy. South Med J. 1949 Aug;42(8):712-6. doi: 10.1097/00007611-194908000-00017. PMID: 18137597.
  28. Prousky J. Anxiety: Orthomolecular Diagnosis and Treatment. CCNM Press; 1st edition (25 Feb. 2015).
  29. Holder MK, Peters NV, Whylings J, Fields CT, Gewirtz AT, Chassaing B, de Vries GJ. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci Rep. 2019 Jan 17;9(1):172. doi: 10.1038/s41598-018-36890-3. PMID: 30655577; PMCID: PMC6336787.
  30. Medina-Reyes EI, Delgado-Buenrostro NL, Díaz-Urbina D, Rodríguez-Ibarra C, Déciga-Alcaraz A, González MI, Reyes JL, Villamar-Duque TE, Flores-Sánchez ML, Hernández-Pando R, Mancilla-Díaz JM, Chirino YI, Pedraza-Chaverri J. Food-grade titanium dioxide (E171) induces anxiety, adenomas in colon and goblet cells hyperplasia in a regular diet model and microvesicular steatosis in a high fat diet model. Food Chem Toxicol. 2020 Dec;146:111786. doi: 10.1016/j.fct.2020.111786. Epub 2020 Oct 8. PMID: 33038453.
  31. Ashok I, Sheeladevi R, Wankhar D. Effect of long-term aspartame (artificial sweetener) on anxiety, locomotor activity and emotionality behavior in Wistar Albino rats. Biomed Prev Nutr. (2014) 4:39–43.
  32. Walton RG, Hudak R, Green-Waite RJ. Adverse reactions to aspartame: double-blind challenge in patients from a vulnerable population. Biol Psychiatry. 1993 Jul 1-15;34(1-2):13-7. doi: 10.1016/0006-3223(93)90251-8. PMID: 8373935.
  33. Gaby AR. Anxiety Disorders. Nutritional Medicine. Fritz Perlberg Publishing; 1st edition (1 Jan. 2011)
  34. Gaby AR. The role of hidden food allergy/intolerance in chronic disease. Altern Med Rev. 1998 Apr;3(2):90-100. PMID: 9577245.
  35. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. J Nutr Biochem. 2020 Nov;85:108459. doi: 10.1016/j.jnutbio.2020.108459. Epub 2020 Jul 3. PMID: 32745879.
  36. Moritz B, Schwarzbold ML, Guarnieri R, Diaz AP, S Rodrigues AL, Dafre AL. Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiol Exp (Wars). 2017;77(4):362-372.
  37. de Oliveira IJ, de Souza VV, Motta V, Da-Silva SL. Effects of Oral Vitamin C Supplementation on Anxiety in Students: A Double-Blind, Randomized, Placebo-Controlled Trial. Pak J Biol Sci. 2015 Jan;18(1):11-8. doi: 10.3923/pjbs.2015.11.18. PMID: 26353411.
  38. Mazloom Z, Ekramzadeh M, Hejazi N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak J Biol Sci. 2013 Nov 15;16(22):1597-600. doi: 10.3923/pjbs.2013.1597.1600. PMID: 24511708.
  39. Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry. 2020 Jun 18;20(1):315. doi: 10.1186/s12888-020-02730-w. PMID: 32552785; PMCID: PMC7302360.
  40. Islam MR, Ahmed MU, Islam MS, Sayeed MS, Sadia F, Chowdhury ZS, Nahar Z, Hasnat A. Comparative analysis of serum malondialdehyde, antioxidant vitamins and immunoglobulin levels in patients suffering from generalized anxiety disorder. Drug Res (Stuttg). 2014 Aug;64(8):406-11. doi: 10.1055/s-0033-1358758. Epub 2013 Nov 27. PMID: 24285405.
  41. Moretti M, Fraga DB, Rodrigues ALS. Ascorbic Acid to Manage Psychiatric Disorders. CNS Drugs. 2017 Jul;31(7):571-583. doi: 10.1007/s40263-017-0446-8. PMID: 28600627.
  42. Spies T.D., Aring C.D., Gelperin J., Bean W.B. The mental symptoms of pellagra. Their relief with nicotinic acid. Am. J. Med. Sci. 1938;196:461–475.
  43. Möhler H, Polc P, Cumin R, Pieri L, Kettler R. Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature. 1979 Apr 5;278(5704):563-5. doi: 10.1038/278563a0. PMID: 155222.
  44. Prousky JE. Niacinamide’s potent role in alleviating anxiety with its benzodiazepine-like properties: a case report. J Ortho Med 2004;19:104–11
  45. Prousky JE. Supplemental Niacinamide Mitigates Anxiety Symptoms: Three Case Reports. J Ortho Med 2005;3:167–178
  46. Hoffer A, Prousky J. Successful treatment of schizophrenia requires optimal daily doses of vitamin B3. Altern Med Rev. 2008 Dec;13(4):287-91. PMID: 19238764.
  47. Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients. 2021 Mar 30;13(4):1136. doi: 10.3390/nu13041136. PMID: 33808247; PMCID: PMC8065437.
  48. Boyle NB, Lawton C, Dye L. The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients. 2017 Apr 26;9(5):429. doi: 10.3390/nu9050429. PMID: 28445426; PMCID: PMC5452159.
  49. Zogovic D, Pesic V, Dmitrasinovic G, Dajak M, Plecas B, Batinic B, et al. Pituitary-gonadal, pituitary-adrenocortical hormones and IL-6 levels following long-term magnesium supplementation in male students. J Med Biochem. 2014: 291–298.
  50. Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362-70. doi: 10.1016/j.mehy.2006.01.047. Epub 2006 Mar 20. PMID: 16542786.
  51. Pouteau E, Kabir-Ahmadi M, Noah L, et al. Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: A randomized, single-blind clinical trial. PLoS One. 2018;13(12):e0208454. Published 2018 Dec 18. doi:10.1371/journal.pone.0208454
  52. Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol. 2018 Aug 6;9:1047. doi: 10.3389/fphys.2018.01047. PMID: 30127751; PMCID: PMC6087749.
  53. Liu JJ, Galfalvy HC, Cooper TB, Oquendo MA, Grunebaum MF, Mann JJ, Sublette ME. Omega-3 polyunsaturated fatty acid (PUFA) status in major depressive disorder with comorbid anxiety disorders. J Clin Psychiatry. 2013 Jul;74(7):732-8. doi: 10.4088/JCP.12m07970. PMID: 23945451; PMCID: PMC3905735.
  54. Green P, Hermesh H, Monselise A, Marom S, Presburger G, Weizman A. Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder. Eur Neuropsychopharmacol. 2006 Feb;16(2):107-13. doi: 10.1016/j.euroneuro.2005.07.005. Epub 2005 Oct 21. PMID: 16243493.
  55. Guu TW, Mischoulon D, Sarris J, Hibbeln J, McNamara RK, Hamazaki K, Freeman MP, Maes M, Matsuoka YJ, Belmaker RH, Jacka F, Pariante C, Berk M, Marx W, Su KP. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother Psychosom. 2019;88(5):263-273. doi: 10.1159/000502652. Epub 2019 Sep 3. PMID: 31480057.
  56. Buydens-Branchey L, Branchey M. n-3 polyunsaturated fatty acids decrease anxiety feelings in a population of substance abusers. J Clin Psychopharmacol. 2006 Dec;26(6):661-5. doi: 10.1097/01.jcp.0000246214.49271.f1. PMID: 17110827.
  57. Haberka M, Mizia-Stec K, Mizia M, Gieszczyk K, Chmiel A, Sitnik-Warchulska K, Gąsior Z. Effects of n-3 polyunsaturated fatty acids on depressive symptoms, anxiety and emotional state in patients with acute myocardial infarction. Pharmacol Rep. 2013;65(1):59-68. doi: 10.1016/s1734-1140(13)70964-2. PMID: 23563024.
  58. Hansen AL, Olson G, Dahl L, Thornton D, Grung B, Graff IE, Frøyland L, Thayer JF. Reduced anxiety in forensic inpatients after a long-term intervention with Atlantic salmon. Nutrients. 2014 Nov 26;6(12):5405-18. doi: 10.3390/nu6125405. PMID: 25431880; PMCID: PMC4276975.

CALM Study

A modified Mediterranean dietary intervention for adults with major depression: Dietary protocol and feasibility data from the SMILES trialNutritional Neuroscience 2018, 21:7, 487-501. DOI: 10.1080/1028415X.2017.1312841.

Men and women
Sex differences in specific aspects of two animal tests of anxiety-like behavior
Psychopharmacology, 2021; DOI: 10.1007/s00213-021-05893-w.

CBD

1., https://www.forbes.com/sites/davidprosser/2020/05/11/uk-demand-for-cbd-products-soars-amid-covid-19-pandemic/ 

  1. Moltke J and Hindocha C (2021) https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-021-00061-5
  2. https://www.food.gov.uk/safety-hygiene/cannabidiol-cbd
  3. www.who.int/medicines/access/controlled-substances/5.2_CBD.pdf

[5] Zuardi et al (1993). https://pubmed.ncbi.nlm.nih.gov/22290374/

[6] Bergamashi M et al (2011) https://www.nature.com/articles/npp20116

[7] Jadoon et al (2017) https://pubmed.ncbi.nlm.nih.gov/28614793/

[8] De Faria et al (2020) https://journals.sagepub.com/doi/10.1177/0269881119895536

[9] https://pubmed.ncbi.nlm.nih.gov/32019776/

[10] https://pubmed.ncbi.nlm.nih.gov/32421842/

[11] Geneva CANNABIDIOL (CBD) . n.d. Critical Review Report Expert Committee on Drug Dependence Fortieth Meeting

Dr Elisabeth Phillipps

  1. Cannabidiol in Anxiety and Sleep: A Large Case Series. Perm J 2019, 23: 18-041.
  2. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J Clin Pharm Ther 2014, 39:564-566.
    3. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int. 2018; 9: 91.

DIGESTION
Gut microbiome heritability is nearly universal but environmentally contingentScience 2021. DOI: 10.1126/science.aba5483.

Immunoglobulin A–specific deficiency induces spontaneous inflammation specifically in the ileumGut, 2021; gutjnl-2020-322873 DOI: 10.1136/gutjnl-2020-322873.

Royal jelly enhances antigen-specific mucosal IgA response. Food Science and Nutrition 2013. https://doi.org/10.1002/fsn3.29.

The Salivary IgA Flow Rate Is Increased by High Concentrations of Short-Chain Fatty Acids in the Cecum of Rats Ingesting Fructooligosaccharides. Nutrients 2016, 8(8), 500; https://doi.org/10.3390/nu8080500.

Cocoa and cocoa fibre differentially modulate IgA and IgM production at mucosal sitesBritish Journal of Nutrition 2016, 115(9), 1539-1546. DOI:10.1017/S000711451600074X.

Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. Journal of Applied Microbiology 2000, 89(3):404-14. DOI:10.1046/j.1365-2672.2000.01128.x.

Caloric restriction disrupts the microbiota and colonization resistance. Nature 2021, 595, 272–277. https://doi.org/10.1038/s41586-021-03663-4.

Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. eLife 2021, 10:e58820 DOI: 10.7554/eLife.58820.

EMILY BLAKE – SIgA and immune resilience:

  1. Wang QQ, Xu R, Volkow ND. Increased risk of COVID-19 infection and mortality in people with mental disorders: analysis from electronic health records in the United States. World Psychiatry [Internet]. 2020 [cited 2020 Dec 21]; Available from: https://pubmed.ncbi.nlm.nih.gov/33026219/
  2. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol [Internet]. 2020 Nov 30 [cited 2021 Jan 25];11:3221. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.611337/full
  3. Geerlings SY, Kostopoulos I, Vos WM De, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract : When , Where , and How ? Microrganisms. 2018;6(75):1–26.
  4. Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut [Internet]. Vol. 52, Critical Reviews in Biochemistry and Molecular Biology. Taylor and Francis Ltd; 2017 [cited 2021 Jan 26]. p. 45–56. Available from: /pmc/articles/PMC5233583/?report=abstract
  5. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov;4(6):603–11.
  6. Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Vol. 4, Frontiers in Immunology. Frontiers; 2013. p. 185.
  7. Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M, Son A, et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J Exp Med [Internet]. 2018 Sep 1 [cited 2021 Jan 19];215(8):2019–34. Available from: /pmc/articles/PMC6080902/?report=abstract
  8. Zocco MA, Ainora ME, Gasbarrini G, Gasbarrini A. Bacteroides thetaiotaomicron in the gut: Molecular aspects of their interaction. 2007;
  9. Engeland CG, Hugo FN, Hilgert JB, Nascimento GG, Junges R, Lim HJ, et al. Psychological distress and salivary secretory immunity. Brain Behav Immun [Internet]. 2016 Feb 1 [cited 2021 Jan 25];52:11–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26318411/
  10. Campos-Rodríguez R, Godínez-Victoria M, Abarca-Rojano E, Pacheco-Yépez J, Reyna-Garfias H, Barbosa-Cabrera RE, et al. Stress modulates intestinal secretory immunoglobulin A [Internet]. Vol. 7, Frontiers in Integrative Neuroscience. Frontiers Media SA; 2013 [cited 2021 Jan 25]. Available from: /pmc/articles/PMC3845795/?report=abstract
  11. Segerstrom SC, Miller GE. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol Bull [Internet]. 2004 Jul [cited 2020 Dec 21];130(4):601–30. Available from: /pmc/articles/PMC1361287/?report=abstract
  12. Geerlings S, Kostopoulos I, de Vos W, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms [Internet]. 2018;6(3):75. Available from: http://www.mdpi.com/2076-2607/6/3/75
  13. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015 Mar 19;5(FEB):81.
  14. Sirisinha S. The pleiotropic role of vitamin A in regulating mucosal immunity. Asian Pac J Allergy Immunol. 2015;33(2):71–8.
  15. Ohashi W, Fukada T. Contribution of Zinc and Zinc Transporters in the Pathogenesis of Inflammatory Bowel Diseases. 2019 [cited 2020 Mar 20]; Available from: https://doi.org/10.1155/2019/8396878
  16. Maataoui SB, Maataoui RB, Almesrar B, Hilali S. ANTI ULCER ACTIVITY OF PRICKLY PEAR (OPUNTIA FICUS INDICA) CLADODES EXTRACTS. Int J Adv Res [Internet]. 2018 [cited 2020 Feb 7];6(11):498–506. Available from: http://dx.doi.org/10.21474/IJAR01/8023
  17. Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, et al. Alcohol and gut-derived inflammation. Alcohol Res Curr Rev [Internet]. 2017 [cited 2020 Dec 21];38(2):e-1-e-9. Available from: /pmc/articles/PMC5513683/?report=abstract
  18. Volstatova T, Marchica A, Hroncova Z, Bernardi R, Doskocil I, Havlik J. Effects of chlorogenic acid, epicatechin gallate, and quercetin on mucin expression and secretion in the Caco-2/HT29-MTX cell model. Food Sci Nutr [Internet]. 2019 Feb 1 [cited 2020 Mar 4];7(2):492–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/fsn3.818
  19. Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms. 2018;6(3):78.
  20. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305–44.
  21. Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A. Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes [Internet]. 2016;7(2):146–53. Available from: http://dx.doi.org/10.1080/19490976.2016.1142036
  22. Shang Q, Song G, Zhang M, Shi J, Xu C, Hao J, et al. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods. 2017 Jan 1;28:138–46.
  23. Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to Clostridium difficile toxin A in mice. Infect Immun [Internet]. 2001 [cited 2020 Dec 21];69(4):2762–5. Available from: https://pubmed.ncbi.nlm.nih.gov/11254650/
  24. McFarland L V. Systematic review and meta-analysis of saccharomyces boulardii in adult patients [Internet]. Vol. 16, World Journal of Gastroenterology. World J Gastroenterol; 2010 [cited 2021 Jan 26]. p. 2202–22. Available from: https://pubmed.ncbi.nlm.nih.gov/20458757/
  25. Menchetti L, Traina G, Tomasello G, Casagrande-Proietti P, Leonardi L, Barbato O, et al. Potential benefits of colostrum in gastrointestinal diseases. Front Biosci. 2016;8:331–51.
  26. Główka N, Woźniewicz M. Potential use of Colostrum Bovinum supplementation in athletes – A review. Acta Sci Pol Technol Aliment. 2019 Jul 1;18(2):115–23.
  27. Head K, Kelly G. Nutrients and Botanicals for Treatment of Stress: Adrenal Fatigue, Neurotra…: EBSCOhost. Altern Med Rev [Internet]. 2009;14(2):114–40. Available from: http://web.a.ebscohost.com.ncnm.idm.oclc.org/ehost/pdfviewer/pdfviewer?sid=43c9a0e3-44ee-4243-b6de-d327d9623100%40sessionmgr4001&vid=6&hid=4201.

RESEARCH UPDATE

Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021, 13: 1. https://www.tandfonline.com/doi/full/10.1080/19490976.2021.1930875.
Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trialBMJ, July 1, 2021; DOI: 10.1136/bmj.n1448.

Quantitative mapping of human hair greying and reversal in relation to life stresseLife, 2021; 10 DOI: 10.7554/eLife.67437.

Enterically derived high-density lipoprotein restrains liver injury through the portal veinScience, 2021; 373 (6553): eabe6729 DOI: 10.1126/science.abe6729.

Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in miceCell Host & Microbe, 2021; DOI: 10.1016/j.chom.2021.06.014.

Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clockCell Reports, 2021; 36 (1): 109336 DOI: 10.1016/j.celrep.2021.109336.

CBD and oral ulcers: Xingying Qi, West China Hospital of Stomatology, Sichuan University, presented the findings  – Cannabidiol Promotes Oral Ulcer Healing by Inactivating CMPK2-Mediated NLRP3 Inflammasome – at the virtual 99th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 50th Annual Meeting of the American Association for Dental Research (AADR) and the 45th Annual Meeting of the Canadian Association for Dental Research (CADR), on July 21-24, 2021.

IN PRACTICE

https://www.euromonitor.com/dietary-supplements-in-the-united-kingdom/report.

https://www.mintel.com/global-new-products-database.

Food Supplements Consumer Research, 2018 report for the FSA: https://www.food.gov.uk/sites/default/files/media/document/food-supplements-consumer-research.pdf.

August 2021

WELCOME

Time to assume that health research is fraudulent until proven otherwise? BMJ 2021, July 5. https://blogs.bmj.com/bmj/2021/07/05/time-to-assume-that-health-research-is-fraudulent-until-proved-otherwise.

“Drug Companies & Doctors: A Story of Corruption”, by Marcia Angell. The New York Review, January 15, 2009: https://www.nybooks.com/articles/2009/01/15/drug-companies-doctorsa-story-of-corruption.

The knowledge system underpinning healthcare is not fit for purpose and must change. BMJ 2015; 350 doi: https://doi.org/10.1136/bmj.h2463.

Peer review: a flawed process at the heart of science and journals. J R Soc Med 2006 Apr; 99(4): 178–182. doi: 10.1258/jrsm.99.4.178

Why Most Published Research Findings Are False. PloS Medicine 2005: https://doi.org/10.1371/journal.pmed.0020124.

Prevalence of questionable research practices, research misconduct and their potential explanatory factors: a survey among academic researchers in The Netherlands. MetaArXiv 2021, July 6. doi:10.31222/osf.io/vk9yt.

NEWS

K.Vita: a feasibility study of a blend of medium chain triglycerides to manage drug-resistant epilepsy. Brain Communications 2021, fcab160, https://doi.org/10.1093/braincomms/fcab160.

Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut Published Online First: 06 July 2021. Doi: 10.1136/gutjnl-2021-325010.

Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring CohortThe American Journal of Clinical Nutrition, 2021; DOI: 10.1093/ajcn/nqab195.

Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021). https://doi.org/10.1038/s41586-021-03671-4.

Characterizing long COVID in an international cohort: 7 months of symptoms and their impactEClinicalMedicine, 2021; 101019 DOI: 10.1016/j.eclinm.2021.101019.

SPMs: Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in Covid-19. Circulation Researchhttps://doi.org/10.1161/CIRCRESAHA.121.319142.

The Women’s Study for the Alleviation of Vasomotor Symptoms (WAVS), Menopause  2021, July 12, doi: 10.1097/GME.0000000000001812.

Vitamin K2 Holds Promise for Alzheimer’s Prevention and Treatment. Nutrients 2021, 13(7), 2206; https://doi.org/10.3390/nu13072206.

Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health 2021, 20, 84. https://doi.org/10.1186/s12940-021-00768-1.

 

BEN BROWN

  1. Roy-Byrne P. Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues Clin Neurosci. 2015 Jun;17(2):191-206. doi: 10.31887/DCNS.2015.17.2/proybyrne. PMID: 26246793; PMCID: PMC4518702.
  2. Mörkl S, Stell L, Buhai DV, et al. ‘An Apple a Day’?: Psychiatrists, Psychologists and Psychotherapists Report Poor Literacy for Nutritional Medicine: International Survey Spanning 52 Countries. Nutrients. 2021 Mar 2;13(3):822
  3. Kris-Etherton PM, Petersen KS, Hibbeln JR, Hurley D, Kolick V, Peoples S, Rodriguez N, Woodward-Lopez G. Nutrition and behavioral health disorders: depression and anxiety. Nutr Rev. 2021 Feb 11;79(3):247-260. doi: 10.1093/nutrit/nuaa025. PMID: 32447382.
  4. Firth J, Marx W, Dash S, Carney R, Teasdale SB, Solmi M, Stubbs B, Schuch FB, Carvalho AF, Jacka F, Sarris J. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom Med. 2019 Apr;81(3):265-280. doi: 10.1097/PSY.0000000000000673. Erratum in: Psychosom Med. 2020 Jun;82(5):536. Erratum in: Psychosom Med. 2021 Feb-Mar 01;83(2):196. PMID: 30720698; PMCID: PMC6455094.
  5. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, Castle D, Dash S, Mihalopoulos C, Chatterton ML, Brazionis L, Dean OM, Hodge AM, Berk M. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017 Jan 30;15(1):23. doi: 10.1186/s12916-017-0791-y. Erratum in: BMC Med. 2018 Dec 28;16(1):236. PMID: 28137247; PMCID: PMC5282719.
  6. Francis HM, Stevenson RJ, Chambers JR, Gupta D, Newey B, Lim CK. A brief diet intervention can reduce symptoms of depression in young adults – A randomised controlled trial. PLoS One. 2019 Oct 9;14(10):e0222768. doi: 10.1371/journal.pone.0222768. PMID: 31596866; PMCID: PMC6784975.
  7. Jacka FN. Nutritional Psychiatry: Where to Next? EBioMedicine. 2017 Mar;17:24-29. doi: 10.1016/j.ebiom.2017.02.020. Epub 2017 Feb 21. PMID: 28242200; PMCID: PMC5360575.
  8. Prousky J. Anxiety: Orthomolecular Diagnosis and Treatment. CCNM Press; 1st edition (25 Feb. 2015).
  9. Nordahl TE, Semple WE, Gross M, Mellman TA, Stein MB, Goyer P, King AC, Uhde TW, Cohen RM. Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology. 1990 Aug;3(4):261-72. PMID: 2400544.
  10. Anderson RJ, Grigsby AB, Freedland KE, de Groot M, McGill JB, Clouse RE, Lustman PJ. Anxiety and poor glycemic control: a meta-analytic review of the literature. Int J Psychiatry Med. 2002;32(3):235-47. doi: 10.2190/KLGD-4H8D-4RYL-TWQ8. PMID: 12489699.
  11. Tsenkova VK, Albert MA, Georgiades A, Ryff CD. Trait anxiety and glucose metabolism in people without diabetes: vulnerabilities among black women. Diabet Med. 2012 Jun;29(6):803-6. doi: 10.1111/j.1464-5491.2011.3534.x. PMID: 22587407; PMCID: PMC3395206.
  12. Kose J, Cheung A, Fezeu LK, Péneau S, Debras C, Touvier M, Hercberg S, Galan P, Andreeva VA. A Comparison of Sugar Intake between Individuals with High and Low Trait Anxiety: Results from the NutriNet-Santé Study. Nutrients. 2021 Apr 30;13(5):1526. doi: 10.3390/nu13051526. PMID: 33946586; PMCID: PMC8147234.
  13. Sadeghi O, Hassanzadeh-Keshteli A, Afshar H, Esmaillzadeh A, Adibi P. The association of whole and refined grains consumption with psychological disorders among Iranian adults. Eur J Nutr. 2019 Feb;58(1):211-225. doi: 10.1007/s00394-017-1585-x. Epub 2017 Nov 30. PMID: 29189904.
  14. Rahimlou M, Morshedzadeh N, Karimi S, Jafarirad S. Association between dietary glycemic index and glycemic load with depression: a systematic review. Eur J Nutr. 2018 Oct;57(7):2333-2340. doi: 10.1007/s00394-018-1710-5. Epub 2018 May 9. PMID: 29744611. 10.3945/ajcn.114.103846. Epub 2015 Jun 24. PMID: 26109579; PMCID: PMC4515860.
  15. Aucoin M, Bhardwaj S. Generalized Anxiety Disorder and Hypoglycemia Symptoms Improved with Diet Modification. Case Rep Psychiatry. 2016;2016:7165425. doi: 10.1155/2016/7165425. Epub 2016 Jul 14. PMID: 27493821; PMCID: PMC4963565.
  16. Broderick P, Benjamin AB. Caffeine and psychiatric symptoms: a review. J Okla State Med Assoc. 2004 Dec;97(12):538-42. PMID: 15732884.
  17. Vilarim MM, Rocha Araujo DM, Nardi AE. Caffeine challenge test and panic disorder: a systematic literature review. Expert Rev Neurother. 2011 Aug;11(8):1185-95. doi: 10.1586/ern.11.83. PMID: 21797659.
  18. Dews PB, O’Brien CP, Bergman J. Caffeine: behavioral effects of withdrawal and related issues. Food Chem Toxicol. 2002 Sep;40(9):1257-61. doi: 10.1016/s0278-6915(02)00095-9. PMID: 12204389.
  19. James JE, Rogers PJ. Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology (Berl). 2005 Oct;182(1):1-8. doi: 10.1007/s00213-005-0084-6. Epub 2005 Jul 2. PMID: 16001109.
  20. Bruce MS, Lader M. Caffeine abstention in the management of anxiety disorders. Psychol Med. 1989 Feb;19(1):211-4. doi: 10.1017/s003329170001117x. PMID: 2727208.
  21. Schuckit MA. Alcohol, Anxiety, and Depressive Disorders. Alcohol Health Res World. 1996;20(2):81-85. PMID: 31798156; PMCID: PMC6876499.
  22. Valenzuela CF. Alcohol and neurotransmitter interactions. Alcohol Health Res World. 1997;21(2):144-8. PMID: 15704351; PMCID: PMC6826822.
  23. Kushner MG, Abrams K, Borchardt C. The relationship between anxiety disorders and alcohol use disorders: a review of major perspectives and findings. Clin Psychol Rev. 2000 Mar;20(2):149-71. doi: 10.1016/s0272-7358(99)00027-6. PMID: 10721495.
  24. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, Raizada MK. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018 Aug;67(8):1555-1557. doi: 10.1136/gutjnl-2017-314759. Epub 2017 Aug 16. PMID: 28814485; PMCID: PMC5851874.
  25. Busby E, Bold J, Fellows L, Rostami K. Mood Disorders and Gluten: It’s Not All in Your Mind! A Systematic Review with Meta-Analysis. Nutrients. 2018 Nov 8;10(11):1708. doi: 10.3390/nu10111708. PMID: 30413036; PMCID: PMC6266949.
  26. Addolorato G, Capristo E, Ghittoni G, Valeri C, Mascianà R, Ancona C, Gasbarrini G. Anxiety but not depression decreases in coeliac patients after one-year gluten-free diet: a longitudinal study. Scand J Gastroenterol. 2001 May;36(5):502-6. doi: 10.1080/00365520119754. PMID: 11346203.
  27. DAVISON HM. Cerebral allergy. South Med J. 1949 Aug;42(8):712-6. doi: 10.1097/00007611-194908000-00017. PMID: 18137597.
  28. Prousky J. Anxiety: Orthomolecular Diagnosis and Treatment. CCNM Press; 1st edition (25 Feb. 2015).
  29. Holder MK, Peters NV, Whylings J, Fields CT, Gewirtz AT, Chassaing B, de Vries GJ. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci Rep. 2019 Jan 17;9(1):172. doi: 10.1038/s41598-018-36890-3. PMID: 30655577; PMCID: PMC6336787.
  30. Medina-Reyes EI, Delgado-Buenrostro NL, Díaz-Urbina D, Rodríguez-Ibarra C, Déciga-Alcaraz A, González MI, Reyes JL, Villamar-Duque TE, Flores-Sánchez ML, Hernández-Pando R, Mancilla-Díaz JM, Chirino YI, Pedraza-Chaverri J. Food-grade titanium dioxide (E171) induces anxiety, adenomas in colon and goblet cells hyperplasia in a regular diet model and microvesicular steatosis in a high fat diet model. Food Chem Toxicol. 2020 Dec;146:111786. doi: 10.1016/j.fct.2020.111786. Epub 2020 Oct 8. PMID: 33038453.
  31. Ashok I, Sheeladevi R, Wankhar D. Effect of long-term aspartame (artificial sweetener) on anxiety, locomotor activity and emotionality behavior in Wistar Albino rats. Biomed Prev Nutr. (2014) 4:39–43.
  32. Walton RG, Hudak R, Green-Waite RJ. Adverse reactions to aspartame: double-blind challenge in patients from a vulnerable population. Biol Psychiatry. 1993 Jul 1-15;34(1-2):13-7. doi: 10.1016/0006-3223(93)90251-8. PMID: 8373935.
  33. Gaby AR. Anxiety Disorders. Nutritional Medicine. Fritz Perlberg Publishing; 1st edition (1 Jan. 2011)
  34. Gaby AR. The role of hidden food allergy/intolerance in chronic disease. Altern Med Rev. 1998 Apr;3(2):90-100. PMID: 9577245.
  35. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. J Nutr Biochem. 2020 Nov;85:108459. doi: 10.1016/j.jnutbio.2020.108459. Epub 2020 Jul 3. PMID: 32745879.
  36. Moritz B, Schwarzbold ML, Guarnieri R, Diaz AP, S Rodrigues AL, Dafre AL. Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiol Exp (Wars). 2017;77(4):362-372.
  37. de Oliveira IJ, de Souza VV, Motta V, Da-Silva SL. Effects of Oral Vitamin C Supplementation on Anxiety in Students: A Double-Blind, Randomized, Placebo-Controlled Trial. Pak J Biol Sci. 2015 Jan;18(1):11-8. doi: 10.3923/pjbs.2015.11.18. PMID: 26353411.
  38. Mazloom Z, Ekramzadeh M, Hejazi N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak J Biol Sci. 2013 Nov 15;16(22):1597-600. doi: 10.3923/pjbs.2013.1597.1600. PMID: 24511708.
  39. Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry. 2020 Jun 18;20(1):315. doi: 10.1186/s12888-020-02730-w. PMID: 32552785; PMCID: PMC7302360.
  40. Islam MR, Ahmed MU, Islam MS, Sayeed MS, Sadia F, Chowdhury ZS, Nahar Z, Hasnat A. Comparative analysis of serum malondialdehyde, antioxidant vitamins and immunoglobulin levels in patients suffering from generalized anxiety disorder. Drug Res (Stuttg). 2014 Aug;64(8):406-11. doi: 10.1055/s-0033-1358758. Epub 2013 Nov 27. PMID: 24285405.
  41. Moretti M, Fraga DB, Rodrigues ALS. Ascorbic Acid to Manage Psychiatric Disorders. CNS Drugs. 2017 Jul;31(7):571-583. doi: 10.1007/s40263-017-0446-8. PMID: 28600627.
  42. Spies T.D., Aring C.D., Gelperin J., Bean W.B. The mental symptoms of pellagra. Their relief with nicotinic acid. Am. J. Med. Sci. 1938;196:461–475.
  43. Möhler H, Polc P, Cumin R, Pieri L, Kettler R. Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature. 1979 Apr 5;278(5704):563-5. doi: 10.1038/278563a0. PMID: 155222.
  44. Prousky JE. Niacinamide’s potent role in alleviating anxiety with its benzodiazepine-like properties: a case report. J Ortho Med 2004;19:104–11
  45. Prousky JE. Supplemental Niacinamide Mitigates Anxiety Symptoms: Three Case Reports. J Ortho Med 2005;3:167–178
  46. Hoffer A, Prousky J. Successful treatment of schizophrenia requires optimal daily doses of vitamin B3. Altern Med Rev. 2008 Dec;13(4):287-91. PMID: 19238764.
  47. Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients. 2021 Mar 30;13(4):1136. doi: 10.3390/nu13041136. PMID: 33808247; PMCID: PMC8065437.
  48. Boyle NB, Lawton C, Dye L. The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients. 2017 Apr 26;9(5):429. doi: 10.3390/nu9050429. PMID: 28445426; PMCID: PMC5452159.
  49. Zogovic D, Pesic V, Dmitrasinovic G, Dajak M, Plecas B, Batinic B, et al. Pituitary-gonadal, pituitary-adrenocortical hormones and IL-6 levels following long-term magnesium supplementation in male students. J Med Biochem. 2014: 291–298.
  50. Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362-70. doi: 10.1016/j.mehy.2006.01.047. Epub 2006 Mar 20. PMID: 16542786.
  51. Pouteau E, Kabir-Ahmadi M, Noah L, et al. Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: A randomized, single-blind clinical trial. PLoS One. 2018;13(12):e0208454. Published 2018 Dec 18. doi:10.1371/journal.pone.0208454
  52. Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol. 2018 Aug 6;9:1047. doi: 10.3389/fphys.2018.01047. PMID: 30127751; PMCID: PMC6087749.
  53. Liu JJ, Galfalvy HC, Cooper TB, Oquendo MA, Grunebaum MF, Mann JJ, Sublette ME. Omega-3 polyunsaturated fatty acid (PUFA) status in major depressive disorder with comorbid anxiety disorders. J Clin Psychiatry. 2013 Jul;74(7):732-8. doi: 10.4088/JCP.12m07970. PMID: 23945451; PMCID: PMC3905735.
  54. Green P, Hermesh H, Monselise A, Marom S, Presburger G, Weizman A. Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder. Eur Neuropsychopharmacol. 2006 Feb;16(2):107-13. doi: 10.1016/j.euroneuro.2005.07.005. Epub 2005 Oct 21. PMID: 16243493.
  55. Guu TW, Mischoulon D, Sarris J, Hibbeln J, McNamara RK, Hamazaki K, Freeman MP, Maes M, Matsuoka YJ, Belmaker RH, Jacka F, Pariante C, Berk M, Marx W, Su KP. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother Psychosom. 2019;88(5):263-273. doi: 10.1159/000502652. Epub 2019 Sep 3. PMID: 31480057.
  56. Buydens-Branchey L, Branchey M. n-3 polyunsaturated fatty acids decrease anxiety feelings in a population of substance abusers. J Clin Psychopharmacol. 2006 Dec;26(6):661-5. doi: 10.1097/01.jcp.0000246214.49271.f1. PMID: 17110827.
  57. Haberka M, Mizia-Stec K, Mizia M, Gieszczyk K, Chmiel A, Sitnik-Warchulska K, Gąsior Z. Effects of n-3 polyunsaturated fatty acids on depressive symptoms, anxiety and emotional state in patients with acute myocardial infarction. Pharmacol Rep. 2013;65(1):59-68. doi: 10.1016/s1734-1140(13)70964-2. PMID: 23563024.
  58. Hansen AL, Olson G, Dahl L, Thornton D, Grung B, Graff IE, Frøyland L, Thayer JF. Reduced anxiety in forensic inpatients after a long-term intervention with Atlantic salmon. Nutrients. 2014 Nov 26;6(12):5405-18. doi: 10.3390/nu6125405. PMID: 25431880; PMCID: PMC4276975.

CALM Study

 A modified Mediterranean dietary intervention for adults with major depression: Dietary protocol and feasibility data from the SMILES trialNutritional Neuroscience 2018, 21:7, 487-501. DOI: 10.1080/1028415X.2017.1312841.

Men and women
Sex differences in specific aspects of two animal tests of anxiety-like behavior
Psychopharmacology, 2021; DOI: 10.1007/s00213-021-05893-w.

CBD

1., https://www.forbes.com/sites/davidprosser/2020/05/11/uk-demand-for-cbd-products-soars-amid-covid-19-pandemic/ 

  1. Moltke J and Hindocha C (2021) https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-021-00061-5
  2. https://www.food.gov.uk/safety-hygiene/cannabidiol-cbd
  3. www.who.int/medicines/access/controlled-substances/5.2_CBD.pdf

[5] Zuardi et al (1993). https://pubmed.ncbi.nlm.nih.gov/22290374/

[6] Bergamashi M et al (2011) https://www.nature.com/articles/npp20116

[7] Jadoon et al (2017) https://pubmed.ncbi.nlm.nih.gov/28614793/

[8] De Faria et al (2020) https://journals.sagepub.com/doi/10.1177/0269881119895536

[9] https://pubmed.ncbi.nlm.nih.gov/32019776/

[10] https://pubmed.ncbi.nlm.nih.gov/32421842/

[11] Geneva CANNABIDIOL (CBD) . n.d. Critical Review Report Expert Committee on Drug Dependence Fortieth Meeting

Dr Elisabeth Phillipps

  1. Cannabidiol in Anxiety and Sleep: A Large Case Series. Perm J 2019, 23: 18-041.
  2. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J Clin Pharm Ther 2014, 39:564-566.
    3. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int. 2018; 9: 91.

DIGESTION
Gut microbiome heritability is nearly universal but environmentally contingentScience 2021. DOI: 10.1126/science.aba5483.

Immunoglobulin A–specific deficiency induces spontaneous inflammation specifically in the ileumGut, 2021; gutjnl-2020-322873 DOI: 10.1136/gutjnl-2020-322873.

Royal jelly enhances antigen-specific mucosal IgA response. Food Science and Nutrition 2013. https://doi.org/10.1002/fsn3.29.

The Salivary IgA Flow Rate Is Increased by High Concentrations of Short-Chain Fatty Acids in the Cecum of Rats Ingesting Fructooligosaccharides. Nutrients 2016, 8(8), 500; https://doi.org/10.3390/nu8080500.

Cocoa and cocoa fibre differentially modulate IgA and IgM production at mucosal sitesBritish Journal of Nutrition 2016, 115(9), 1539-1546. DOI:10.1017/S000711451600074X.

Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. Journal of Applied Microbiology 2000, 89(3):404-14. DOI:10.1046/j.1365-2672.2000.01128.x.

Caloric restriction disrupts the microbiota and colonization resistance. Nature 2021, 595, 272–277. https://doi.org/10.1038/s41586-021-03663-4.

Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. eLife 2021, 10:e58820 DOI: 10.7554/eLife.58820.

EMILY BLAKE – SIgA and immune resilience:

  1. Wang QQ, Xu R, Volkow ND. Increased risk of COVID-19 infection and mortality in people with mental disorders: analysis from electronic health records in the United States. World Psychiatry [Internet]. 2020 [cited 2020 Dec 21]; Available from: https://pubmed.ncbi.nlm.nih.gov/33026219/
  2. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol [Internet]. 2020 Nov 30 [cited 2021 Jan 25];11:3221. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.611337/full
  3. Geerlings SY, Kostopoulos I, Vos WM De, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract : When , Where , and How ? Microrganisms. 2018;6(75):1–26.
  4. Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut [Internet]. Vol. 52, Critical Reviews in Biochemistry and Molecular Biology. Taylor and Francis Ltd; 2017 [cited 2021 Jan 26]. p. 45–56. Available from: /pmc/articles/PMC5233583/?report=abstract
  5. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov;4(6):603–11.
  6. Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Vol. 4, Frontiers in Immunology. Frontiers; 2013. p. 185.
  7. Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M, Son A, et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J Exp Med [Internet]. 2018 Sep 1 [cited 2021 Jan 19];215(8):2019–34. Available from: /pmc/articles/PMC6080902/?report=abstract
  8. Zocco MA, Ainora ME, Gasbarrini G, Gasbarrini A. Bacteroides thetaiotaomicron in the gut: Molecular aspects of their interaction. 2007;
  9. Engeland CG, Hugo FN, Hilgert JB, Nascimento GG, Junges R, Lim HJ, et al. Psychological distress and salivary secretory immunity. Brain Behav Immun [Internet]. 2016 Feb 1 [cited 2021 Jan 25];52:11–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26318411/
  10. Campos-Rodríguez R, Godínez-Victoria M, Abarca-Rojano E, Pacheco-Yépez J, Reyna-Garfias H, Barbosa-Cabrera RE, et al. Stress modulates intestinal secretory immunoglobulin A [Internet]. Vol. 7, Frontiers in Integrative Neuroscience. Frontiers Media SA; 2013 [cited 2021 Jan 25]. Available from: /pmc/articles/PMC3845795/?report=abstract
  11. Segerstrom SC, Miller GE. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol Bull [Internet]. 2004 Jul [cited 2020 Dec 21];130(4):601–30. Available from: /pmc/articles/PMC1361287/?report=abstract
  12. Geerlings S, Kostopoulos I, de Vos W, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms [Internet]. 2018;6(3):75. Available from: http://www.mdpi.com/2076-2607/6/3/75
  13. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015 Mar 19;5(FEB):81.
  14. Sirisinha S. The pleiotropic role of vitamin A in regulating mucosal immunity. Asian Pac J Allergy Immunol. 2015;33(2):71–8.
  15. Ohashi W, Fukada T. Contribution of Zinc and Zinc Transporters in the Pathogenesis of Inflammatory Bowel Diseases. 2019 [cited 2020 Mar 20]; Available from: https://doi.org/10.1155/2019/8396878
  16. Maataoui SB, Maataoui RB, Almesrar B, Hilali S. ANTI ULCER ACTIVITY OF PRICKLY PEAR (OPUNTIA FICUS INDICA) CLADODES EXTRACTS. Int J Adv Res [Internet]. 2018 [cited 2020 Feb 7];6(11):498–506. Available from: http://dx.doi.org/10.21474/IJAR01/8023
  17. Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, et al. Alcohol and gut-derived inflammation. Alcohol Res Curr Rev [Internet]. 2017 [cited 2020 Dec 21];38(2):e-1-e-9. Available from: /pmc/articles/PMC5513683/?report=abstract
  18. Volstatova T, Marchica A, Hroncova Z, Bernardi R, Doskocil I, Havlik J. Effects of chlorogenic acid, epicatechin gallate, and quercetin on mucin expression and secretion in the Caco-2/HT29-MTX cell model. Food Sci Nutr [Internet]. 2019 Feb 1 [cited 2020 Mar 4];7(2):492–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/fsn3.818
  19. Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms. 2018;6(3):78.
  20. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305–44.
  21. Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A. Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes [Internet]. 2016;7(2):146–53. Available from: http://dx.doi.org/10.1080/19490976.2016.1142036
  22. Shang Q, Song G, Zhang M, Shi J, Xu C, Hao J, et al. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods. 2017 Jan 1;28:138–46.
  23. Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to Clostridium difficile toxin A in mice. Infect Immun [Internet]. 2001 [cited 2020 Dec 21];69(4):2762–5. Available from: https://pubmed.ncbi.nlm.nih.gov/11254650/
  24. McFarland L V. Systematic review and meta-analysis of saccharomyces boulardii in adult patients [Internet]. Vol. 16, World Journal of Gastroenterology. World J Gastroenterol; 2010 [cited 2021 Jan 26]. p. 2202–22. Available from: https://pubmed.ncbi.nlm.nih.gov/20458757/
  25. Menchetti L, Traina G, Tomasello G, Casagrande-Proietti P, Leonardi L, Barbato O, et al. Potential benefits of colostrum in gastrointestinal diseases. Front Biosci. 2016;8:331–51.
  26. Główka N, Woźniewicz M. Potential use of Colostrum Bovinum supplementation in athletes – A review. Acta Sci Pol Technol Aliment. 2019 Jul 1;18(2):115–23.
  27. Head K, Kelly G. Nutrients and Botanicals for Treatment of Stress: Adrenal Fatigue, Neurotra…: EBSCOhost. Altern Med Rev [Internet]. 2009;14(2):114–40. Available from: http://web.a.ebscohost.com.ncnm.idm.oclc.org/ehost/pdfviewer/pdfviewer?sid=43c9a0e3-44ee-4243-b6de-d327d9623100%40sessionmgr4001&vid=6&hid=4201.

RESEARCH UPDATE

Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021, 13: 1. https://www.tandfonline.com/doi/full/10.1080/19490976.2021.1930875.
Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trialBMJ, July 1, 2021; DOI: 10.1136/bmj.n1448.

Quantitative mapping of human hair greying and reversal in relation to life stresseLife, 2021; 10 DOI: 10.7554/eLife.67437.

Enterically derived high-density lipoprotein restrains liver injury through the portal veinScience, 2021; 373 (6553): eabe6729 DOI: 10.1126/science.abe6729.

Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in miceCell Host & Microbe, 2021; DOI: 10.1016/j.chom.2021.06.014.

Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clockCell Reports, 2021; 36 (1): 109336 DOI: 10.1016/j.celrep.2021.109336.

CBD and oral ulcers: Xingying Qi, West China Hospital of Stomatology, Sichuan University, presented the findings  – Cannabidiol Promotes Oral Ulcer Healing by Inactivating CMPK2-Mediated NLRP3 Inflammasome – at the virtual 99th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 50th Annual Meeting of the American Association for Dental Research (AADR) and the 45th Annual Meeting of the Canadian Association for Dental Research (CADR), on July 21-24, 2021.

IN PRACTICE

https://www.euromonitor.com/dietary-supplements-in-the-united-kingdom/report.

https://www.mintel.com/global-new-products-database.

Food Supplements Consumer Research, 2018 report for the FSA: https://www.food.gov.uk/sites/default/files/media/document/food-supplements-consumer-research.pdf.

July 2021

WELCOME

“6 ways the FDA’s approval of Aduhelm does more harm than good”, by Prof Sam Gandy, June 15, 2021. https://www.statnews.com/2021/06/15/6-ways-fda-approval-aduhelm-does-more-harm-than-good.

NEWS and NEW RELEASES

Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring Cohort.  American Journal of Clinical Nutrition 2021, https://doi.org/10.1093/ajcn/nqab195.

Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot Essent Fatty Acids 2021 Mar;166:102250, doi: 10.1016/j.plefa.2021.102250.

What COVID-19 is doing to the heart, even after recovery. September 3, 2020. https://www.heart.org/en/news/2020/09/03/what-covid-19-is-doing-to-the-heart-even-after-recovery.

Obesity and the pandemic:
https://swprs.org/studies-on-covid-19-lethality/#5-percentage-of-covid-19-deaths-in-care-homes. And Mortality associated with COVID-19 outbreaks in care homes: early international evidence, April 12, 2020. https://ltccovid.org/2020/04/12/mortality-associated-with-covid-19-outbreaks-in-care-homes-early-international-evidence.

COVID Infection Fatality Rates: https://swprs.org/studies-on-covid-19-lethality.

Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol  2021 Jun; 9(6):350-359. doi: 10.1016/S2213-8587(21)00089-9. Epub 2021 Apr 28.

https://en.wikipedia.org/wiki/List_of_countries_by_obesity_rate.

Covid-19: Highest death rates seen in countries with most overweight populations. BMJ 2021, 372, doi: https://doi.org/10.1136/bmj.n623 (Published 04 March 2021).

A Time Frame for Testing Negative for SARS-COV2 in People with Obesity. Obes Facts 2020, 13:528-533. DOI: 10.1159/000511738.

Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences 2021, Feb,118 (8) e2021830118. DOI: 10.1073/pnas.2021830118.

Are face masks effective? The evidence. https://swprs.org/face-masks-evidence.

Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol 2020, Jun;57(6):759-764. DOI: 10.1007/s00592-020-01522-8.

Swiss Policy Research:
Observational Study on 255 Mechanically Ventilated Covid Patients at the Beginning of the USA Pandemic. (Pre-print, not peer-reviewed). MedRxiv 2021.05.28.21258012. DOI: https://doi.org/10.1101/2021.05.28.21258012.

https://www.news-medical.net/news/20210602/HydroxychloroquineAzithromycin-therapy-at-a-higher-dose-improved-survival-by-nearly-20025-in-ventilated-COVID-patients.aspx.

Treatment with Zinc is Associated with Reduced In-Hospital Mortality Among COVID-19 Patients: A Multi-Center Cohort Study. Res Sq [Preprint] 2020, Oct 26:rs.3.rs-94509. DOI: 10.21203/rs.3.rs-94509/v1.  

Long-COVID: https://www.theguardian.com/society/2021/jun/24/more-than-2m-adults-in-england-have-had-long-covid-for-over-12-weeks-study.

Substituting Cannabidiol for Opioids and Pain Medications Among Individuals With Fibromyalgia: A Large Online SurveyThe Journal of Pain 2021.  DOI: 10.1016/j.jpain.2021.04.011.

Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nature Biomedical Engineering 2021. DOI: 10.1038/s41551-021-00749-2.

Short-Term Western Diet Intake Promotes IL-23‒Mediated Skin and Joint Inflammation Accompanied by Changes to the Gut Microbiota in MiceJournal of Investigative Dermatology 2021; 141 (7): 1780 DOI: 10.1016/j.jid.2020.11.032.

Clinical impact of a pharmacist + health coach chronic disease management program in a rural free clinic. J Am Pharm Assoc 2021; doi:https://doi.org/10.1016/j.japh.2021.02.014

Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial. Eur J Med Res 2021, 26, 33: https://doi.org/10.1186/s40001-021-00499-6.

Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 2010, 340:c2096:  doi:10.1136/bmj.c2096.

Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants 2021;10:898. https://doi.org/10.3390/antiox10060898.

  1. Vogel:

Ogal M et al. Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial. Eur J Med Res. 2021; 26: 33 www.https://doi.org/10.11.86/s40001-021-00499-6)

Ridge KW , Hand K , Sharland M , et al. Infections and the rise of antimicrobial resistance. London: Department of Health, 2011

Public Health England. English surveillance programme for antimicrobial utilisation and resistance report, 2016

National Institute for Health and Care Excellence. Prescribing of antibiotics for self-limiting respiratory tract infections in adults and children in primary care (Clinical Guideline 69). 2008.

Little P , Stuart B , Hobbs FD , et al. Antibiotic prescription strategies for acute sore throat: a prospective observational cohort study. Lancet Infect Dis 2014;14:2139. doi:10.1016/S1473-3099(13)70294-9

Spinks A , Glasziou PP , Del Mar CB. Cochrane Acute Respiratory Infections Group. Antibiotics for sore throat. Cochrane Database Syst Rev 2013;139:CD000023.doi:10.1002/14651858.CD000023.pub4

Kenealy T , Arroll B. Antibiotics for the common cold and acute purulent rhinitis. Cochrane Database Syst Rev 2013;4:CD000247.doi:10.1002/14651858.CD000247.pub3

Costelloe C , Metcalfe C , Lovering A , et al. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 2010;340:c2096.doi:10.1136/bmj.c2096

Tobler M, et al: Characteristics of whole fresh plant extracts. Schweizerische Zeitschrift fur GanzheitMedizin,1994.

NUTRITION and GENETICS

Resveratrol trial:

  1. D. A., et al. [2014]. Mitochondrial Aging and Age-Related Dysfunction of Mitochondria. Biomed Research International, Volume 2014, Article ID ID 238463. Retrieved November 29, 2020 from:  https://www.hindawi.com/journals/bmri/2014/238463/
  2. Toledo, F. G. S. and B. H. Goodpaster [October 2013].  The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Molecular and Cellular Endocrinology, V. 379, Issues  1-2, pp. 30-34.
  3. Salehi, B. et al. [September 2019]. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines, V. 6, № 3, p. 91. Retrieved November 29, 2020 from:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164842/
  4. Olsen, N. [May 29, 2018]. How can antioxidants benefit our health? MedicalNewsToday. Retrieved November 29, 2020 from: https://www.medicalnewstoday.com/articles/301506
  5. Mohar, D.S. and S. Malik [November 2013]. The Sirtuin System: The Holy Grail of Resveratrol? J. Clin. Exp. Cardiolog., V. 3. № 11, p. 216. Retrieved November 29, 2020 from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613783/
  6. Higashida, K. et al. [July 9, 2013]. Effects of Resveratrol and SIRT1 on PGC-1α Activity and Mitochondrial Biogenesis: A Reevaluation. PLoS Biol., v. 11, № 7, p. e 1001603. Retrieved November 29, 2020 from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706311/
  7. Rodriguez-Bies, E. et al. [September 28, 2016]. Resveratrol primes the effects of physical activity in old mice. British Journal of Nutrition, Volume 116, Issue 6, pp. 979-988.

Szyf:
The epigenetics of perinatal stress. Dialogues Clin Neurosci 2019, Dec;21(4):369-378. doi: 10.31887/DCNS.2019.21.4/mszyf.

Imprinted genes
Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3Nature Communications 2021; 12 (1) DOI: 10.1038/s41467-021-23510-4.

THIAMINE – ELIOTT OVERTON

Evaluation of Thiamine as Adjunctive Therapy in COVID-19 Critically Ill Patients: A Multicenter Propensity Score Matched Study. In Review at Critical Care 2021, June. DOI: 10.21203/rs.3.rs-400565/v1.

α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res. 2011 Jan;45(1):29-36: doi: 10.3109/10715762.2010.534163. Epub 2010 Nov 29.
The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int. 2000 Feb;36(2):97-112. doi: 10.1016/s0197-0186(99)00114-x.

Prospective Biomarkers from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease Symptomatology. Metabolites 2018, 8(4), 90; https://doi.org/10.3390/metabo8040090.

 Inhibition of the α-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. Journal of Neurochemistry 2005, 92: 302-310. https://doi.org/10.1111/j.1471-4159.2004.02868.x.

Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochemistry 1998, Jan 13;37(2):552-7. doi: 10.1021/bi971958i.

Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex. Biochim Biophys Acta Bioenerg 2018, Sep;1859(9):925-931, doi: 10.1016/j.bbabio.2018.05.005. Epub 2018 May 16. 
Glutamate Excitotoxicity Induced by Nitric Oxide Mediated Dysfunction of the Mitochondrial 2-Oxoglutarate Dehydrogenase Complex. Free Radical Biology and Medicine. 2017, Volume 112, Supplement 1, November, Page 74. https://www.sciencedirect.com/science/article/abs/pii/S0891584917308912.

High-dose thiamine improves the symptoms of fibromyalgia. BMJ Case Rep 2013, May 20;2013:bcr2013009019. doi: 10.1136/bcr-2013-009019.

High dose thiamine improves fatigue in multiple sclerosis. BMJ Case Reports 2013; 2013:bcr2013009144.
High-dose thiamine and essential tremor. BMJ Case Reports 2018;2018:bcr-2017-223945.
Thiamine and Fatigue in Inflammatory Bowel Diseases: An Open-label Pilot Study. J Altern Complement Med 2013, Volume 19, Number 8. 704–708. DOI: 10.1089/acm.2011.0840.
High-dose thiamine improves the symptoms of Friedreich’s ataxia. BMJ Case Reports 2013;2013:bcr2013009424.
Long-Term Treatment with High-Dose Thiamine in Parkinson Disease: An Open-Label Pilot Study. J Altern Complement Med 2015, Dec;21(12):740-7, doi: 10.1089/acm.2014.0353.
Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.
Molecular and Cellular Neuroscience 2017, 126-136. https://doi.org/10.1016/j.mcn.2017.05.005.

June 2021

WELCOME and CONTENTS

mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 2018, 17, 261–279.  https://doi.org/10.1038/nrd.2017.243.

https://www.dailymail.co.uk/news/article-9566121/Britain-approve-Covid-vaccines-children-allows-Pfizers-jab-youngsters.html

NEWS

Association of Loneliness and Wisdom With Gut Microbial Diversity and Composition: An Exploratory StudyFrontiers in Psychiatry, 2021; 12. DOI: 10.3389/fpsyt.2021.648475.

Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY) 2021, Apr 12;13(7):9419-9432. DOI: 10.18632/aging.202913.

High-Density Lipoprotein Anti-Inflammatory Capacity and Incident Cardiovascular EventsCirculation, 2021. DOI: 10.1161/CIRCULATIONAHA.120.050808.

“Up to 8,700 patients died after catching Covid in English hospitals”. By Denis Campbell and Anna Bawden. The Guardian, May 24, 2021.

https://digital.nhs.uk/news-and-events/latest-news/one-million-admissions-linked-to-obesity-in-2019-20-new-data-reveals.

SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humansNature, 2021; DOI: 10.1038/s41586-021-03647-4.

Prevalence of Immunosuppressive Drug Use Among Commercially Insured US Adults, 2018-2019JAMA Network Open, 2021; 4 (5): e214920 DOI: 10.1001/jamanetworkopen.2021.4920.

β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in miceCell Reports Medicine, 2021; 2 (5): 100281 DOI: 10.1016/j.xcrm.2021.100281.


COELIAC and GLUTEN – BEN BROWN

  1. Mooney PD, Evans KE, Singh S, Sanders DS. Treatment failure in coeliac disease: a practical guide to investigation and treatment of non-responsive and refractory coeliac disease. J Gastrointestin Liver Dis. 2012 Jun;21(2):197-203.
  2. Dewar DH, Donnelly SC, McLaughlin SD, Johnson MW, Ellis HJ, Ciclitira PJ. Celiac disease: management of persistent symptoms in patients on a gluten-free diet. World J Gastroenterol. 2012 Mar 28;18(12):1348-56.
  3. Abdulkarim AS, Burgart LJ, See J, Murray JA. Etiology of nonresponsive celiac  disease: results of a systematic approach. Am J Gastroenterol. 2002 Aug;97(8):2016-21.
  4. Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, Fasano A. Celiac disease: a comprehensive current review. BMC Med. 2019 Jul 23;17(1):142.
  5. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, Volta U, Accomando S, Picarelli A, De Vitis I, Pianelli G, Gesuita R, Carle F, Mandolesi A, Bearzi I, Fasano A. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr. 2007 Jan;85(1):160-6.
  6. Biagi F, Campanella J, Martucci S, Pezzimenti D, Ciclitira PJ, Ellis HJ, Corazza GR. A milligram of gluten a day keeps the mucosal recovery away: a case report. Nutr Rev. 2004 Sep;62(9):360-3. doi: 10.1111/j.1753-4887.2004.tb00062.x. PMID: 15497770.
  7. Makovicky P, Makovicky P, Lupan I, Samasca G, Sur G, Freeman HJ. Perspective: Gluten-Free Products for Patients with Celiac Disease Should Not Contain Trace Levels. Adv Nutr. 2017 May 15;8(3):409-411. doi: 10.3945/an.116.014472. PMID: 28507006; PMCID: PMC5421124.
  8. Hall NJ, Rubin G, Charnock A. Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacol Ther. 2009 Aug 15;30(4):315-30.
  9. Silvester JA, Graff LA, Rigaux L, Walker JR, Duerksen DR. Symptomatic suspected gluten exposure is common among patients with coeliac disease on a gluten-free diet. Aliment Pharmacol Ther. 2016 Sep;44(6):612-9.
  10. Thompson T, Lee AR, Grace T. Gluten contamination of grains, seeds, and flours in the United States: a pilot study. J Am Diet Assoc. 2010 Jun;110(6):937-40.
  11. Veeraraghavan G, Therrien A, Degroote M, McKeown A, Mitchell PD, Silvester JA, Leffler DA, Leichtner AM, Kelly CP, Weir DC. Non-responsive celiac disease in children on a gluten free diet. World J Gastroenterol. 2021 Apr 7;27(13):1311-1320. doi: 10.3748/wjg.v27.i13.1311. PMID: 33833484; PMCID: PMC8015304.
  12. Abdulkarim AS, Burgart LJ, See J, Murray JA. Etiology of nonresponsive celiac disease: results of a systematic approach. Am J Gastroenterol. 2002 Aug;97(8):2016-21. doi: 10.1111/j.1572-0241.2002.05917.x. PMID: 12190170.
  13. Faulkner-Hogg KB, Selby WS, Loblay RH. Dietary analysis in symptomatic patients with coeliac disease on a gluten-free diet: the role of trace amounts of gluten and non-gluten food intolerances. Scand J Gastroenterol. 1999 Aug;34(8):784-9.
  14. Moreno ML, Rodríguez-Herrera A, Sousa C, Comino I. Biomarkers to Monitor Gluten-Free Diet Compliance in Celiac Patients. Nutrients. 2017 Jan 6;9(1):46.
  15. Hollon JR, Cureton PA, Martin ML, Puppa EL, Fasano A. Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC Gastroenterol. 2013 Feb 28;13:40.
  16. Baker AL, Rosenberg IH. Refractory sprue: recovery after removal of nongluten dietary proteins. Ann Intern Med. 1978 Oct;89(4):505-8.
  17. Mike N, Asquith P. Soya protein hypersensitivity in nonresponsive coeliac disease. Gut 1984; 25: A1190.
  18. Kristjánsson G, Venge P, Hällgren R. Mucosal reactivity to cow’s milk protein in coeliac disease. Clin Exp Immunol. 2007 Mar;147(3):449-55.
  19. Faulkner-Hogg KB, Selby WS, Loblay RH. Dietary analysis in symptomatic patients with coeliac disease on a gluten-free diet: the role of trace amounts of gluten and non-gluten food intolerances. Scand J Gastroenterol. 1999 Aug;34(8):784-9.
  20. Brown BI. Does Irritable Bowel Syndrome Exist? Identifiable and Treatable Causes of Associated Symptoms Suggest It May Not. Gastrointestinal Disorders. 2019; 1(3):314-340. https://doi.org/10.3390/gidisord1030027
  21. Borghini R, De Amicis N, Bella A, Greco N, Donato G, Picarelli A. Beneficial Effects of a Low-Nickel Diet on Relapsing IBS-Like and Extraintestinal Symptoms of Celiac Patients during a Proper Gluten-Free Diet: Nickel Allergic Contact Mucositis in Suspected Non-Responsive Celiac Disease. Nutrients. 2020 Jul 29;12(8):2277. doi: 10.3390/nu12082277. PMID: 32751300; PMCID: PMC7468824.
  22. Jones PE, Peters TJ. DNA synthesis by jejunal mucosa in responsive and non-responsive coeliac disease. Br Med J. 1977 Apr 30;1(6069):1130-1.
  23. Love AHG, Elmes M, Golden MK, McMaster D. Zinc deficiency and coeliac disease. In: McNicholl B, McCarthy CF, Fottrell PF, eds. Perspectives in Coeliac Disease. Lancaster: MTP Press, 1978: 335±42.
  24. Jones PE, Peters TJ. Oral zinc supplements in non-responsive coeliac syndrome: effect on jejunal morphology, enterocyte production, and brush border disaccharidase activities. Gut. 1981 Mar;22(3):194-8.
  25. Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B, Mercogliano G, Mullin JM. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014 Nov 15;5(4):496-513.
  26. Quigley EM, Carmichael HA, Watkinson G. Adult celiac disease (celiac sprue), pernicious anemia and IgA deficiency. Case report and review of the relationships between vitamin B12 deficiency, small intestinal mucosal disease and immunoglobulin deficiency. J Clin Gastroenterol. 1986 Jun;8(3 Pt 1):277-81.
  27. Ghoshal UC, Srivastava D, Verma A, Ghoshal U. Tropical sprue in 2014: the new  face of an old disease. Curr Gastroenterol Rep. 2014;16(6):391.
  28. Caruso R, Pallone F, Stasi E, Romeo S, Monteleone G. Appropriate nutrient supplementation in celiac disease. Ann Med. 2013 Dec;45(8):522-31.
  29. Collado MC, Donat E, Ribes-Koninckx C, et al. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Austin J Clin Pathol. 2009;62:264–269.
  30. Nadal I, Donat E, Ribes-Koninckx C, et al. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–1674.
  31. Tursi A, Brandimarte G, Giorgetti G. High prevalence of small intestinal bacterial overgrowth in celiac patients with persistence of gastrointestinal symptoms after gluten withdrawal. Am J Gastroenterol. 2003 Apr;98(4):839-43.
  32. Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, Castellaneta S, Barone M, Indrio F, Gobbetti M, De Angelis M. Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients With Persistent IBS-type Symptoms: A Randomized, Double-Blind, Placebo-controlled, Multicenter Trial. J Clin Gastroenterol. 2019 Mar;53(3):e117-e125.
  33. Harnett J, Myers SP, Rolfe M. Probiotics and the Microbiome in Celiac Disease: A Randomised Controlled Trial. Evid Based Complement Alternat Med. 2016;2016:9048574. doi: 10.1155/2016/9048574. Epub 2016 Jul 21. PMID: 27525027; PMCID: PMC4972910.
  34. Smecuol E, Hwang HJ, Sugai E, Corso L, Cherñavsky AC, Bellavite FP, González A, Vodánovich F, Moreno ML, Vázquez H, Lozano G, Niveloni S, Mazure R, Meddings J, Mauriño E, Bai JC. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013 Feb;47(2):139-47. doi: 10.1097/MCG.0b013e31827759ac. PMID: 23314670.
  35. Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014 Jul 14;112(1):30-40. doi: 10.1017/S0007114514000609. Epub 2014 Apr 28. PMID: 24774670.
  36. Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D’Auria G, Martinez-Priego L, Pérez-Villarroya D, Langerholc T, Primec M, Mičetić-Turk D, Di Gioia D. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study. Nutrients. 2016 Oct 22;8(10):660. doi: 10.3390/nu8100660. PMID: 27782071; PMCID: PMC5084046.
  37. Klemenak M, Dolinšek J, Langerholc T, Di Gioia D, Mičetić-Turk D. Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Dig Dis Sci. 2015 Nov;60(11):3386-92. doi: 10.1007/s10620-015-3769-7. Epub 2015 Jul 2. PMID: 26134988.
  38. Primec M, Klemenak M, Di Gioia D, Aloisio I, Bozzi Cionci N, Quagliariello A, Gorenjak M, Mičetić-Turk D, Langerholc T. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr. 2019 Jun;38(3):1373-1381. doi: 10.1016/j.clnu.2018.06.931. Epub 2018 Jun 18. PMID: 29960810.
  39. Drabińska N, Jarocka-Cyrta E, Markiewicz LH, Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients. 2018 Feb 12;10(2):201. doi: 10.3390/nu10020201. PMID: 29439526; PMCID: PMC5852777.
  40. Drabińska N, Krupa-Kozak U, Jarocka-Cyrta E. Intestinal Permeability in Children with Celiac Disease after the Administration of Oligofructose-Enriched Inulin into a Gluten-Free Diet-Results of a Randomized, Placebo-Controlled, Pilot Trial. Nutrients. 2020 Jun 10;12(6):1736. doi: 10.3390/nu12061736. PMID: 32531982; PMCID: PMC7352250.
  41. Drabińska N, Krupa-Kozak U, Abramowicz P, Jarocka-Cyrta E. Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin D and E Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study. Nutrients. 2018 Nov 15;10(11):1768. doi: 10.3390/nu10111768. PMID: 30445682; PMCID: PMC6266806.
  42. O’Mahony S, Howdle PD, Losowsky MS. Review article: management of patients with non-responsive coeliac disease. Aliment Pharmacol Ther. 1996 Oct;10(5):671-80.
  43. Regan PT, DiMagno EP. Exocrine pancreatic insufficiency in celiac sprue: a cause of treatment failure. Gastroenterology. 1980 Mar;78(3):484-7.
  44. Weizman Z, Hamilton JR, Kopelman HR, Cleghorn G, Durie PR. Treatment failure in celiac disease due to coexistent exocrine pancreatic insufficiency. Pediatrics. 1987 Dec;80(6):924-6.
  45. Krishnareddy S, Stier K, Recanati M, Lebwohl B, Green PH. Commercially available glutenases: a potential hazard in coeliac disease. Therap Adv Gastroenterol. 2017 Jun;10(6):473-481.
  46. Janssen G, Christis C, Kooy-Winkelaar Y, Edens L, Smith D, van Veelen P, Koning F. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements. PLoS One. 2015 Jun 1;10(6):e0128065.
  47. Ehren J, Morón B, Martin E, Bethune MT, Gray GM, Khosla C. A food-grade enzyme preparation with modest gluten detoxification properties. PLoS One. 2009 Jul 21;4(7):e6313. doi: 10.1371/journal.pone.0006313. PMID: 19621078; PMCID: PMC2708912.
  48. Korponay-Szabó, I. R. et al. Food-grade gluten degrading enzymes to treat dietary transgressions in coeliac adolescents. J. Pediatr. Gastroenterol. Nutr. 50, E68 (2010).
  49. Wei G, Helmerhorst EJ, Darwish G, Blumenkranz G, Schuppan D. Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients. 2020 Jul 15;12(7):2095. doi: 10.3390/nu12072095. PMID: 32679754; PMCID: PMC7400306.
  50. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. Front Pediatr. 2019 May 14;7:193.
  51. Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase Improves Symptoms in Seropositive Celiac Disease Patients While on a Gluten-Free Diet. Dig Dis Sci. 2017 Sep;62(9):2428-2432.

MEDICINAL MUSHROOMS

  1. Rathee, S.; Rathee, D.; Rathee, D.; Kumar, V.; Rathee, P. Mushrooms as therapeutic agents. Rev. Bras. Farmacogn. 201222, 457–474. [Google Scholar] [CrossRef]
  2. Abugri, D.; McElhenney, W.H.; Willian, K.R. Fatty acid profiling in selected cultivated edible and wild medicinal mushrooms in the Southern United States. J. Exp. Food Chem. 20162, 1–7. [Google Scholar] [CrossRef]
  3. Mhanda, F.N.; Kadhila-Muandingi, N.P.; Ueitele, I.S.E. Minerals and trace elements in domesticated Namibian Ganoderma species. Afr. J. Biotechnol. 201514, 3216–3218. [Google Scholar] [CrossRef]
  4. De Sousa, V.M.C.; Dos Santos, E.F.; Sgarbieri, V.C. The importance of prebiotics in functional foods and clinical practice. Food Nutr. Sci. 20112, 4. [Google Scholar] [CrossRef]
  5. Bhakta, M.; Kumar, P. Mushroom polysaccharides as a potential prebiotics. Int. J. Health Sci. Res. 20133, 77–84. [Google Scholar] [CrossRef]
  6. Cani, P.D.; Delzenne, N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 200915, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
  7. Petrovska, B. Protein fraction of edible Macedonian mushrooms. Eur. Food Sci. Technol. 2001212, 469–472. [Google Scholar] [CrossRef]
  8. Batbayar, S.; Lee, D.H.; Kim, H.W. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol. Ther. 201220, 433–445. [Google Scholar] [CrossRef] [PubMed]
  9. Huan, G.; Cai, W.; Xu, B. Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. Int. J. Vitam. Nutr. Res. 201621, 1–10. [Google Scholar] [CrossRef] [PubMed]
  10. Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 200351, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
  11. Islam, T.; Yu, X.; Xu, B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushroom commonly consumed in China. LWT Food Sci. Technol. 201672, 423–431. [Google Scholar] [CrossRef]
  12. Rai, M.; Tidke, G.; Wasser, S.P. Therapeutic potential of mushrooms. Nat. Prod. Radiance 20054, 246–257. [Google Scholar]
  13. Nahata, A. Ganoderma lucidum: A potent medicinal mushroom with numerous health benefits. Pharm. Anal. Acta 20134, 10. [Google Scholar] [CrossRef]
  14. Smina, T.P.; Nitha, B.; Devasagayam, T.P.; Janardhanan, K.K. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Mutat. Res. 2017813, 45–51. [Google Scholar] [CrossRef] [PubMed]
  15. Zeng, Q.; Zhou, F.; Lei, L.; Chen, J.; Lu, J.; Zhou, J.; Cao, K.; Gao, L.; Xia, F.; Ding, S.; et al. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging. Mol. Med. Rep. 201615, 111–116. [Google Scholar] [CrossRef] [PubMed]
  16. Wu, Y.S.; Ho, S.Y.; Nan, F.H. Ganoderma lucidum β 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. BMC Complement. Altern. Med. 201616, 500. [Google Scholar] [CrossRef] [PubMed]
  17. Shuhaimi, Y.S.; Arbakariya, M.; Fatimah, A.; Khalilah, A.B.; Anas, A.K.; Yazid, A.M. Effect of Ganoderma lucidum polysaccharides on the growth of Bifidobacterium spp. as assessed using Real-time PCR. Int. Food Res. J. 201219, 1199–1205. [Google Scholar]
  18. Li, K.; Zhuo, C.; Teng, C.; Yua, S.; Wang, X.; Hu, Y.; Ren, G.; Yu, M.; Qu, J. Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice. Int. J. Biol. Macromol. 201693, 904–912. [Google Scholar] [CrossRef] [PubMed]
  19. Tang, X.; Cai, W.; Xu, B. Comparison of the chemical profiles and antioxidant and antidiabetic activities of extracts from two Ganoderma species (Agaricomycetes). Int. J. Med. Mushrooms 201618, 609–620. [Google Scholar] [CrossRef] [PubMed]
  20. Wang, X.L.; Ding, Z.Y.; Liu, G.Q. Improved production and antitumor properties of triterpene acids from submerged culture of Ganoderma lingzhi. Molecules 201621, 1395. [Google Scholar] [CrossRef] [PubMed]
  21. Wu, H.; Tang, S.Z.; Huang, Q. Hepatoprotective effects and mechanisms of action of triterpenoids from lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) on α-amanitin-induced liver injury in mice. Int. J. Med. Mushrooms 201618, 841–850. [Google Scholar] [CrossRef] [PubMed]
  22. Rajasekaran, M.; Kalaimagal, C. In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidumJ. Pharm. Sci. Res. 20113, 1427–1433. [Google Scholar]
  23. Spinosa, R. The chaga storey. Mycophile 200647, 1–8. [Google Scholar]
  24. Hartwell, J.L. Plants Used against Cancer; Quartermain Publishing: Lawrence, MA, USA, 1982; 694p. [Google Scholar]
  25. Hong, K.B.; Noh, D.O.; Park, Y.; Suh, H.J. Hepatoprotective activity of water extracts from chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes) against tert-butyl hydroperoxide induced oxidative liver injury in primary cultured rat hepatocytes. Int. J. Med. Mushrooms 201517, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
  26. Kang, J.H.; Jang, J.E.; Mishra, S.K.; Lee, H.J.; Nho, C.W.; Shin, D.; Jin, M.; Kim, M.K.; Choi, C.; Oh, S.H. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 201515, 303–312. [Google Scholar] [CrossRef] [PubMed]
  27. Lee, H.S.; Kim, E.J.; Kim, S.H. Ethanol extract of Innotus obliquus (chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells. Nutr. Res. Pract. 20159, 111–116. [Google Scholar] [CrossRef] [PubMed]
  28. Hu, Y.; Teng, C.; Yu, S.; Wang, X.; Liang, J.; Bai, X.; Dong, L.; Song, T.; Yu, M.; Qu, J. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express 20177, 39. [Google Scholar] [CrossRef] [PubMed]
  29. Luo, K.W.; Yue, G.G.; Ko, C.H.; Lee, J.K.; Gao, S.; Li, L.F.; Li, G.; Fung, K.P.; Leung, P.C.; Lau, C.B. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma. Phytomedicine 201421, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
  30. Kobayashi, M.; Kawashima, H.; Takemori, K.; Ito, H.; Murai, A.; Masuda, S.; Yamada, K.; Uemura, D.; Horio, F. Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2012427, 299–304. [Google Scholar] [CrossRef] [PubMed]
  31. Yu, Z.T.; Liu, B.; Mukherjee, P.; Newburg, D.S. Trametes versicolor extract modifies human fecal microbiota composition in vitro. Plant Foods Hum. Nutr. 201368, 107–112. [Google Scholar] [CrossRef] [PubMed]
  32. Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Newburg, D.S.; Kelly, C.P. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers. Gut Microbes 20145, 458–467. [Google Scholar] [CrossRef] [PubMed]
  33. Matijašević, D.; Pantić, M.; Rašković, B.; Pavlović, V.; Duvnjak, D.; Sknepnek, A.; Nikšić, M. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella Enteritidis. Front. Microbiol. 20167, 1226. [Google Scholar] [CrossRef] [PubMed]
  34. Alonso, E.N.; Ferronato, M.J.; Gandini, N.A.; Fermento, M.E.; Obiol, D.J.; Lopez Romero, A.; Arévalo, J.; Villegas, M.E.; Facchinetti, M.M.; Curino, A.C. Antitumoral effects of D-fraction from Grifola frondosa (maitake) mushroom in breast cancer. Nutr. Cancer 201769, 29–43. [Google Scholar] [CrossRef] [PubMed]
  35. Lin, C.H.; Chang, C.Y.; Lee, K.R. Cold-water extracts of Grifola frondosa and its purified active fraction inhibit hepatocellular carcinoma in vitro and in vivo. Exp. Biol. Med. 2016241, 1374–1385. [Google Scholar] [CrossRef] [PubMed]
  36. Harhaji, L.J.; Mijatović, S.; Maksimović-Ivanić, D.; Stojanović, I.; Momcilović, M.; Maksimović, V.; Tufegdzić, S.; Marjanović, Z.; Mostarica-Stojković, M.; Vucinić, Z.; et al. Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: In vitro and in vivo study. Food Chem. Toxicol. 200846, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
  37. Phillip, A.; Green, E.S.J.; Voigt, R.M. The gastrointestinal microbiome alcohol effects on the composition of intestinal microbiota. Alcohol. Res. 201537, 223–236. [Google Scholar]
  38. Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 20136, 295–308. [Google Scholar] [CrossRef] [PubMed]
  39. Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 20147, 17–44. [Google Scholar] [CrossRef] [PubMed]
  40. Houghton, D.; Stewart, C.J.; Christopher, P. Gut microbiota and lifestyle interventions in NAFLD. Int. J. Mol. Sci. 201617, 447. [Google Scholar] [CrossRef] [PubMed]
  41. Clarke, S.F.; Murphy, E.F.; Nilaweera, K. The gut microbiota and its relationship to diet and obesity new insights. Gut Microbes 20123, 186–202. [Google Scholar] [CrossRef] [PubMed]
  42. Finelli, C.; Tarantino, G. Non-alcoholic fatty liver disease, diet and gut microbiota. EXCLI J. 201413, 461–490. [Google Scholar] [PubMed]
  43. Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.; de Boer, J.D.; Hoogendijk, A.J.; et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 201665, 575–583. [Google Scholar] [CrossRef] [PubMed]
  44. Vyas, U.; Ranganathan, N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterol. Res. Pract. 2012, 872716. [Google Scholar] [CrossRef] [PubMed]
  45. Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 201521, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
  46. Le Blanc, J.G.; Milani, C.; de Giori, G.S. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 201324, 160–168. [Google Scholar] [CrossRef] [PubMed]
  47. Kang, M.J.; Kim, H.G.; Kim, J.S.; Oh, D.G.; Um, Y.J.; Seo, C.S.; Han, J.W.; Cho, H.J.; Kim, G.H.; Jeong, T.C.; et al. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol. 20139, 1295–1308. [Google Scholar] [CrossRef] [PubMed]
  48. Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 20123, 4–14. [Google Scholar] [CrossRef] [PubMed]
  49. Okumura, R.; Takeda, K. Maintenance of gut homeostasis by the mucosal immune system. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 201692, 423–435. [Google Scholar] [CrossRef] [PubMed]
  50. Goto, Y.; Ivanov, I.I. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk. Immunol. Cell Biol. 201391, 204–214. [Google Scholar] [CrossRef] [PubMed]
  51. Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G., Jr.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 201637, 1–7. [Google Scholar] [CrossRef] [PubMed]
  52. Singdevsachan, S.K.; Mishra, P.A.J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre 20157, 1–14. [Google Scholar] [CrossRef]
  53. Varshney, J.; Ooi, J.H.; Jayarao, B.M. White button mushrooms increase microbial diversity and accelerate the resolution of Citrobacterrodentium infection in mice. J. Nutr. 2013143, 526–532. [Google Scholar] [CrossRef] [PubMed]
  54. Meneses, M.E.; Carrera, M.D.; Torres, N. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 Mice. PLoS ONE 201611, e0159631. [Google Scholar] [CrossRef] [PubMed]
  55. Giannenasa, I.; Tsalie, E.B.; Chronisc, E.F. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology, and antioxidant status of turkey poults. Anim. Feed Sci. Technol. 2011165, 218–229. [Google Scholar] [CrossRef]
  56. Geurts, L.; Neyrinck, A.M.; Delzenne, N.M. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 20145, 3–17. [Google Scholar] [CrossRef] [PubMed]
  57. Xu, X.; Zhang, X. Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice. PLoS ONE 201510, e0115037. [Google Scholar] [CrossRef] [PubMed]
  58. Saman, P.; Chaiongkarn, A.; Moonmangmee, S.; Sukcharoen, J.; Kuancha, C.; Fungsin, B. Evaluation of prebiotic property in edible mushrooms. Biol. Chem. Res. 20163, 75–85. [Google Scholar]
  59. Pandeya, D.R.; Souza, R.D.; Rahman, M.M. Host-microbial interaction in the mammalian intestine and their metabolic role inside. Biomed. Res. 20112, 1–8. [Google Scholar]
  60. Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 20116, 209–240. [Google Scholar] [CrossRef] [PubMed]
  61. Khoruts, A.; Dicksved, J.; Jansson, J.K.; Sadowsky, M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 201044, 354–360. [Google Scholar] [CrossRef] [PubMed]
  62. Hetland, G.; Dag, M.; Eide, M.; Haugen, M.H.; Mirlashari, M.R.; Paulsen, J.E. The Agaricus blazei-based mushroom extract, andosan, protects against intestinal tumorigenesis in the A/J Min/+ mouse. PLoS ONE 201611, e0167754. [Google Scholar] [CrossRef] [PubMed]
  63. Huang, H.Y.; Korivi, M.; Chaing, Y.Y.; Chien, T.Y.; Tsai, Y.C. Pleurotus tuber-regium polysaccharides attenuate hyperglycemia and oxidative stress in experimental diabetic rats. J. Evid. Based Complement. Altern. Med. 2012, 856381. [Google Scholar] [CrossRef]
  64. Chang, C.J.; Lin, C.S.; Lu, C.C.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Tseng, S.F.; Wu, T.R.; Chen, Y.Y.; Young, J.D.; et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 20156, 7489. [Google Scholar] [CrossRef] [PubMed]
  65. Stamets, P.E. Integrative Fungal Solutions for Protecting Bees and Overcoming Colony Collapse Disorder (CCD): Methods and Compositions. U.S. Patent 20140220150 A1, 7 August 2014. [Google Scholar]
  66. Kim, H.; Han, S.; Lee, C.; Lee, K.; Hong, D. Compositions Containing Polysaccharides from Phellinus linteus and Methods for Treating Diabetes Mellitus Using Same. U.S. Patent 6,809,084 B1, 26 October 2004. [Google Scholar]
  67. Kuo, H.C.; Lu, C.C.; Shen, C.H.; Tung, S.Y.; Hsieh, M.C.; Lee, K.C.; Lee, L.Y.; Chen, C.C.; Teng, C.C.; Huang, W.S.; et al. Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. J. Transl. Med. 201614, 78. [Google Scholar] [CrossRef] [PubMed]
  68. Lindequist, U.; Niedermeyer, T.H.J.; Julich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 20052, 285–299. [Google Scholar] [CrossRef] [PubMed]
  69. Xu, X.; Yang, J.; Ning, Z. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct. 20156, 2653–2663. [Google Scholar] [CrossRef] [PubMed]
  70. Grienke, U.; Zoll, M.; Peintner, U. European medicinal polypores—A modern view on traditional uses. J. Ethnopharmacol. 2014154, 564–583. [Google Scholar] [CrossRef] [PubMed]
  71. Lemieszek, M.; Rzeski, W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol. 201216, 285–289. [Google Scholar] [CrossRef] [PubMed]

PROBIOTICS

A pilot study to assess the effect of a fibre and mineral formulation on satiety and satiation when taken as part of a calorie restriction diet in overweight and obese women. J Functional Foods 2020, 74, 104157. https://doi.org/10.1016/j.jff.2020.104157.

Daily probiotic use is associated with a reduced rate of upper respiratory tract symptoms in overweight and obese people. DDW 2021; Abstract 739. https://ddw.org.

Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: Should we be considering probiotics during viral pandemics? Gut Microbes 2021, https://www.tandfonline.com/doi/full/10.1080/19490976.2021.1900997.

A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being.
Scientific Reports 2020; 10(1): 4183.

Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab Syndr 2021,15(1):295-301, doi: 10.1016/j.dsx.2020.12.040.

RESEARCH update

Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyratePLOS Pathogens, 2021; 17 (5): e1009510 DOI: 10.1371/journal.ppat.1009510.

Whole-genome sequencing analysis of semi-supercentenarianseLife, 2021; 10 DOI: 10.7554/eLife.57849.

Pericardial Fat and the Risk of Heart FailureJournal of the American College of Cardiology, 2021; 77 (21): 2638 DOI: 10.1016/j.jacc.2021.04.003.

 

 

 

May 2021

WELCOME

High-dimensional characterization of post-acute sequalae of COVID-19. Nature 2021, April 22. https://doi.org/10.1038/s41586-021-03553-9.

Avoiding the Coming Tsunami of Common, Chronic Disease: What the Lessons of the COVID-19 Pandemic Can Teach Us. Circulation 2021, April 6. DOI: 10.1161/CIRCULATIONAHA.121.053461.

A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences 2021, Apr 27, 118 (17) e2018995118. DOI: 10.1073/pnas.2018995118.

NEWS

Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app). BMJ Nutrition, Prevention & Health 2021, bmjnph-2021-000250. DOI: 10.1136/bmjnph-2021-000250.

Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine 2021, April 20. DOI: 10.1038/s41591-021-01329-2.

Disruption of the blood−brain barrier in 22q11.2 deletion syndrome. Brain 2021.  DOI: 10.1093/brain/awab055.

Study presented virtually at ENDO 2021, Washington, DC, March 20, 2021:
https://www.endocrine.org/news-and-advocacy/news-room/featured-science-from-endo-2021/supplements-may-protect-those-with-low-vitamin-d-levels-from-severe-covid19.
Vitamin D Status in Hospitalized Patients with SARS-CoV-2 InfectionThe Journal of Clinical Endocrinology & Metabolism 2020, Oct 27, 106, 3, e1343–e1353, https://doi.org/10.1210/clinem/dgaa733.

Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. Brit Med J 2021, March 31, 372:n693, doi: https://doi.org/10.1136/bmj.n693.

Maternal DHA supplementation influences sex-specific disruption of placental gene expression following early prenatal stressBiology of Sex Differences, 2021; 12 (1). DOI: 10.1186/s13293-020-00356-x.

Disordered eating in a population‐based sample of young adults during the COVID‐19 outbreakInternational Journal of Eating Disorders, 2021; DOI: 10.1002/eat.23505.

Aluminium and Tau in Neurofibrillary Tangles in Familial Alzheimer’s DiseaseJournal of Alzheimer’s Disease Reports, 2021; 5 (1): 283 DOI: 10.3233/ADR-210011.

Nutrition in Crisis
Higher consumption of red and processed meat is associated with adverse cardiovascular magnetic resonance morpho-functional phenotypes: A study of 19,408 UK Biobank participants. Presented April 15 at ESC Preventive Cardiology 2021, an online scientific congress of the European Society of Cardiology (ESC).
Effect of varying quantities of lean beef as part of a Mediterranean-style dietary pattern on lipids and lipoproteins: a randomized crossover controlled feeding trialThe American Journal of Clinical Nutrition 2021. DOI: 10.1093/ajcn/nqaa375.

Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transportCell Reports 2021; 35 (2): 108971. DOI: 10.1016/j.celrep.2021.108971.

Ultraviolet A Radiation and COVID‐19 Deaths in the USA with replication studies in England and ItalyBritish Journal of Dermatology 2021, Apr 8. DOI: 10.1111/bjd.20093.

Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metab (2021). https://doi.org/10.1038/s42255-021-00383-x. 

BEN BROWN – thyroid

  1. Sun X, Lu L, Yang R, Li Y, Shan L, Wang Y. Increased Incidence of Thyroid Disease in Patients with Celiac Disease: A Systematic Review and Meta-Analysis. PLoS One. 2016 Dec 28;11(12):e0168708.
  2. Hadithi M, de Boer H, Meijer JW, Willekens F, Kerckhaert JA, Heijmans R, Peña AS, Stehouwer CD, Mulder CJ. Coeliac disease in Dutch patients with Hashimoto’s thyroiditis and vice versa. World J Gastroenterol. 2007 Mar 21;13(11):1715-22.
  3. Sategna-Guidetti C, Volta U, Ciacci C, Usai P, Carlino A, De Franceschi L, Camera A, Pelli A, Brossa C. Prevalence of thyroid disorders in untreated adult celiac disease patients and effect of gluten withdrawal: an Italian multicenter study. Am J Gastroenterol. 2001 Mar;96(3):751-7.
  4. Valentino R, Savastano S, Tommaselli AP, Dorato M, Scarpitta MT, Gigante M, Micillo M, Paparo F, Petrone E, Lombardi G, Troncone R. Prevalence of coeliac disease in patients with thyroid autoimmunity. Horm Res. 1999;51(3):124-7.
  5. Mainardi E, Montanelli A, Dotti M, Nano R, Moscato G. Thyroid-related autoantibodies and celiac disease: a role for a gluten-free diet? J Clin Gastroenterol. 2002 Sep;35(3):245-8.
  6. Rasheed J, Hassan R, Khalid M, Zafar F. Frequency of autoimmune thyroiditis in children with Celiac disease and effect of gluten free diet. Pak J Med Sci. 2020 Sep-Oct;36(6):1280-1284.
  7. Meloni A, Mandas C, Jores RD, Congia M. Prevalence of autoimmune thyroiditis in children with celiac disease and effect of gluten withdrawal. J Pediatr. 2009 Jul;155(1):51-5, 55.e1.
  8. Metso S, Hyytiä-Ilmonen H, Kaukinen K, Huhtala H, Jaatinen P, Salmi J, Taurio J, Collin P. Gluten-free diet and autoimmune thyroiditis in patients with celiac disease. A prospective controlled study. Scand J Gastroenterol. 2012 Jan;47(1):43-8.
  9. Ventura A, Neri E, Ughi C, Leopaldi A, Città A, Not T. Gluten-dependent diabetes-related and thyroid-related autoantibodies in patients with celiac disease. J Pediatr. 2000 Aug;137(2):263-5.
  10. Losurdo G, Piscitelli D, Giangaspero A, Principi M, Buffelli F, Giorgio F, Montenegro L, Sorrentino C, Amoruso A, Ierardi E, Di Leo A. Evolution of nonspecific duodenal lymphocytosis over 2 years of follow-up. World J Gastroenterol. 2015 Jun 28;21(24):7545-52.
  11. Volta U, Bardella MT, Calabrò A, Troncone R, Corazza GR; Study Group for Non-Celiac Gluten Sensitivity. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med. 2014 May 23;12:85.
  12. Leemans M, Couderq S, Demeneix B, Fini JB. Pesticides With Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data. Front Endocrinol (Lausanne). 2019 Dec 9;10:743.
  13. Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne). 2021 Mar 19;12:627167.
  14. Campos É, Freire C. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence. Int J Hyg Environ Health. 2016 Aug;219(6):481-97.
  15. Benbrook CM, Davis DR. The dietary risk index system: a tool to track pesticide dietary risks. Environ Health. 2020 Oct 14;19(1):103.
  16. Papadopoulou E, Haug LS, Sakhi AK, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fernández-Barrés S, Grazuleviciene R, Knutsen HK, Maitre L, Meltzer HM, McEachan RRC, Roumeliotaki T, Slama R, Vafeiadi M, Wright J, Vrijheid M, Thomsen C, Chatzi L. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. Environ Health Perspect. 2019 Oct;127(10):107005.
  17. Makris KC, Konstantinou C, Andrianou XD, Charisiadis P, Kyriacou A, Gribble MO, Christophi CA. A cluster-randomized crossover trial of organic diet impact on biomarkers of exposure to pesticides and biomarkers of oxidative stress/inflammation in primary school children. PLoS One. 2019 Sep 4;14(9):e0219420.
  18. Oates L, Cohen M, Braun L, Schembri A, Taskova R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res. 2014 Jul;132:105-11.
  19. Nankongnab N, Kongtip P, Kallayanatham N, Pundee R, Yimsabai J, Woskie S. Longitudinal Study of Thyroid Hormones between Conventional and Organic Farmers in Thailand. Toxics. 2020 Oct 5;8(4):82.
  20. Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int J Environ Res Public Health. 2020 Aug 5;17(16):5655.
  21. Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. Int J Environ Res Public Health. 2020 Apr 13;17(8):2654.
  22. Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ Health Perspect. 2011 Oct;119(10):1396-402. doi: 10.1289/ehp.1103582. Epub 2011 Jul 11.
  23. Park C, Choi W, Hwang M, Lee Y, Kim S, Yu S, Lee I, Paek D, Choi K. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population – Korean National Environmental Health Survey (KoNEHS) 2012-2014. Sci Total Environ. 2017 Apr 15;584-585:950-957.
  24. Wang N, Zhou Y, Fu C, Wang H, Huang P, Wang B, Su M, Jiang F, Fang H, Zhao Q, Chen Y, Jiang Q. Influence of Bisphenol A on Thyroid Volume and Structure Independent of Iodine in School Children. PLoS One. 2015 Oct 23;10(10):e0141248. doi: 10.1371/journal.pone.0141248.
  25. Li L, Ying Y, Zhang C, Wang W, Li Y, Feng Y, Liang J, Song H, Wang Y. Bisphenol A exposure and risk of thyroid nodules in Chinese women: A case-control study. Environ Int. 2019 May;126:321-328.
  26. Rudel RA, Gray JM, Engel CL, et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011 Jul;119(7):914-20. doi: 10.1289/ehp.1003170.
  27. Sathyanarayana S, Alcedo G, Saelens BE,et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J Expo Sci Environ Epidemiol. 2013 Jul;23(4):378-84.
  28. Rezg R, et al. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int. 2014 Mar;64:83-90
  29. Eisenbrand G, Gelbke HP. Assessing the potential impact on the thyroid axis of environmentally relevant food constituents/contaminants in humans. Arch Toxicol. 2016 Aug;90(8):1841-57. doi: 10.1007/s00204-016-1735-6.
  30. Felker P, Bunch R, Leung AM. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr Rev. 2016 Apr;74(4):248-58.
  31. McMillan M, Spinks EA, Fenwick GR. Preliminary observations on the effect of dietary brussels sprouts on thyroid function. Hum Toxicol. 1986 Jan;5(1):15-9. doi: 10.1177/096032718600500104. PMID: 2419242.
  32. Rao PS, Lakshmy R. Role of goitrogens in iodine deficiency disorders & brain development. Indian J Med Res. 1995 Nov;102:223-6.
  33. Truong T, Baron-Dubourdieu D, Rougier Y, Guénel P. Role of dietary iodine and cruciferous vegetables in thyroid cancer: a countrywide case-control study in New Caledonia. Cancer Causes Control. 2010 Aug;21(8):1183-92.
  34. Petroski W, Minich DM. Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients. 2020 Sep 24;12(10):2929.
  35. Kim SSR, He X, Braverman LE, Narla R, Gupta PK, Leung AM. Letter to the Editor. Endocr Pract. 2017 Jul;23(7):885-886. doi: 10.4158/1934-2403-23.7.885. PMID: 28703651; PMCID: PMC6699763.
  36. Chu M, Seltzer TF. Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 2010 May 20;362(20):1945-6. doi: 10.1056/NEJMc0911005. PMID: 20484407.
  37. Paśko P, Krośniak M, Prochownik E, Tyszka-Czochara M, Fołta M, Francik R, Sikora J, Malinowski M, Zagrodzki P. Effect of broccoli sprouts on thyroid function, haematological, biochemical, and immunological parameters in rats with thyroid imbalance. Biomed Pharmacother. 2018 Jan;97:82-90.
  38. Chartoumpekis DV, Ziros PG, Chen JG, Groopman JD, Kensler TW, Sykiotis GP. Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial. Food Chem Toxicol. 2019 Apr;126:1-6.
  39. Chang HC, Doerge DR. Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol Appl Pharmacol. 2000 Nov 1;168(3):244-52. doi: 10.1006/taap.2000.9019. PMID: 11042097.
  40. Marini H, Polito F, Adamo EB, Bitto A, Squadrito F, Benvenga S. Update on genistein and thyroid: an overall message of safety. Front Endocrinol (Lausanne). 2012 Jul 31;3:94. doi: 10.3389/fendo.2012.00094. PMID: 23060856; PMCID: PMC3459182.
  41. Otun J, Sahebkar A, Östlundh L, Atkin SL, Sathyapalan T. Systematic Review and Meta-analysis on the Effect of Soy on Thyroid Function. Sci Rep. 2019 Mar 8;9(1):3964. doi: 10.1038/s41598-019-40647-x. PMID: 30850697; PMCID: PMC6408586.
  42. Sathyapalan T, Manuchehri AM, Thatcher NJ, Rigby AS, Chapman T, Kilpatrick ES, Atkin SL. The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: a randomized, double-blind, crossover study. J Clin Endocrinol Metab. 2011 May;96(5):1442-9. doi: 10.1210/jc.2010-2255. Epub 2011 Feb 16. PMID: 21325465.
  43. Sathyapalan T, Dawson AJ, Rigby AS, Thatcher NJ, Kilpatrick ES, Atkin SL. The Effect of Phytoestrogen on Thyroid in Subclinical Hypothyroidism: Randomized, Double Blind, Crossover Study. Front Endocrinol (Lausanne). 2018 Sep 11;9:531. doi: 10.3389/fendo.2018.00531. PMID: 30254609; PMCID: PMC6141627.
  44. Nakamura Y, Ohsawa I, Goto Y, Tsuji M, Oguchi T, Sato N, Kiuchi Y, Fukumura M, Inagaki M, Gotoh H. Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report. J Med Case Rep. 2017 Sep 5;11(1):253. doi: 10.1186/s13256-017-1418-9. PMID: 28870235; PMCID: PMC5583972.
  45. Doerge DR, Sheehan DM. Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect. 2002 Jun;110 Suppl 3(Suppl 3):349-53. doi: 10.1289/ehp.02110s3349. PMID: 12060828; PMCID: PMC1241182.
  46. Ishizuki Y, Hirooka Y, Murata Y, Togashi K. [The effects on the thyroid gland of soybeans administered experimentally in healthy subjects]. Nihon Naibunpi Gakkai Zasshi. 1991 May 20;67(5):622-9. Japanese. doi: 10.1507/endocrine1927.67.5_622. PMID: 1868922.
  47. Ikeda T, Nishikawa A, Imazawa T, Kimura S, Hirose M. Dramatic synergism between excess soybean intake and iodine deficiency on the development of rat thyroid hyperplasia. Carcinogenesis. 2000 Apr;21(4):707-13. doi: 10.1093/carcin/21.4.707. PMID: 10753207.
  48. Son HY, Nishikawa A, Ikeda T, Imazawa T, Kimura S, Hirose M. Lack of effect of soy isoflavone on thyroid hyperplasia in rats receiving an iodine-deficient diet. Jpn JCancer Res. 2001 Feb;92(2):103-8. doi: 10.1111/j.1349-7006.2001.tb01071.x. PMID: 11223538; PMCID: PMC5926687.
  49. Bruce B, Messina M, Spiller GA. Isoflavone supplements do not affect thyroid function in iodine-replete postmenopausal women. J Med Food. 2003 Winter;6(4):309-16.
  50. Bouga M, Combet E. Emergence of Seaweed and Seaweed-Containing Foods in the UK: Focus on Labeling, Iodine Content, Toxicity and Nutrition. Foods. 2015 Jun 15;4(2):240-253.
  51. Clark CD, Bassett B, Burge MR. Effects of kelp supplementation on thyroid function in euthyroid subjects. Endocr Pract. 2003 Sep-Oct;9(5):363-9. doi: 10.4158/EP.9.5.363. PMID: 14583417.
  52. Combet E, Ma ZF, Cousins F, Thompson B, Lean ME. Low-level seaweed supplementation improves iodine status in iodine-insufficient women. Br J Nutr. 2014 Sep 14;112(5):753-61. doi: 10.1017/S0007114514001573. Epub 2014 Jul 9. PMID: 25006699.
  53. Ishizuki Y, Yamauchi K, Miura Y. Transient thyrotoxicosis induced by Japanese dombu. Nippon Naibunpi Gakkai Zasshi 1989;65:91-8.
  54. Shilo S, Hirsch HJ. Iodine-induced hyperthyroidism in a patient with a normal thyroid gland. Postgrad Med J 1986;62 :661-2.
  55. Konno N, et al. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J Clin Endocrinol Metab. 1994 Feb;78(2):393-7
  56. Eliason BC. Transient hyperthyroidism in a patient taking dietary supplements  containing kelp. J Am Board Fam Pract. 1998 Nov-Dec;11(6):478-80.
  57. Müssig K, et al. Iodine-induced thyrotoxicosis after ingestion of kelp-containing tea. J Gen Intern Med. 2006 Jun;21(6):C11-4.
  58. Di Matola T, Zeppa P, Gasperi M, Vitale M. Thyroid dysfunction following a kelp-containing marketed diet. BMJ Case Rep. 2014 Oct 29;2014.
  59. Gherbon A, Frandes M, Lungeanu D, Nicula M, Timar R. Transient Hyperthyroidism following the ingestion of complementary medications containing kelp seaweed: A case-report. Medicine (Baltimore). 2019 Sep;98(37):e17058.
  60. Miyai K, Tokushige T, Kondo M; Iodine Research Group. Suppression of thyroid function during ingestion of seaweed “Kombu” (Laminaria japonoca) in normal Japanese adults. Endocr J. 2008 Dec;55(6):1103-8.
  61. Teas J, Braverman LE, Kurzer MS, Pino S, Hurley TG, Hebert JR. Seaweed and soy: companion foods in Asian cuisine and their effects on thyroid function in American women. J Med Food. 2007 Mar;10(1):90-100. doi: 10.1089/jmf.2005.056. PMID: 17472472. 

Long-COVID lessons – CLAIRE SEHINSON

  1. ME Association website poll, conducted January 2016. https://meassociation.org.uk.
    2. https://www.nice.org.uk/guidance/ng188/chapter/Context.
    3. “Crunching the numbers: is GBR the sick man of Europe?” by Simon Martin. IHCAN 2021, Feb, 6-7. www.ihcan-mag.com.
    4. Offline: COVID-19 is not a pandemic. Lancet.2020; 396: 874. DOI: https://doi.org/10.1016/S0140-6736(20)32000-6. Discussed in The COVID-19 syndemic is not global: context matters, Lancet 2020, Nov 28;396 (10264):1731. doi: 10.1016/S0140-6736(20)32218-2.
    5. Glucocorticoids activate Epstein Barr virus lytic replication through the upregulation of immediate early BZLF1 gene expression. Brain Behav Immun 2010, Oct; 24(7):1089-96. DOI: 10.1016/j.bbi.2010.04.013.

JOINTS and BONES

Musculoskeletal involvement of COVID-19: review of imagingSkeletal Radiology, Feb. 18, 2021; DOI: 10.1007/s00256-021-03734-7.

Pathogenic, glycolytic PD-1 B cells accumulate in the hypoxic RA jointJCI Insight, 2020; 5 (21) DOI: 10.1172/jci.insight.139032.

The Influence of Specific Bioactive Collagen Peptides on Knee Joint Discomfort in Young Physically Active Adults: A Randomized Controlled Trial. Nutrients 2021, Feb 5;13(2):523,  doi: 10.3390/nu13020523.

Vegan Diet and Bone Health—Results from the Cross-Sectional RBVD Study. Nutrients 2021, 13(2), 685; https://doi.org/10.3390/nu13020685.

Partial Replacement of Animal Proteins with Plant Proteins for 12 Weeks Accelerates Bone Turnover Among Healthy Adults: A Randomized Clinical Trial. Journal of Nutrition 2021, 151, Jan, 11–19, https://doi.org/10.1093/jn/nxaa264.

Stabilization of Damaged Articular Cartilage with Hydrogel‐Mediated Reinforcement and SealingAdvanced Healthcare Materials, 2021; 2100315 DOI: 10.1002/adhm.202100315.

Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr. 2017 Jan; 105(1): 136–143, doi: 10.3945/ajcn.116.138594.

Cogent Solutions Group references: https://cogentsolutionsgroup.com/what-is-hyaluronan.

Oral Administration of Polymer Hyaluronic Acid Alleviates Symptoms of Knee Osteoarthritis: A Double-Blind, Placebo-Controlled Study over a 12-Month Period. Scientific World Journal 2012; 2012: 167928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC351226 .


RESEARCH

Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 2021, April 22, eabe9985. DOI: 10.1126/science.abe9985.

Potential Role of Vitamin B6 in Ameliorating the Severity of COVID-19 and Its Complications. Front Nutr., 29 October 2020 | https://doi.org/10.3389/fnut.2020.562051

Trial of Psilocybin versus Escitalopram for Depression. N Engl J Med 2021; 384:1402-1411. DOI: 10.1056/NEJMoa2032994.

High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn’s disease-associated Escherichia coliNature Communications 2021; 12 (1). DOI: 10.1038/s41467-021-22306-w.

Developmental trajectory of the healthy human gut microbiota during the first 5 years of lifeCell Host & Microbe, 2021; DOI: 10.1016/j.chom.2021.02.021.

The Gut Microbiome in Autism: Study-Site Effects and Longitudinal Analysis of Behavior ChangemSystems, 2021; 6 (2) DOI: 10.1128/mSystems.00848-20.

Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gutThe ISME Journal, 2021; DOI: 10.1038/s41396-021-00968-0.

Dietary cocoa ameliorates non-alcoholic fatty liver disease and increases markers of antioxidant response and mitochondrial biogenesis in high fat-fed miceThe Journal of Nutritional Biochemistry, 2021; 92: 108618 DOI: 10.1016/j.jnutbio.2021.108618.

NEW RELEASES

Solgar launch:
1. Hancocks, N. Vitamin Market set to hit £500 but where are the new users? [online] Nutrain Ingredients. 2020.

  1. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;0:1-12, doi:10.1002/mnfr.201300724. The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods. 2015;14:183-191. doi:10.1016/j.jff.2015.01.045.
  2. Does bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J Altern Complement Med. 2010; 16(7):753-759. doi:10.1089/acm.2009.0342. Efficacy and tolerability of BacoMind® on memory improvement in elderly participants – A double blind placebo controlled study. J Pharmacol Toxicol. 2008; 3(6):425-434. doi:10.3923/jpt.2008.425.434.
  3. Hippocampus as a mediator of the role of vitamin B-12 in memory. Am J Clin Nutr. 2016; 103(4):959-960. doi:10.3945/ajcn.116.132266.
  4. Erdman JW, MacDonald I, Zeisel SH, International Life Sciences Institute. Present Knowledge in Nutrition. International Life Sciences Institute; 2012. Lecithin and Choline in Human Health and Disease. Nutr Rev. 1994; 52(10):327-339 doi:10.1111/j.1753-4887.1994.tb01357.x
  5. Efficacy of the special extract ERr 731 from rhapontic rhubarb for menopausal complaints: a 6-month open observational study. Altern Ther Health Med 2008, Nov-Dec, 14(6):32-8.
  6. Efficacy and safety of a special extract of Rheum rhaponticum (ERr 731) in perimenopausal women with climacteric complaints: A 12-week randomized, double-blind, placebo-controlled trial. Menopause 2006; 13(5):744-759. doi:10.1097/01.gme.0000240632.08182.e4.
  7. Confirmation of the efficacy of ERr 731 in perimenopausal women with menopausal symptoms. Altern Ther Health Med. 2009; 15(1):24-34. https://europepmc.org/article/med/19161045.

9.. affron® a novel saffron extract (Crocus sativus L .)  improves mood in healthy adults over 4 weeks in a double-blind, parallel, randomized, placebo-controlled clinical trial.  Complement Ther Med. 2017;33:58-64. doi:10.1016/j.ctim.2017.06.001.

Bio-Kult:
Rationale of Probiotic Supplementation during Pregnancy and Neonatal Period. Nutrients 2018, Nov 6;10(11):1693,  doi: 10.3390/nu10111693. 

April 2021

WELCOME

Physical, cognitive and mental health impacts of COVID-19 following hospitalisation: a multi-centre prospective cohort Preprint: medRxiv 2021, 03.22.21254057; doi: https://doi.org/10.1101/2021.03.22.21254057.

NEWS

Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front. Cell. Infect. Microbiol 2021, March 8: https://doi.org/10.3389/fcimb.2021.624745

The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID‐19 infectionThe FEBS Journal, 2021; DOI: 10.1111/febs.15784.
Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. The Journal of Infectious Diseases, 23 March 2021, jiab147, https://doi.org/10.1093/infdis/jiab147.
Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control studyeLife, 2021; 10 DOI: 10.7554/eLife.67569.
Rare variants increase the risk of severe COVID-19eLife, 2021; 10 DOI: 10.7554/eLife.67860.
Obesity, walking pace and risk of severe COVID-19 and mortality: analysis of UK BiobankInt J Obes 2021: https://doi.org/10.1038/s41366-021-00771-z.
COVID-19 illness in relation to sleep and burnout. BMJ Nutrition, Prevention & Health 2021;bmjnph-2021-000228. http://dx.doi.org/10.1136/bmjnph-2021-000228.
Blood omega-3 fatty acids and death from COVID-19: A pilot study. PLEFA 2021, 166, 102250, March 1. DOI: https://doi.org/10.1016/j.plefa.2021.102250.
Low Zinc Levels at Admission Associates with Poor Clinical Outcomes in SARS-CoV-2 Infection. Nutrients 2021; 13(2):562. https://doi.org/10.3390/nu13020562.
Body Mass Index and Risk for COVID-19–Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death — United States, March–December 2020. MMWR Morb Mortal Wkly Rep 2021;70:355–361. DOI: http://dx.doi.org/10.15585/mmwr.mm7010e4external icon.

Trends in fall‐related mortality and fall risk increasing drugs among older individuals in the United States,1999–2017Pharmacoepidemiology and Drug Safety, 2021; DOI: 10.1002/pds.5201.

Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 2021, March 12, 1154-1159. DOI: 10.1126/science.abd0919.

 

BEN BROWN

  1. Marashly ET, Bohlega SA. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine. Front Neurol. 2017 Jul 20;8:333.
  2. Thompson DF, Saluja HS. Prophylaxis of migraine headaches with riboflavin: A systematic review. J Clin Pharm Ther. 2017 Aug;42(4):394-403. doi: 10.1111/jcpt.12548. Epub 2017 May 8. PMID: 28485121.
  3. Condò M, Posar A, Arbizzani A, Parmeggiani A. Riboflavin prophylaxis in pediatric and adolescent migraine. J Headache Pain. 2009 Oct;10(5):361-5. doi: 10.1007/s10194-009-0142-2. Epub 2009 Aug 1. PMID: 19649688; PMCID: PMC3452096.
  4. Talebian A, Soltani B, Banafshe HR, Moosavi GA, Talebian M, Soltani S. Prophylactic effect of riboflavin on pediatric migraine: a randomized, double-blind, placebo-controlled trial. Electron Physician. 2018 Feb 25;10(2):6279-6285. doi: 10.19082/6279. PMID: 29629048; PMCID: PMC5878019.
  5. MacLennan SC, Wade FM, Forrest KM, Ratanayake PD, Fagan E, Antony J. High-dose riboflavin for migraine prophylaxis in children: a double-blind, randomized, placebo-controlled trial. J Child Neurol. 2008 Nov;23(11):1300-4. doi: 10.1177/0883073808318053. PMID: 18984840.
  6. Bruijn J, Duivenvoorden H, Passchier J, Locher H, Dijkstra N, Arts WF. Medium-dose riboflavin as a prophylactic agent in children with migraine: a preliminary placebo-controlled, randomised, double-blind, cross-over trial. Cephalalgia. 2010 Dec;30(12):1426-34. doi: 10.1177/0333102410365106. Epub 2010 Mar 26. PMID: 20974610.
  7. Condò M, Posar A, Arbizzani A, Parmeggiani A. Riboflavin prophylaxis in pediatric and adolescent migraine. J Headache Pain. 2009 Oct;10(5):361-5. doi: 10.1007/s10194-009-0142-2. Epub 2009 Aug 1. PMID: 19649688; PMCID: PMC3452096.
  8. Schoenen J, Lenaerts M, Bastings E. High-dose riboflavin as a prophylactic treatment of migraine: results of an open pilot study. Cephalalgia. 1994 Oct;14(5):328-9. doi: 10.1046/j.1468-2982.1994.1405328.x. PMID: 7828189.
  9. Schoenen J, Jacquy J, Lenaerts M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology. 1998 Feb;50(2):466-70. doi: 10.1212/wnl.50.2.466. PMID: 9484373.
  10. Rahimdel A, Zeinali A, Yazdian-Anari P, Hajizadeh R, Arefnia E. Effectiveness of Vitamin B2 versus Sodium Valproate in Migraine Prophylaxis: a randomized clinical trial. Electron Physician. 2015 Oct 19;7(6):1344-8. doi: 10.14661/1344. PMID: 26516440; PMCID: PMC4623793.
  11. Boehnke C, Reuter U, Flach U, Schuh-Hofer S, Einhäupl KM, Arnold G. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur J Neurol. 2004 Jul;11(7):475-7. doi: 10.1111/j.1468-1331.2004.00813.x. PMID: 15257686.
  12. Yamanaka G, Suzuki S, Takeshita M, Go S, Morishita N, Takamatsu T, Daida A, Morichi S, Ishida Y, Oana S, Nara S, Shimura M, Nishimata S, Kawashima H. Effectiveness of low-dose riboflavin as a prophylactic agent in pediatric migraine. Brain Dev. 2020 Aug;42(7):523-528. doi: 10.1016/j.braindev.2020.04.002. Epub 2020 Apr 23. PMID: 32336482.
  13. Maizels M, Blumenfeld A, Burchette R. A combination of riboflavin, magnesium, and feverfew for migraine prophylaxis: a randomized trial. Headache. 2004 Oct;44(9):885-90. doi: 10.1111/j.1526-4610.2004.04170.x. PMID: 15447697.
  14. Zempleni J, Galloway JR, McCormick DB. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr. 1996 Jan;63(1):54-66. doi: 10.1093/ajcn/63.1.54. PMID: 8604671.
  15. Saedisomeolia A, Ashoori M. Riboflavin in Human Health: A Review of Current Evidences. Adv Food Nutr Res. 2018;83:57-81. doi: 10.1016/bs.afnr.2017.11.002. Epub 2018 Feb 2. PMID: 29477226.
  16. Di Lorenzo C, Pierelli F, Coppola G, Grieco GS, Rengo C, Ciccolella M, Magis D, Bolla M, Casali C, Santorelli FM, Schoenen J. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology. 2009 May 5;72(18):1588-94. doi: 10.1212/WNL.0b013e3181a41269. PMID: 19414726.
  17. Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr. 2002 Apr;75(4):616-58.
  18. Prousky J, Millman CG, Kirkland JB. Pharmacologic Use of Niacin. Journal of Evidence-Based Complementary & Alternative Medicine. 2011;16(2):91-101. doi:10.1177/2156587211399579
  19. Prousky J, Sykes E. Two case reports on the treatment of acute migraine with niacin. Its hypothetical mechanism of action upon calcitonin-gene related peptide and platelets. J Orthomol Med 2003, 18:108-10.
  20. Velling DA, Dodick DW, Muir JJ. Sustained-release niacin for prevention of migraine headache. Mayo Clin Proc. 2003 Jun;78(6):770-1. doi: 10.4065/78.6.770. PMID: 12934790.
  21. Prousky J, Seely D. The treatment of migraines and tension-type headaches with intravenous and oral niacin (nicotinic acid): systematic review of the
  22. literature. Nutr J. 2005 Jan 26;4:3.
  23. Peracchi M, Bamonti Catena F, Pomati M, De Franceschi M, Scalabrino G. Human cobalamin deficiency: alterations in serum tumour necrosis factor-alpha and epidermal growth factor. Eur J Haematol. 2001 Aug;67(2):123-7.
  24. van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients. 2019 Feb 25;11(2):482.
  25. Togha M, Razeghi Jahromi S, Ghorbani Z, Martami F, Seifishahpar M. Serum Vitamin B12 and Methylmalonic Acid Status in Migraineurs: A Case-Control Study. Headache. 2019 Oct;59(9):1492-1503.
  26. van Oijen MG, Laheij RJ, Peters WH, Jansen JB, Verheugt FW; BACH study. Association of aspirin use with vitamin B12 deficiency (results of the BACH study). Am J Cardiol. 2004 Oct 1;94(7):975-7. doi: 10.1016/j.amjcard.2004.06.047. PMID: 15464695.
  27. Urits I, Yilmaz M, Bahrun E, Merley C, Scoon L, Lassiter G, An D, Orhurhu V, Kaye AD, Viswanath O. Utilization of B12 for the treatment of chronic migraine. Best Pract Res Clin Anaesthesiol. 2020 Sep;34(3):479-491.
  28. van der Kuy PH, Merkus FW, Lohman JJ, ter Berg JW, Hooymans PM. Hydroxocobalamin, a nitric oxide scavenger, in the prophylaxis of migraine: an open, pilot study. Cephalalgia. 2002 Sep;22(7):513-9. doi: 10.1046/j.1468-2982.2002.00412.x. PMID: 12230592.
  29. Calik M, Aktas MS, Cecen E, Piskin IE, Ayaydın H, Ornek Z, Karaca M, Solmaz A, Ay H. The association between serum vitamin B12 deficiency and tension-type headache in Turkish children. Neurol Sci. 2018 Jun;39(6):1009-1014. doi: 10.1007/s10072-018-3286-5. Epub 2018 Mar 8. PMID: 29520674.
  30. Rainero I, Vacca A, Roveta F, Govone F, Gai A, Rubino E. Targeting MTHFR for the treatment of migraines. Expert Opin Ther Targets. 2019 Jan;23(1):29-37.
  31. Liampas I, Siokas V, Mentis AA, Aloizou AM, Dastamani M, Tsouris Z, Aslanidou P, Brotis A, Dardiotis E. Serum Homocysteine, Pyridoxine, Folate, and Vitamin B12 Levels in Migraine: Systematic Review and Meta-Analysis. Headache. 2020 Sep;60(8):1508-1534.
  32. Liu L, Yu Y, He J, Guo L, Li H, Teng J. Effects of MTHFR C677T and A1298C Polymorphisms on Migraine Susceptibility: A Meta-Analysis of 26 Studies. Headache. 2019 Jun;59(6):891-905. doi: 10.1111/head.13540. Epub 2019 May 2. PMID: 31045246.
  33. Liampas IN, Siokas V, Aloizou AM, Tsouris Z, Dastamani M, Aslanidou P, Brotis A, Dardiotis E. Pyridoxine, folate and cobalamin for migraine: A systematic review. Acta Neurol Scand. 2020 Aug;142(2):108-120. doi: 10.1111/ane.13251. Epub 2020 Apr 30. PMID: 32279306.
  34. Di Rosa G, Attinà S, Spanò M, Ingegneri G, Sgrò DL, Pustorino G, Bonsignore M, Trapani-Lombardo V, Tortorella G. Efficacy of folic acid in children with migraine, hyperhomocysteinemia and MTHFR polymorphisms. Headache. 2007 Oct;47(9):1342-4.
  35. Lea R, Colson N, Quinlan S, Macmillan J, Griffiths L. The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet Genomics. 2009 Jun;19(6):422-8.
  36. Menon S, Lea RA, Roy B, Hanna M, Wee S, Haupt LM, Oliver C, Griffiths LR. Genotypes of the MTHFR C677T and MTRR A66G genes act independently to reduce migraine disability in response to vitamin supplementation. Pharmacogenet Genomics. 2012 Oct;22(10):741-9.
  37. Menon S, Lea RA, Ingle S, Sutherland M, Wee S, Haupt LM, Palmer M, Griffiths LR. Effects of dietary folate intake on migraine disability and frequency. Headache. 2015 Feb;55(2):301-9. doi: 10.1111/head.12490. Epub 2015 Jan 19. PMID: 25598270.
  38. Ghorbani Z, Togha M, Rafiee P, Ahmadi ZS, Rasekh Magham R, Haghighi S, Razeghi Jahromi S, Mahmoudi M. Vitamin D in migraine headache: a comprehensive review on literature. Neurol Sci. 2019 Dec;40(12):2459-2477. doi: 10.1007/s10072-019-021-z. Epub 2019 Aug 3. PMID: 31377873.
  39. Ghorbani Z, Rafiee P, Haghighi S, Razeghi Jahromi S, Djalali M, Moradi-Tabriz H, Mahmoudi M, Togha M. The effects of vitamin D3 supplementation on TGF-β and IL-17 serum levels in migraineurs: post hoc analysis of a randomized clinical trial. J Pharm Health Care Sci. 2021 Mar 3;7(1):9.
  40. Ghorbani Z, Rafiee P, Fotouhi A, Haghighi S, Rasekh Magham R, Ahmadi ZS, Djalali M, Zareei M, Razeghi Jahromi S, Shahemi S, Mahmoudi M, Togha M. The effects of vitamin D supplementation on interictal serum levels of calcitonin gene-related peptide (CGRP) in episodic migraine patients: post hoc analysis of a randomized double-blind placebo-controlled trial. J Headache Pain. 2020 Feb 24;21(1):22.
  41. Ghorbani Z, Togha M, Rafiee P, Ahmadi ZS, Rasekh Magham R, Djalali M, Shahemi S, Martami F, Zareei M, Razeghi Jahromi S, Ariyanfar S, Mahmoudi M. Vitamin D3 might improve headache characteristics and protect against inflammation in migraine: a randomized clinical trial. Neurol Sci. 2020 May;41(5):1183-1192.
  42. Nowaczewska M, Wiciński M, Osiński S, Kaźmierczak H. The Role of Vitamin D in Primary Headache-from Potential Mechanism to Treatment. Nutrients. 2020 Jan 17;12(1):243. doi: 10.3390/nu12010243. PMID: 31963460; PMCID: PMC7019347.
  43. Cayir A, Turan MI, Tan H. Effect of vitamin D therapy in addition to amitriptyline on migraine attacks in pediatric patients. Braz J Med Biol Res. 2014 Apr;47(4):349-54. doi: 10.1590/1414-431×20143606. Epub 2014 Apr 8. PMID: 24714817; PMCID: PMC4075301.
  44. Gazerani P, Fuglsang R, Pedersen JG, Sørensen J, Kjeldsen JL, Yassin H, Nedergaard BS. A randomized, double-blinded, placebo-controlled, parallel trial of vitamin D3 supplementation in adult patients with migraine. Curr Med Res Opin. 2019 Apr;35(4):715-723. doi: 10.1080/03007995.2018.1519503. Epub 2018 Sep 28. PMID: 30182753.
  45. Dolati S, Rikhtegar R, Mehdizadeh A, Yousefi M. The Role of Magnesium in Pathophysiology and Migraine Treatment. Biol Trace Elem Res. 2020 Aug;196(2):375-383. doi: 10.1007/s12011-019-01931-z. Epub 2019 Nov 5. PMID: 31691193.
  46. Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients. 2018 Jun 6;10(6):730. doi: 10.3390/nu10060730. PMID: 29882776; PMCID: PMC6024559.
  47. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989 Oct;29(9):590-3. doi: 10.1111/j.1526-4610.1989.hed2909590.x. PMID: 2584000.
  48. Sarchielli P, Coata G, Firenze C, Morucci P, Abbritti G, Gallai V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia. 1992 Feb;12(1):21-7.
  49. Assarzadegan F, Asgarzadeh S, Hatamabadi HR, Shahrami A, Tabatabaey A, Asgarzadeh M. Serum concentration of magnesium as an independent risk factor in migraine attacks: a matched case-control study and review of the literature. Int Clin Psychopharmacol. 2016 Sep;31(5):287-92.
  50. Slavin M, Li H, Khatri M, Frankenfeld C. Dietary magnesium and migraine in adults: A cross-sectional analysis of the National Health and Nutrition Examination Survey 2001-2004. Headache. 2021 Feb;61(2):276-286.
  51. von Luckner A, Riederer F. Magnesium in Migraine Prophylaxis-Is There an Evidence-Based Rationale? A Systematic Review. Headache. 2018 Feb;58(2):199-209.
  52. Pamuk GE, Top MŞ, Uyanık MŞ, Köker H, Akker M, Ak R, Yürekli ÖA, Çelik Y. Is iron-deficiency anemia associated with migraine? Is there a role for anxiety and depression? Wien Klin Wochenschr. 2016 Dec;128(Suppl 8):576-580. doi: 10.1007/s00508-015-0740-8. Epub 2015 Apr 9. PMID: 25854909.
  53. Tayyebi A, Poursadeghfard M, Nazeri M, Pousadeghfard T. Is There Any Correlation between Migraine Attacks and Iron Deficiency Anemia? A Case-Control Study. Int J Hematol Oncol Stem Cell Res. 2019 Jul 1;13(3):164-171. PMID: 31649807; PMCID: PMC6801325.
  54. Vuković-Cvetković V, Plavec D, Lovrencić-Huzjan A, Galinović I, Serić V, Demarin V. Is iron deficiency anemia related to menstrual migraine? Post hoc analysis of an observational study evaluating clinical characteristics of patients with menstrual migraine. Acta Clin Croat. 2010 Dec;49(4):389-94. PMID: 21830449.
  55. Gür-Özmen S, Karahan-Özcan R. Iron Deficiency Anemia Is Associated with Menstrual Migraine: A Case-Control Study. Pain Med. 2016 Mar;17(3):596-605. doi: 10.1093/pm/pnv029. Epub 2015 Dec 14. PMID: 26814264.
  56. Fallah R, Zare Bidoki S, Ordooei M. Evaluation Efficacy of Ferrous Sulfate
  57. Therapy on Headaches of 5-15 Years Old Iron Deficient Children with Migraine. Iran J Ped Hematol Oncol. 2016;6(1):32-7.
  58. Gholamreza-Mirzaee M, Kheiri S, Khosravi Sh, Koshdel A, Keyvani Z, Amini Z. Iron therapy and migraine headache. J Shahrekord Univ Med Sci. 2012;13(6):56–62. [in Persian]
  59. Hershey AD, Powers SW, Vockell AL, Lecates SL, Ellinor PL, Segers A, Burdine D, Manning P, Kabbouche MA. Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache. 2007 Jan;47(1):73-80. doi: 10.1111/j.1526-4610.2007.00652.x. PMID: 17355497.
  60. Quinzii CM, López LC, Gilkerson RW, Dorado B, Coku J, Naini AB, Lagier-Tourenne C, Schuelke M, Salviati L, Carrozzo R, Santorelli F, Rahman S, Tazir M, Koenig M, DiMauro S, Hirano M. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 2010 Oct;24(10):3733-43.
  61. Dahri M, Tarighat-Esfanjani A, Asghari-Jafarabadi M, Hashemilar M. Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markers. Nutr Neurosci. 2019 Sep;22(9):607-615.
  62. Sazali S, Badrin S, Norhayati MN, Idris NS. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine-a meta-analysis. BMJ Open. 2021 Jan 5;11(1):e039358. doi: 10.1136/bmjopen-2020-039358. PMID: 33402403; PMCID: PMC7786797.
  63. Parohan M, Sarraf P, Javanbakht MH, Ranji-Burachaloo S, Djalali M. Effect of coenzyme Q10 supplementation on clinical features of migraine: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Neurosci. 2020 Nov;23(11):868-875.
  64. Parohan M, Sarraf P, Javanbakht MH, Foroushani AR, Ranji-Burachaloo S, Djalali M. The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: a randomized, placebo-controlled, double-blind trial. Nutr Neurosci. 2021 Apr;24(4):317-326. doi: 10.1080/1028415X.2019.1627770. Epub 2019 Jun 26. PMID: 31241007.
  65. Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J. The metabolic face of migraine – from pathophysiology to treatment. Nat Rev Neurol. 2019 Nov;15(11):627-643.
  66. Cavestro C, Bedogni G, Molinari F, Mandrino S, Rota E, Frigeri MC. Alpha-Lipoic Acid Shows Promise to Improve Migraine in Patients with Insulin Resistance: A 6-Month Exploratory Study. J Med Food. 2018 Mar;21(3):269-273. doi: 10.1089/jmf.2017.0068. Epub 2017 Oct 4. PMID: 28976801.

Ames and Williams:
Supplements and Tuning Up Metabolism, Bruce N. Ames, The Journal of Nutrition, Volume 134, Issue 11, November 2004: https://academic.oup.com/jn/article/134/11/3164S/4688537.
A theory of evolutionary allocation of scarce micronutrients by enzyme triage: adequate micronutrient nutrition to delay the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103:17589–17594.

ALZHEIMER’S

Obesity and Brain Vulnerability in Normal and Abnormal Aging: A Multimodal MRI Study’.  Journal of Alzheimer’s Disease Reports 2021, 1 Jan. 65–77: https://content.iospress.com/articles/journal-of-alzheimers-disease-reports/adr200267.
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-FAppNL-F, and wild type mice. Scientific Reports 2021, 11, 4678: https://doi.org/10.1038/s41598-021-83851-4.
Cannabidiol Ameliorates Cognitive Function via Regulation of IL-33 and TREM2 Upregulation in a Murine Model of Alzheimer’s DiseaseJournal of Alzheimer’s Disease, 2021; 1 DOI: 10.3233/JAD-210026.
Cognitive Effects of Aerobic Exercise in Alzheimer’s Disease: A Pilot Randomized Controlled Trial. J Alzheimers Dis 2021, 80(1):233-244. DOI: 10.3233/JAD-201100.

Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer’s disease. PLoS Genet 2021, 17(2): e1009363. https://doi.org/10.1371/journal.pgen.1009363.

Bredesen ingredients:
1. Enhancement of hippocampal CA3 neuronal dendritic arborization by Centella asiatica (Linn) fresh leaf extract treatment in adult ratsJournal of the Chinese Medical Association 2008 Jan;71(1):6-13.
2. UCLA study, released at the annual meeting of the Society for Neuroscience, held Nov. 8–12, 2003, in New Orleans, LA, used positron-emission tomography (PET) and found that for subjects taking gingko biloba, improved recall correlated with better brain function in key brain memory centres.
3. Cognitive decline in the elderly: a double-blind, placebo-controlled multicenter study on efficacy of phosphatidylserine administration. Aging (Milano) 1993,  Apr;5(2):123-33,  doi: 10.1007/BF03324139.
4. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. British Journal of Nutrition, 110 (3), 420-425. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/modulatory-effect-of-coffee-fruit-extract-on-plasma-levels-of-brainderived-neurotrophic-factor-in-healthy-subjects/8B291E8D053143AA5A8D33B65496B034.
5. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol 2014, Jan;71(1):55-61.DOI: 10.1001/jamaneurol.2013.4781.
6. Evidence on the Health Benefits of Supplemental Propolis. Nutrients 2019, 11(11), 2705; https://doi.org/10.3390/nu11112705.
7. Bee pollen and propolis improve neuroinflammation and dysbiosis induced by propionic acid, a short chain fatty acid in a rodent model of autism. Lipids Health Dis 2019, 18, 200. https://doi.org/10.1186/s12944-019-1150-0.
8. Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J (Engl) 2008, May 5;121(9):832-9.

Dr JEFF BLAND

  1. Couzin-Frankel J. The long haul. Science. 2020. August 7;369(6504):614-617. doi: 10.1126/science.369.6504.614. PMID: 32764050. [PubMed] []

 

  1. Lapp CW, Cheney PR. The chronic fatigue syndrome. Ann Intern Med.1995. July 1;123(1):74-5. doi: 10.7326/0003-4819-123-1-199507010-00015. PMID: 7762921. [PubMed] []
  2. Buchwald D, Cheney PR, Peterson DL, Henry B, Wormsley SB, Geiger A, Ablashi DV, Salahuddin SZ, Saxinger C, Biddle R, Kikinis R, Jolesz FA, Folks T, Balachandran N, Peter JB, Gallo RC, Komaroff AL. A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus type 6 infection. Ann Intern Med. 1992. January 15;116(2):103-13. doi: 10.7326/0003-4819-116-2-103. PMID: 1309285. [PubMed] []
  3. Caligiuri M, Murray C, Buchwald D, Levine H, Cheney P, Peterson D, Komaroff AL, Ritz J. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J Immunol. 1987. November 15;139(10):3306-13. PMID: 2824604. [PubMed] []
  4. Bland JS. Chronic Fatigue Syndrome, Functional Mitochondriopathy, and Enterohepatic Dysfunction. Integr Med (Encinitas).2017. October;16(5):18-21. PMID: 30936800; PMCID: PMC6438100. [PMC free article] [PubMed] []
  5. Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med.2009;2(1):1-16. Epub 2009 Jan 15. PMID: 19436827; PMCID: PMC2680051. [PMC free article] [PubMed] []
  6. Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry.2020. December 20;103:109976 doi: 10.1016/j.pnpbp.2020.109976. Epub 2020 May 26. PMID: 32470498. [PubMed] []
  7. Smirnova IV, Pall ML. Elevated levels of protein carbonyls in sera of chronic fatigue syndrome patients. Mol Cell Biochem.2003. June;248(1-2):93-5. doi: 10.1023/a:1024176016962. PMID: 12870659. [PubMed] []
  8. Pall ML. Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses.2000. January;54(1):115-25. doi: 10.1054/mehy.1998.0825. PMID: 10790736. [PubMed] []
  9. Pall ML. Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO- cycle. Med Hypotheses.2007;69(4):821-5. doi: 10.1016/j.mehy.2007.01.070. Epub 2007 Apr 19. PMID: 17448611. [PubMed] []
  10. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients.2020. April 23;12(4):1181 doi: 10.3390/nu12041181. PMID: 32340216; PMCID: PMC7230749. [PMC free article] [PubMed] []
  11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health2020;bmjnph-2020-000085 doi: 10.1136/bmjnph-2020-000085 [PMC free article] [PubMed] []
  12. Wu Y, Huang X, Sun J, Xie T, Lei Y, Muhammad J, Li X, Zeng X, Zhou F, Qin H, Shao L, Zhang Q. Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19. mSphere.2020. July 15;5(4):e00362-20. doi: 10.1128/mSphere.00362-20. PMID: 32669467; PMCID: PMC7364211. [PMC free article] [PubMed] []
  13. Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia.2020. July;34(7):1726-1729. doi: 10.1038/s41375-020-0887-9. Epub 2020 Jun 1. PMID: 32483300; PMCID: PMC7262681. [PMC free article] [PubMed] []
  14. Abplanalp WT, Mas-Peiro S, Cremer S, John D, Dimmeler S, Zeiher AM.Association of Clonal Hematopoiesis of Indeterminate Potential With Inflammatory Gene Expression in Patients With Severe Degenerative Aortic Valve Stenosis or Chronic Postischemic Heart Failure. JAMA Cardiol.2020. July 8:e202468 doi: 10.1001/jamacardio.2020.2468. Epub ahead of print. PMID: 32639511; PMCID: PMC7344831. [PMC free article] [PubMed] []
  15. Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W. A human circulating immune cell landscape in aging and COVID-19. Protein Cell.2020. October;11(10):740-770. doi: 10.1007/s13238-020-00762-2. Epub 2020 Aug 11. PMID: 32780218; PMCID: PMC7417788. [PMC free article][PubMed] []
  16. Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni NS, Matusov YP, Cerro Chiang G, Kassar AG, Patel N, Green CE, Aziz AW, Suri H, Suda J, Lopez AA, Martins GA, Stripp BR, Gharib SA, Goodridge HS, Chen P. Cell type-specific immune dysregulation in severely ill COVID-19 patients. medRxiv [Preprint].2020. July 24:2020.07.23.20161182 doi: 10.1101/2020.07.23.20161182. PMID: 32743611; PMCID: PMC7386732. [PMC free article] [PubMed] []
  17. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, Shen-Orr S, Dekker CL, Swan GE, Butte AJ, Maecker HT, Davis MM. Variation in the human immune system is largely driven by non-heritable influences. Cell.2015. January 15;160(1-2):37-47. doi: 10.1016/j.cell.2014.12.020. PMID: 25594173; PMCID: PMC4302727. [PMC free article] [PubMed] []
  18. Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy. 2012. September;8(9):1286-99. doi: 10.4161/auto.21212. Epub 2012 Aug 14. PMID: 22878595; PMCID: PMC3442876. [PMC free article][PubMed] []
  19. Jiang GM, Tan Y, Wang H, Peng L, Chen HT, Meng XJ, Li LL, Liu Y, Li WF, Shan H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer.2019. January 24;18(1):17 doi: 10.1186/s12943-019-0944-z. PMID: 30678689; PMCID: PMC6345046. [PMC free article] [PubMed] []
  20. Swadling L, Pallett LJ, Diniz MO, Baker JM, Amin OE, Stegmann KA, Burton AR, Schmidt NM, Jeffery-Smith A, Zakeri N, Suveizdyte K, Froghi F, Fusai G, Rosenberg WM, Davidson BR, Schurich A, Simon AK, Maini MK. Human Liver Memory CD8+ T Cells Use Autophagy for Tissue Residence. Cell Rep. 2020. January 21;30(3):687-698.e6. doi: 10.1016/j.celrep.2019.12.050. PMID: 31968246; PMCID: PMC6988113. [PMC free article][PubMed] []
  21. Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again?Nat Rev Immunol. 2009. January;9(1):57-62. doi: 10.1038/nri2471. PMID: 19104499. [PubMed] []
  22. Cuervo AM, Macian F. Autophagy, nutrition and immunology. Mol Aspects Med.2012. February;33(1):2-13. doi: 10.1016/j.mam.2011.09.001. Epub 2011 Oct 1. PMID: 21982744; PMCID: PMC3996457. [PMC free article][PubMed] []
  23. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab. 2019. March 5;29(3):592-610. doi: 10.1016/j.cmet.2019.01.018. PMID: 30840912. [PubMed] []
  24. Shen L, Yang Y, Ou T, Key CC, Tong SH, Sequeira RC, Nelson JM, Nie Y, Wang Z, Boudyguina E, Shewale SV, Zhu X. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res.2017. September;58(9):1808-1821. doi: 10.1194/jlr.M075879. Epub 2017 Jul 20. PMID: 28729463; PMCID: PMC5580895. [PMC free article] [PubMed] []
  25. Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res Rev.2013. January;12(1):237-52. doi: 10.1016/j.arr.2012.03.008. Epub 2012 Apr 6. PMID: 22504405. [PubMed] []
  26. Prieto-Domínguez N, Garcia-Mediavilla MV, Sanchez-Campos S, Mauriz JL, Gonzalez-Gallego J. Autophagy as a Molecular Target of Flavonoids Underlying their Protective Effects in Human Disease. Curr Med Chem.2018;25(7):814-838. doi: 10.2174/0929867324666170918125155. PMID: 28925866. [PubMed] []
  27. Keller MD, Torres VJ, Cadwell K. Autophagy and microbial pathogenesis. Cell Death Differ.2020. March;27(3):872-886. doi: 10.1038/s41418-019-0481-8. Epub 2020 Jan 2. PMID: 31896796; PMCID: PMC7205878. [PMC free article] [PubMed] []
  28. Zaylaa M, Alard J, Kassaa IA, Peucelle V, Boutillier D, Desramaut J, Rosenstiel P, Nguyen HTT, Dabboussi F, Pot B, Grangette C. Autophagy: A Novel Mechanism Involved in the Anti-Inflammatory Abilities of Probiotics. Cell Physiol Biochem.2019;53(5):774-793. doi: 10.33594/000000172. PMID: 31647207. [PubMed] []
  29. Fang Y, An N, Zhu L, Gu Y, Qian J, Jiang G, Zhao R, Wei W, Xu L, Zhang G, Yao X, Yuan N, Zhang S, Zhao Y, Wang J. Autophagy-Sirt3 axis decelerates hematopoietic aging. Aging Cell.2020. September 20:e13232 doi: 10.1111/acel.13232. Epub ahead of print. PMID: 32951306. [PMC free article][PubMed] []
  30. Chang NC. Autophagy and Stem Cells: Self-Eating for Self-Renewal. Front Cell Dev Biol.2020. March 4;8:138 doi: 10.3389/fcell.2020.00138. PMID: 32195258; PMCID: PMC7065261. [PMC free article] [PubMed] []
  31. Salimi S, Hamlyn JM. COVID-19 and Crosstalk With the Hallmarks of Aging. J Gerontol A Biol Sci Med Sci.2020. September 16;75(9):e34-e41. doi: 10.1093/gerona/glaa149. PMID: 32544216; PMCID: PMC7337690. [PMC free article] [PubMed] []
  32. Wang C, Ling S, Xu JW. Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. Evid Based Complement Alternat Med.2020. July 8;2020:7307026 doi: 10.1155/2020/7307026. PMID: 32724327; PMCID: PMC7366228. [PMC free article] [PubMed] []

RESEARCH + ALLERGY

Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globeProceedings of the National Academy of Sciences 2021; 118 (12): e2019034118 DOI: 10.1073/pnas.2019034118.

Has the Prevalence of Peanut Allergy Changed Following Earlier Introduction of Peanut? The EarlyNuts StudyJournal of Allergy and Clinical Immunology, 2021; 147 (2): AB236 DOI: 10.1016/j.jaci.2020.12.009.

Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol 2013 Apr;131(4):1109-16, 1116.e1-6, doi: 10.1016/j.jaci.2013.01.017.
Faecal microbiome and metabolome differ in healthy and food-allergic twinsJournal of Clinical Investigation, 2021; 131 (2) DOI: 10.1172/JCI141935.

One-Year Aerobic Exercise Reduced Carotid Arterial Stiffness and Increased Cerebral Blood Flow in Amnestic Mild Cognitive ImpairmentJournal of Alzheimer’s Disease 2021, 80 (2): 475-492.

Identification of bacteria-derived HLA-bound peptides in melanomaNature, 2021; DOI: 10.1038/s41586-021-03368-8

Paper Notebooks vs. Mobile Devices: Brain Activation Differences During Memory RetrievalFrontiers in Behavioral Neuroscience, 2021; 15 DOI: 10.3389/fnbeh.2021.634158.

Differential Mitochondrial Gene Expression in Adipose Tissue Following Weight Loss Induced by Diet or Bariatric SurgeryThe Journal of Clinical Endocrinology & Metabolism, 2021; DOI: 10.1210/clinem/dgab072.

Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trialCell Reports Medicine, 2021; 100206 DOI: 10.1016/j.xcrm.2021.100206.

Green tea extracts containing epigallocatechin-3-gallate modulate facial development in Down syndrome. Scientific Reports 2021, 114715:  https://doi.org/10.1038/s41598-021-83757-1.

 

 

 

March 2021

WELCOME – SIMON MARTIN

“The long tail of Covid-19” – The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Res 2020, Nov 19;9:1349. Doi: 10.12688/f1000research.27287.2.

Updated estimates of coronavirus (COVID-19) related deaths by disability status, England: 24 January to 20 November 2020.
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/coronaviruscovid19relateddeathsbydisabilitystatusenglandandwales/24januaryto20november2020.

COVID-19 deaths with no health condition or obesity registered:
https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/covid19deathswithnohealthconditionorobesityregistered.

MEA Statement: NHS England Guidance on the Management of Post-Covid Fatigue Syndromes.

https://meassociation.org.uk/2020/08/mea-statement-nhs-england-guidance-on-the-management-of-post-covid-fatigue-syndromes.

NEWS

Changes over 15 years in the contribution of adiposity and smoking to deaths in England and Scotland. BMC Public Health 21, 169 (2021). https://doi.org/10.1186/s12889-021-10167-3.

Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. doi:10.1001/jamaneurol.2020.1127.

SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke 2020;51:2002–2011. doi.org/10.1161/STROKEAHA.120.030335Stroke.

Characteristics and outcomes in patients with Covid-19 and acute ischemic stroke. Stroke. 2020;51:e254–e258.

Vitamin C and care homes

https://www.washingtonpost.com/world/2020/10/15/long-term-elder-care-coronavirus-nursing-homes-research-lessons.

The Age of Scurvy – In a time of warring empires and transoceanic voyages, sailors dreaded scurvy more than any other disease. Catherine Price, August 14, 2017, Science History Institute: https://www.sciencehistory.org/distillations/the-age-of-scurvy.
Micronutrients: highlights and research challenges from the 1994–5 National Diet and Nutrition Survey of people aged 65 years and over. British Journal of Nutrition (1999), 82, 7–15

BMJ 2020; 369 doi: https://doi.org/10.1136/bmj.m2334

Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes. Arch Biochem Biophys. 2003 Feb 1;410(1):112-20. doi: 10.1016/s0003-9861(02)00678-1. PMID: 12559983.

Faure et al. 2006; Birlouez-Aragon et al. 2001; Ravindran et al. 2011; Nyyssonen et al. 1997; Wrieden et al. 2000). Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES).

Am. J. Clin. Nutr. 2009, 90, 1252–1263.

Serum levels of Vitamin C and Vitamin D in a cohort of critically ill COVID-19 patients of a North American Community Hospital Intensive Care Unit in May 2020. A Pilot Study, Medicine in Drug Discovery (2020), DOI:10.1016/j.medidd.2020.100064

The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vitam. Nutr. Res. 1994, 64, 212–219. Available online: http://www.mv.helsinki.fi/home/hemila/CP/Hunt_1994_ch.pdf 

Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Critical Care (2020) 24:522, DOI:10.1186/s13054-020-03249-y

Molecular basis of bacterial disinfectant resistance. Drug Resist Updat. 2020 Jan;48:100672. doi: 10.1016/j.drup.2019.100672. Epub 2019 Nov 30. PMID: 31830738.

Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. The Lancet Infectious Diseases 2021, February 02. DOI: https://doi.org/10.1016/S1473-3099(20)30985-3.

Updated estimates of coronavirus (COVID-19) related deaths by disability status, England: 24 January to 20 November 2020.
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/coronaviruscovid19relateddeathsbydisabilitystatusenglandandwales/24januaryto20november2020.

Massive expansion of human gut bacteriophage diversityCell, 2021; 184 (4): 1098 DOI: 10.1016/j.cell.2021.01.029

BEN BROWN – post-COVID syndrome

  1. Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol. 2016 May;53(4):2550-71. doi: 10.1007/s12035-015-9262-7. Epub 2015 Jun 17. PMID: 26081141.
  2. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011 Mar 24;11:37. doi: 10.1186/1471-2377-11-37. PMID: 21435231; PMCID: PMC3071317.
  3. Perrin R, Riste L, Hann M, Walther A, Mukherjee A, Heald A. Into the looking glass: Post-viral syndrome post COVID-19. Med Hypotheses. 2020 Nov;144:110055. doi: 10.1016/j.mehy.2020.110055. Epub 2020 Jun 27. PMID: 32758891; PMCID: PMC7320866.
  4. Marra A, Pandharipande PP, Girard TD, Patel MB, Hughes CG, Jackson JC, Thompson JL, Chandrasekhar R, Ely EW, Brummel NE. Co-Occurrence of Post-Intensive Care Syndrome Problems Among 406 Survivors of Critical Illness. Crit Care Med. 2018 Sep;46(9):1393-1401. doi: 10.1097/CCM.0000000000003218. PMID: 29787415; PMCID: PMC6095801.
  5. Boursier V, Gioia F, Musetti A, Schimmenti A. Facing Loneliness and Anxiety During the COVID-19 Isolation: The Role of Excessive Social Media Use in a Sample of Italian Adults. Front Psychiatry. 2020 Dec 8;11:586222. doi: 10.3389/fpsyt.2020.586222. PMID: 33363484; PMCID: PMC7752864.
  6. Fiorillo A, Sampogna G, Giallonardo V, Del Vecchio V, Luciano M, Albert U, Carmassi C, Carrà G, Cirulli F, Dell’Osso B, Nanni MG, Pompili M, Sani G, Tortorella A, Volpe U. Effects of the lockdown on the mental health of the general population during the COVID-19 pandemic in Italy: Results from the COMET collaborative network. Eur Psychiatry. 2020 Sep 28;63(1):e87. doi: 10.1192/j.eurpsy.2020.89. PMID: 32981568; PMCID: PMC7556907.
  7. Lin D, Friedman DB, Qiao S, Tam CC, Li X, Li X. Information uncertainty: a correlate for acute stress disorder during the COVID-19 outbreak in China. BMC Public Health. 2020 Dec 7;20(1):1867. doi: 10.1186/s12889-020-09952-3. PMID: 33287780; PMCID: PMC7719728.
  8. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (UK); 2020 Dec 18. PMID: 33555768.
  9. Moreno-Pérez O, Merino E, Leon-Ramirez JM, Andres M, Ramos JM, Arenas-Jiménez J, Asensio S, Sanchez R, Ruiz-Torregrosa P, Galan I, Scholz A, Amo A, González-delaAleja P, Boix V, Gil J; COVID19-ALC research group. Post-acute COVID-19 Syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021 Jan 12:S0163-4453(21)00009-8.
  10. Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S, Flament T, Ferreira-Maldent N, Bruyère F, Stefic K, Gaudy-Graffin C, Grammatico-Guillon L, Bernard L. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2020 Oct 5;27(2):258–63. doi: 10.1016/j.cmi.2020.09.052. Epub ahead of print. PMID: 33031948; PMCID: PMC7534895.
  11. Townsend L, Dowds J, O’Brien K, Sheill G, Dyer AH, O’Kelly B, Hynes JP, Mooney A, Dunne J, Ni Cheallaigh C, O’Farrelly C, Bourke NM, Conlon N, Martin-Loeches I, Bergin C, Nadarajan P, Bannan C. Persistent Poor Health Post-COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann Am Thorac Soc. 2021 Jan 8. doi: 10.1513/AnnalsATS.202009-1175OC. Epub ahead of print. PMID: 33413026.
  12. Walsh-Messinger J, Manis H, Vrabec A, Sizemore J, Bishof K, Debidda M, Malaspina D, Greenspan N. The Kids Are Not Alright: A Preliminary Report of Post-COVID Syndrome in University Students. medRxiv [Preprint]. 2020 Nov 29:2020.11.24.20238261. doi: 10.1101/2020.11.24.20238261. PMID: 33269366; PMCID: PMC7709187.
  13. Covid Symptoms Study. How long does COVID-19 last? June 6, 2020 https://covid.joinzoe.com/post/covid-long-term
  14. Simani L, Ramezani M, Darazam IA, Sagharichi M, Aalipour MA, Ghorbani F, Pakdaman H. Prevalence and correlates of chronic fatigue syndrome and post-traumatic stress disorder after the outbreak of the COVID-19. J Neurovirol. 2021 Feb 2:1–6. doi: 10.1007/s13365-021-00949-1. Epub ahead of print. PMID: 33528827; PMCID: PMC7852482.
  15. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021 Jan 2;146:110469. doi: 10.1016/j.mehy.2020.110469. Epub ahead of print. PMID: 33401106.
  16. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv [Preprint]. 2021 Jan 30:2021.01.27.21250617. doi: 10.1101/2021.01.27.21250617. PMID: 33532785; PMCID: PMC7852236.
  17. Hoong CWS, Amin MNME, Tan TC, Lee JE. Viral arthralgia a new manifestation of COVID-19 infection? A cohort study of COVID-19-associated musculoskeletal symptoms. Int J Infect Dis. 2021 Jan 18;104:363-369. doi: 10.1016/j.ijid.2021.01.031. Epub ahead of print. PMID: 33476761; PMCID: PMC7813485.
  18. Liu JWTW, de Luca RD, Mello Neto HO, Barcellos I. Post-COVID-19 Syndrome? New daily persistent headache in the aftermath of COVID-19. Arq Neuropsiquiatr. 2020 Nov;78(11):753-754. doi: 10.1590/0004-282X20200187. PMID: 33331469.
  19. Miglis MG, Prieto T, Shaik R, Muppidi S, Sinn DI, Jaradeh S. A case report of postural tachycardia syndrome after COVID-19. Clin Auton Res. 2020 Oct;30(5):449-451. doi: 10.1007/s10286-020-00727-9. Epub 2020 Sep 3. PMID: 32880754; PMCID: PMC7471493.
  20. Chandrashekara S, Jaladhar P, Paramshetti S, Ramachandran V, Nizar SF, Kori D. Post COVID Inflammation Syndrome: Different Manifestations Caused by the Virus. J Assoc Physicians India. 2020 Dec;68(12):33-34. PMID: 33247640.
  21. Ahmed H, Patel K, Greenwood DC, Halpin S, Lewthwaite P, Salawu A, Eyre L, Breen A, O’Connor R, Jones A, Sivan M. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020 May 31;52(5):jrm00063. doi: 10.2340/16501977-2694. PMID: 32449782.
  22. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021 Jan;27(1):28-33. doi: 10.1038/s41591-020-01202-8. Epub 2021 Jan 13. PMID: 33442016.
  23. Yang S, Tian M, Johnson AN. SARS-CoV-2 protein ORF3a is pathogenic in Drosophila and causes phenotypes associated with COVID-19 post-viral syndrome. bioRxiv [Preprint]. 2020 Dec 20:2020.12.20.423533.
  24. Dennis, A. et al. Multi-organ impairment in low-risk individuals with long COVID. Preprint at medRxiv https://doi.org/10.1101/2020.10.14.20212555 (2020).
  25. Doykov I, Hällqvist J, Gilmour KC, Grandjean L, Mills K, Heywood WE. ‘The long tail of Covid-19’ – The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Res. 2020 Nov 19;9:1349. doi: 10.12688/f1000research.27287.2.
  26. Brown BI. Chronic fatigue syndrome: a personalized integrative medicine approach. Altern Ther Health Med. 2014 Jan-Feb;20(1):29-40. PMID: 24445354.
  27. Stefano GB, Ptacek R, Ptackova H, Martin A, Kream RM. Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce ‘Brain Fog’ and Results in Behavioral Changes that Favor Viral Survival. Med Sci Monit. 2021 Jan 25;27:e930886. doi: 10.12659/MSM.930886. PMID: 33487628; PMCID: PMC7845145.
  28. Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol. 2020 Dec;142:111147. doi: 10.1016/j.exger.2020.111147. Epub 2020 Nov 7. PMID: 33171276; PMCID: PMC7648491
  29. Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing. 2020 Nov 9;17(1):33. doi: 10.1186/s12979-020-00204-x. PMID: 33292333; PMCID: PMC7649575.
  30. Brown BI. Chronic fatigue syndrome: a personalized integrative medicine approach. Altern Ther Health Med. 2014 Jan-Feb;20(1):29-40. PMID: 24445354.
  31. Ostojic SM. Diagnostic and Pharmacological Potency of Creatine in Post-Viral Fatigue Syndrome. Nutrients. 2021 Feb 4;13(2):503. doi: 10.3390/nu13020503. PMID: 33557013.
  32. Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis Transl Med. 2020 Nov 21. doi: 10.1016/j.cdtm.2020.11.002. Epub ahead of print. PMID: 33251031; PMCID: PMC7680046.
  33. Bland JS. The Long Haul of COVID-19 Recovery: Immune Rejuvenation versus Immune Support. Integr Med (Encinitas). 2020 Dec;19(6):18-22. PMID: 33488306; PMCID: PMC7819497.

ANTIOXIDANTS

Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw Open. 2021;4(2):e210369. doi:10.1001/jamanetworkopen.2021.0369.

Daily Mail, February 13, 2021: https://www.dailymail.co.uk/news/article-9256777/Vitamin-C-zinc-WONT-help-fight-Covid-high-doses-study-reveals.html.

Therapeutic 8 g/day of vitamin C increases recovery rate from SARS-CoV-2 infection by 71% (P = 0.036) based on the randomized trial by Thomas et al. (2021). Prof Harri Hemilä comment: https://pubpeer.com/publications/6DFC3BD2E1DAA79A9BBD1DAF5D9BB4#1.

Vitamin C review article: Vitamin C – An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, Dec 7;12(12):3760, doi: 10.3390/nu12123760.

EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interactionNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-21258-5.

An Antioxidant Enzyme Therapeutic for COVID‐19Advanced Materials, 2020; 2004901 DOI: 10.1002/adma.202004901.

Dietary table grape protects against UV photodamage in humans: 1. clinical evaluation. Journal of the American Academy of Dermatology 2021. Doi: https://doi.org/10.1016/j.jaad.2021.01.035.

Effects of an Antioxidant-enriched Multivitamin in Cystic Fibrosis. A Randomized, Controlled, Multicenter Clinical Trial.  American Journal of Respiratory and Critical Care Medicine, 2018, Sept 1, Vol 198, Issue 5, https://doi.org/10.1164/rccm.201801-0105OC .

MUSHROOM NUTRITION

  1. Assimakopoulos D, Patrikakos G. Treatment of Ménière’s disease by intratympanic gentamicin application. J Laryngol Otol 2003;117(1):10–16. doi: 10.1258/002221503321046586
  2. Megerian, CA, Cli A. Diameter of the cochlear nerve in endolymphatic hydrops: Implications for the etiology of hearing loss in Meniere’s disease. Laryngoscope 2005;9:1525–1535.
  3. Capaccio P, Pignataro L, Gaini LM, Sigismund PE, Novembrino C, De Giuseppe R. Unbalanced oxidative status in idiopathic sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol 2012;269:449–453. doi:10.1007/s00405-011-1671-2.
  4. Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediat Inflamm 2014;2014:805841.
  5. Scuto M, Di Mauro P, Ontario ML, Amato C, Modafferi S, Ciavardelli D, Trovato Salinaro A, Maiolino L, Calabrese V. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: a rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int J Molec Sci 2020;21:284.
  6. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11(1):81–128.
  7. Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, Koverech G, Luca M, Serra A, Toscano MA, Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: relevance to Alzheimer’s disease pathogenesis. NeuroToxicology 2016;53:350–358. .
  8. Trovato A, Pennisi M, Crupi R, Di Paola R, Alario A, Modafferi S, Di Rosa G, Fernandes T, Signorile A, Maiolino L, Cuzzocrea S, Calabrese V. Neuroinflammation and mitochondrial dysfunction in the pathogenesis of Alzheimer’s Disease: modulation by Coriolus versicolor (Yun-Zhi) nutritional mushroom. J Neurol Neuromed 2017;2(1):19–28.
  9. Moura CS, Lollo PCB, Morato PN, Amaya-Farfan J. Dietary nutrients and bioactive substances modulate heat shock protein (HSP) expression: a review. Nutrients 2018;10(6):683.
  10. Araujo JA, Zhang M, Yin F. Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclrosis. Front Pharmacol 2012, 3:119.
  11. Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013;18(10):1165-1207.
  12. Cao Y, Yan Z, Zhou T, Wang G. SIRT1 regulates cognitive performance and ability of learning and memory in diabetic and nondiabetic models. J Diabetes Res 2017;2017:712187.
  13. Ferguson G, Bridge W. Glutamate cysteine ligase and the age-related decline in cellular glutathione: the therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys 2016;593:12-23.

RESEARCH

Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front Neurosci.,19 February 2021, https://doi.org/10.3389/fnins.2021.640648.

Vitamin C and Covid-19.  Front. Med 2021, 18 January 2021 | https://doi.org/10.3389/fmed.2020.559811.

Severe acute respiratory syndrome coronavirus 2 serology levels in pregnant women and their neonates. American Journal of Obstetrics and Gynecology, 2021; DOI: 10.1016/j.ajog.2021.01.016

Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nature Communications 2021; 12 (1) DOI: 10.1038/s41467-021-21461-4.

Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Scientific Reports 2021; 11 (1). DOI: 10.1038/s41598-021-83577-3.

The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. Science Advances 2021; 7 (8): eabf0717 DOI: 10.1126/sciadv.abf0717.

Food anaphylaxis in the United Kingdom: analysis of national data, 1998-2018. BMJ 2021; n251 DOI: 10.1136/bmj.n251.

Rural-urban differences in antibiotic prescribing for uncomplicated urinary tract infection. Infection Control & Hospital Epidemiology. Web (February 24, 2021).

NEW RELEASES

The Long Haul of COVID-19 Recovery: Immune Rejuvenation versus Immune Support. Integrative Medicine 2020, 19, 6, December.

February 2021

NEWS

State of the Nation – SIMON MARTIN

https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?

https://gco.iarc.fr/today/data/factsheets/populations/826-united-kingdom-fact-sheets.pdf WHO’s International Agency for Research on Cancer – aka The Global Cancer Observatory.
Every two minutes someone in the UK is diagnosed with cancer:  www.cancerresearchuk.org 

https://www.macmillan.org.uk/_images/cancer-statistics-factsheet_tcm9-260514.pdf.

Delineating the adverse impacts of the COVID-19 pandemic on patients with cancer and cancer services. Health Data Research UK, May 13, 2020.  https://www.hdruk.ac.uk/case-studies/delineating-the-adverse-impacts-of-the-covid-19-pandemic-on-patients-with-cancer-and-cancer-services.

The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. The Lancet Oncology 2020, Open Access, July 20. DOI:https://doi.org/10.1016/S1470-2045(20)30388-0

UK incidence of cancer: https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence#heading-Zero.

https://mrc.ukri.org/documents/pdf/diabetes-uk-facts-and-stats-june-2015.

Diabetes in the UK: 2019. Diabet Med 2020, Jan 4, 37, 242–7: https://doi.org/10.1111/dme.14225.

https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet/england-2020.

 “Around three-quarters of people aged 45-74 in England are overweight or obese”: (https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2019.)

NHS England 2020: https://www.england.nhs.uk/ourwork/clinical-policy/respiratory-disease.

“Air pollution a cause in girl’s death, coroner rules in landmark case”. Sandra Laville, The Guardian, Dec 16 2020. https://www.theguardian.com/environment/2020/dec/16/girls-death-contributed-to-by-air-pollution-coroner-rules-in-landmark-case.

Heart disease: https://www.bhf.org.uk/what-we-do/our-research/heart-statistics.

https://www.gov.uk/government/publications/health-matters-combating-high-blood-pressure/health-matters-combating-high-blood-pressure.

https://www.gov.uk/government/publications/prescribed-medicines-review-report/prescribed-medicines-review-summary.

Long Term Conditions Compendium of Information: Third Edition, Department of Health, 2012, quoted in https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/307143/Comorbidities_framework.pdf.

The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort. BMC Med 2019, 17, 145: https://doi.org/10.1186/s12916-019-1373-y.

https://statistics.blf.org.uk/lung-disease-uk-big-picture#:~:text=Numbers%20of%20people%20in%20the,or%20another%20longstanding%20respiratory%20illness.

 

Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann. Intensive Care 2021, 11, 5: https://doi.org/10.1186/s13613-020-00792-3.

Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. medRxiv 2020, doi: https://doi.org/10.1101/2020.12.24.20248802.

 

BEN BROWN – COVID and resilience

  1. Bland J. Reflections on the COVID-19 Pandemic. Medium. April 12, 2020.
  2. Nieman DC. Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. J Sport Health Sci. 2020 Jul;9(4):293-301.
  3. Preskorn SH. The 5% of the Population at High Risk for Severe COVID-19 Infection Is Identifiable and Needs to Be Taken Into Account When Reopening the Economy. J Psychiatr Pract. 2020 May;26(3):219-227.
  4. Horton R. Offline: COVID-19 is not a pandemic. Lancet. 2020 Sep 26;396(10255):874.
  5. Lustig RH. Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation. Nutrients. 2020 Nov 5;12(11):3401.
  6. Sagner M, Katz D, Egger G, Lianov L, Schulz KH, Braman M, Behbod B, Phillips E, Dysinger W, Ornish D. Lifestyle medicine potential for reversing a world of chronic disease epidemics: from cell to community. Int J Clin Pract. 2014 Nov;68(11):1289-92. doi: 10.1111/ijcp.12509. PMID: 25348380.
  7. Sepúlveda-Loyola W, Rodríguez-Sánchez I, Pérez-Rodríguez P, Ganz F, Torralba R, Oliveira DV, Rodríguez-Mañas L. Impact of Social Isolation Due to COVID-19 on Health in Older People: Mental and Physical Effects and Recommendations. J Nutr Health Aging. 2020;24(9):938-947.
  8. Cheng Z, Mendolia S, Paloyo AR, Savage DA, Tani M. Working parents, financial insecurity, and childcare: mental health in the time of COVID-19 in the UK. Rev Econ Househ. 2021 Jan 12:1-22.
  9. Santarsiero A, Giustini M, Quadrini F, D’Alessandro D, Fara GM. Effectiveness of face masks for the population. Ann Ig. 2020 Dec 3. doi: 10.7416/ai.2020.2390.
  10. Rubin EJ, Longo DL. SARS-CoV-2 Vaccination – An Ounce (Actually, Much Less) of Prevention. N Engl J Med. 2020 Dec 31;383(27):2677-2678.
  11. Vainshelboim B. Facemasks in the COVID-19 era: A health hypothesis. Med Hypotheses. 2020 Nov 22;146:110411.
  12. Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020 Jul;87:184-187.
  13. Enhanced ACE2 expression, pre-existing endothelial dysfunction and procoagulant state
  14. Scalsky RJ, Desai K, Chen YJ, O’Connell JR, Perry JA, Hong CC. Baseline Cardiometabolic Profiles and SARS-CoV-2 Risk in the UK Biobank. medRxiv [Preprint]. 2020 Jul 29:2020.07.25.20161091.
  15. Zhu L, She Z-G, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020;31:1068–77.
  16. Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, Barron E, Bakhai C, Khunti K, Wareham NJ, Sattar N, Young B, Valabhji J. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020 Oct;8(10):823-833.
  17. Zhu B, Jin S, Wu L, Hu C, Wang Z, Bu L, Sun H, Wang X, Qu S, Chen D. J-shaped association between fasting blood glucose levels and COVID-19 severity in patients without diabetes. Diabetes Res Clin Pract. 2020 Oct;168:108381.
  18. Rubino, F. et al. New-onset diabetes in Covid-19. N. Engl. J. Med. 383, 789–790 (2020).
  19. Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne). 2020 Sep 17;11:582870.
  20. Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, Khatlani TS, Bouchama A. Obesity and COVID-19: what makes obese host so vulnerable? Immun Ageing. 2021 Jan 4;18(1):1. doi: 10.1186/s12979-020-00212-x. PMID: 33390183; PMCID: PMC7779330.
  21. Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health 2020;3:doi: 10.1136/bmjnph-2020-000085. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):E988.
  22. Holford P, Carr AC, Jovic TH, Ali SR, Whitaker IS, Marik PE, Smith AD. Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients. 2020 Dec 7;12(12):3760.
  23. Demasi M. COVID-19 and metabolic syndrome: could diet be the key? BMJ Evid Based Med. 2020 Jul 10:bmjebm-2020-111451. doi: 10.1136/bmjebm-2020-111451. Epub ahead of print. PMID: 32651302.
  24. Angelidi AM, Kokkinos A, Katechaki E, Ros E, Mantzoros CS. Mediterranean diet as a nutritional approach for COVID-19. Metabolism. 2021 Jan;114:154407. doi: 10.1016/j.metabol.2020.154407. Epub 2020 Oct 17. PMID: 33080270.
  25. Annunziata G, Sanduzzi Zamparelli M, Santoro C, Ciampaglia R, Stornaiuolo M, Tenore GC, et al. May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence. Front Med (Lausanne). 2020;7:240.
  26. Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel). 2020;9(8):659.
  27. Paoli A, Gorini S, Caprio M. The dark side of the spoon – glucose, ketones and COVID-19: a possible role for ketogenic diet? J Transl Med. 2020 Nov 20;18(1):441.
  28. Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 2020 Sep 17;15(9):e0239252.
  29. Asher, A, et al. Blood omega-3 fatty acids and death from COVID-19: A Pilot Study. medRxiv 2021.01.06.21249354; doi: https://doi.org/10.1101/2021.01.06.21249354
  30. Ohaegbulam KC, Swalih M, Patel P, Smith MA, Perrin R. Vitamin D Supplementation in COVID-19 Patients: A Clinical Case Series. Am J Ther. 2020 Sep/Oct;27(5):e485-e490.
  31. Annweiler G, Corvaisier M, Gautier J, Dubée V, Legrand E, Sacco G, Annweiler C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients. 2020 Nov 2;12(11):3377.
  32. Tan CW, Ho LP, Kalimuddin S, Cherng BPZ, Teh YE, Thien SY, Wong HM, Tern PJW, Chandran M, Chay JWM, Nagarajan C, Sultana R, Low JGH, Ng HJ. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020 Nov-Dec;79-80:111017. doi: 10.1016/j.nut.2020.111017. Epub 2020 Sep 8. PMID: 33039952.
  33. Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020: (2):8–12.
  34. Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020 Apr 21;30:101063.

 

COVID and the GUT – SIMON MARTIN

Zwickey: Covid-19: What We Know Now About Spread, Shedding Period, Symptoms, and Effects of Pollen,  a follow-up interview with Heather Zwickey, PhD. Natural Medicine Journal, April 2020 Vol. 12 Issue 4.

GI symptoms in Chinese patients: Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. https://journals.lww.com/ajg/Documents/COVID_Digestive_Symptoms_AJG_Preproof.pdf.

COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Digestive Diseases 2020: https://doi.org/10.1159/000512152.

Involvement of digestive system in COVID-19: manifestations, pathology, management and challenges. Therap Adv Gastroenterol 2020; 13: doi: 10.1177/1756284820934626.

RESEARCH

UV-LED disinfection of Coronavirus: Wavelength effectJournal of Photochemistry and Photobiology B: Biology 2020, 212: 112044 DOI: 10.1016/j.jphotobiol.2020.112044.

Triptolide targets super-enhancer networks in pancreatic cancer cells and cancer-associated fibroblastsOncogenesis 2020, 9 (11). DOI: 10.1038/s41389-020-00285-9.

Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosisiScience 2021; 24 (1): 101902 DOI: 10.1016/j.isci.2020.101902.

Local immune response to food antigens drives meal-induced abdominal painNature 2021. DOI: 10.1038/s41586-020-03118-2.

Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut, 2021. Published online first: 18 January. Open Access, doi: 10.1136/gutjnl-2020-323106.

The Effect of Wolffia globosa Mankai, a Green Aquatic Plant, on Postprandial Glycemic Response: A Randomized Crossover Controlled TrialDiabetes Care, 2019; 42 (7): 1162 DOI: 10.2337/dc18-2319.

Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19JCI Insight 2021. DOI: 10.1172/jci.insight.143299.

January 2021

NEWS

Diverse Functional Autoantibodies in Patients with COVID-19.

medRxiv 2020.12.10.20247205; doi: https://doi.org/10.1101/2020.12.10.20247205.
Pre-print, not peer-reviewed.

Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19Science Translational Medicine, Nov. 2, 2020; DOI: 10.1126/scitranslmed.abd3876.

Antimalarial Drug Shortages During the COVID-19 Pandemic: Results from the Global Rheumatology Alliance Patient Experience Survey. Research presented at ACR Convergence 2020, the American College of Rheumatology’s annual meeting.

https://acrabstracts.org/abstract/antimalarial-drug-shortages-during-the-covid-19-pandemic-results-from-the-global-rheumatology-alliance-patient-experience-survey.

Autoantibodies against type I IFNs in patients with life-threatening COVID-19.

Science, 2020 Oct 23, 370, Issue 6515, eabd4585. DOI: 10.1126/science.abd4585.

Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid systemNat Commun 2020, 11, 6363. https://doi.org/10.1038/s41467-020-19931-2.

Genetic mechanisms of critical illness in Covid-19. Nature 2020, Dec 11:  https://doi.org/10.1038/s41586-020-03065-y.

Anti-Quorum Sensing Activity of Stevia Extract, Stevioside, Rebaudioside A and Their Aglycon Steviol. Molecules 2020, 25, 5480: https://www.mdpi.com/1420-3049/25/22/5480.

Blackcurrant (Ribes nigrum) lowers sugar-induced postprandial glycaemia independently and in a product with fermented quinoa: A randomised crossover trialBritish Journal of Nutrition 2020, 1-10. doi:10.1017/S0007114520004468.

Glucosamine/Chondroitin and Mortality in a US NHANES CohortThe Journal of the American Board of Family Medicine, 2020; 33 (6): 842. DOI: 10.3122/jabfm.2020.06.200110.

Glucosamine/Chondroitin and Mortality in a US NHANES CohortThe Journal of the American Board of Family Medicine, 2020; 33 (6): 842. DOI: 10.3122/jabfm.2020.06.200110.

Reversal of the Pathophysiological Responses to Gram-Negative Sepsis by Megadose Vitamin C. Critical Care Medicine 2020, Nov 25, Online First, doi: 10.1097/CCM.0000000000004770.

NEW RELEASES
Dried urine and salivary profiling for complete assessment of cortisol and cortisol metabolites. Journal of Clinical & Translational Endocrinology 2020, 22, 100243.

https://doi.org/10.1016/j.jcte.2020.100243.

BEN BROWN

  1. Buysse DJ. Insomnia. JAMA. 2013;309(7):706- 716.
  2. Winkelman JW. Insomnia Disorder. N Engl J Med. 2015 Oct 8;373(15):1437-44
  3. Ohayon MM, Roth T. Place of chronic insomnia in the course of depressive and anxiety disorders. J Psychiatr Res 2003; 37: 9-15.
  4. Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, Shi J, Vitiello MV, Lu L. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev. 2017 Jul 6. pii: S1087-0792(17)30011-4.
  5. Laugsand LE, Vatten LJ, Platou C, Janszky I. Insomnia and the risk of acute myocardial infarction: a population study. Circulation 2011; 124: 2073-81.
  6. Laugsand LE, Strand LB, Platou C, Vatten LJ, Janszky I. Insomnia and the isk of incident heart failure: a population study. Eur Heart J 2014; 35: 1382-93.
  7. Fernandez-Mendoza J, Vgontzas AN, Liao D, et al. Insomnia with objective short sleep duration and incident hypertension: the Penn State Cohort. Hypertension 2012; 60: 929-35.
  8. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Bixler EO. Insomnia with objective short sleep duration is associated with type 2 diabetes: a population- based study. Diabetes Care 2009; 32: 1980-5.
  9. Fernandez-Mendoza J. The insomnia with short sleep duration phenotype: an update on it’s importance for health and prevention. Curr Opin Psychiatry. 2017 Jan;30(1):56-63.
  10. Sorscher AJ. Insomnia: Getting to the cause, facilitating relief. J Fam Pract. 2017 Apr;66(4):216-225.
  11. Roth T, Roehrs T, Pies R. Insomnia: pathophysiology and implications for treatment. Sleep Med Rev. 2007 Feb;11(1):71-9.
  12. Vgontzas AN, Bixler EO, Lin HM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001 Aug;86(8):3787-94.
  13. Levenson JC, Kay DB, Buysse DJ. The pathophysiology of insomnia. Chest. 2015 Apr;147(4):1179-1192.
  14. Pigeon WR , Cribbet MR . The pathophysiology of insomnia: from models to molecules (and back) . Curr Opin Pulm Med . 2012 ; 18 ( 6 ): 546 – 553 .
  15. Ban HJ , Kim SC , Seo J , Kang HB , Choi JK . Genetic and metabolic characterization of insomnia . PLoS ONE . 2011 ; 6 ( 4 ): e18455 .
  16. Winkelman JW , Buxton OM , Jensen JE , et al . Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy ( 1 H-MRS) . Sleep . 2008 ; 31 ( 11 ): 1499 – 1506
  17. Riemann D , Klein T , Rodenbeck A , et al . Nocturnal cortisol and melatonin secretion in primary insomnia . Psychiatry Res . 2002 ; 113 ( 1-2 ): 17 – 27 .
  18. Xia L , Chen GH , Li ZH , Jiang S , Shen J . Alterations in hypothalamus-pituitary-adrenal/thyroid axes and gonadotropinreleasing hormone in the patients with primary insomnia: a clinical research . PLoS ONE . 2013 ; 8 ( 8 ): e71065 .
  19. Seelig E , Keller U , Klarhöfer M , et al . Neuroendocrine regulation and metabolism of glucose and lipids in primary chronic insomnia: a prospective case-control study . PLoS ONE . 2013 ; 8 ( 4 ): e61780 .
  20. Backhaus J , Junghanns K , Hohagen F . Sleep disturbances are correlated with decreased morning awakening salivary cortisol . Psychoneuroendocrinology . 2004 ; 29 ( 9 ): 1184 – 1191 .
  21. Zhang J , Lam SP , Li SX , et al . A community-based study on the association between insomnia and hypothalamic-pituitary-adrenal axis: sex and pubertal infl uences . J Clin Endocrinol Metab . 2014 ; 99 ( 6 ): 2277 – 2287 .
  22. Lack LC, Mercer JD, Wright H. Circadian rhythms of early morning awakening insomniacs. J Sleep Res. 1996 Dec;5(4):211-9.
  23. Taillard J, Philip P, Bioulac B. Morningness/eveningness and the need for sleep. J Sleep Res. 1999 Dec;8(4):291-5.
  24. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006;23:497–509.
  25. Chong SY, Ptáček LJ, Fu YH. Genetic insights on sleep schedules: this time, it’s PERsonal. Trends Genet. 2012 Dec;28(12):598-605.
  26. Yetish G, Kaplan H, Gurven M, Wood B, Pontzer H, Manger PR, Wilson C, McGregor R, Siegel JM. Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol. 2015 Nov 2;25(21):2862-2868.
  27. Ekirch AR. Sleep we have lost: pre-industrial slumber in the British Isles. Am Hist Rev. 2001;106(2):343-86.
  28. Stevens RG, Zhu Y. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667).
  29. Cho Y, Ryu SH, Lee BR, et al. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int. 2015;32(9):1294-310.
  30. Qaseem A, Kansagara D, Forciea MA, et al. Management of chronic insomnia disorder in adults. Ann Intern Med. 2016;165(2):125-133
  31. van Straten A, van der Zweerde T, Kleiboer A, Cuijpers P, Morin CM, Lancee J.  Cognitive and behavioral therapies in the treatment of insomnia: A meta-analysis. Sleep Med Rev. 2017 Feb 9. pii: S1087-0792(17)30034-5. doi: 10.1016/j.smrv.2017.02.001. [Epub ahead of print]
  32. Medalie L, Cifu AS. Management of Chronic Insomnia Disorder in Adults. JAMA. 2017 Feb 21;317(7):762-763.
  33. Buscemi N, Vandermeer B, Friesen C, et al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs. J Gen Intern Med. 2007 Sep;22(9):1335-50.
  34. Zhou ES, Gardiner P, Bertisch SM. Integrative Medicine for Insomnia. Med Clin  North Am. 2017 Sep;101(5):865-879.
  35. Frank S, Gonzalez K, Lee-Ang L, Young MC, Tamez M, Mattei J. Diet and Sleep Physiology: Public Health and Clinical Implications. Front Neurol. 2017 Aug 11;8:393.
  36. St-Onge MP, Mikic A, Pietrolungo CE. Effects of Diet on Sleep Quality. Adv Nutr. 2016 Sep 15;7(5):938-49.
  37. Katagiri R, Asakura K, Kobayashi S, Suga H, Sasaki S. Low intake of vegetables, high intake of confectionary, and unhealthy eating habits are associated with poor sleep quality among middle-aged female Japanese workers. J Occup Health. 2014;56(5):359-68.
  38. Gangwisch JE, Hale L, St-Onge MP, Choi L, LeBlanc ES, Malaspina D, Opler MG, Shadyab AH, Shikany JM, Snetselaar L, Zaslavsky O, Lane D. High glycemic index and glycemic load diets as risk factors for insomnia: analyses from the Women’s Health Initiative. Am J Clin Nutr. 2020 Feb 1;111(2):429-439.
  39. Afaghi A, O’Connor H, Chow CM. Acute effects of the very low carbohydrate diet on sleep indices. Nutr Neurosci. 2008 Aug;11(4):146-54.
  40. Zadeh SS, Begum K. Comparison of nutrient intake by sleep status in selected adults in Mysore, India. Nutr Res Pract 2011; 5(3): 230-5.
  41. Song CH, Kim YH, Jung KI. Associations of zinc and copper levels in serum and hair with sleep duration in adult women. Biol Trace Elem Res 2012; 149(1): 16-21
  42. Grandner MA, Jackson N, Gerstner JR, Knutson KL. Dietary nutrients associated  with short and long sleep duration. Data from a nationally representative sample. Appetite. 2013 May;64:71-80.
  43. Grandner MA, Jackson N, Gerstner JR, et al. Sleep symptoms associated with intake of specific dietary nutrients. J Sleep Res 2014; 23(1): 22-34.
  44. Kruger AK, Reither EN, Peppard PE, Krueger PM, Hale L. Do sleep-deprived adolescents make less-healthy food choices? Br J Nutr. 2014 May 28;111(10):1898-904.
  45. Lindseth G, Lindseth P, Thompson M. Nutritional effects on sleep. Western J Nurs Res 2013, 35(4): 497-513.
  46. Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutr Res 2012; 32(5): 309-19.
  47. Tan X, Alén M, Wang K, Tenhunen J, Wiklund P, Partinen M, Cheng S. Effect of Six-Month Diet Intervention on Sleep among Overweight and Obese Men with Chronic  Insomnia Symptoms: A Randomized Controlled Trial. Nutrients. 2016 Nov 23;8(11). pii: E751.
  48. Pigeon WR, Carr M, Gorman C, Perlis ML. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. J Med Food. 2010 Jun;13(3):579-83.
  49. Howatson G, Bell PG, Tallent J, et al. Effect of tart cherry juice (Prunus cerasus) on melatonin levels and enhanced sleep quality. Eur J Nutr 2012; 51(8): 909-16.
  50. Garrido M, González-Gómez D, Lozano M, et al. A Jerte valley cherry product provides beneficial effects on sleep quality: Influence on aging. J Nutr Health Aging 2013; 17(6): 553-60
  51. Losso JN, Finley JW, Karki N, Liu AG, Prudente A, Tipton R, Yu Y, Greenway FL. Pilot Study of the Tart Cherry Juice for the Treatment of Insomnia and Investigation of Mechanisms. Am J Ther. 2017 Mar 27. doi: 10.1097/MJT.0000000000000584. [Epub ahead of print]
  52. Lin HH, Tsai PS, Fang SC, et al. Effect of kiwifruit consumption on sleep quality in adults with sleep problems.Asia Pac J Clin Nutr 2011; 20 (2): 169-74
  53. Ito T, Goto K, Takanari J, Miura T, Wakame K, Nishioka H, Tanaka A, Nishihira  J. Effects of enzyme-treated asparagus extract on heat shock protein 70, stress indices, and sleep in healthy adult men. J Nutr Sci Vitaminol (Tokyo). 2014;60(4):283-90.
  54. Takanari J, Nakahigashi J, Sato A, Waki H, Miyazaki S, Uebaba K, Hisajima T. Effect of Enzyme-Treated Asparagus Extract (ETAS) on Psychological Stress in Healthy Individuals. J Nutr Sci Vitaminol (Tokyo). 2016;62(3):198-205.
  55. Brezinová V, Oswald I. Sleep after a bedtime beverage. Br Med J. 1972 May 20;2(5811):431-3.
  56. Valtonen M, Niskanen L, Kangas AP, Koskinen T. Effect of melatonin-rich night-time milk on sleep and activity in elderly institutionalized subjects. Nord J Psychiatry. 2005;59(3):217-21.
  57. Yamamura S, Morishima H, Kumano-go T, et al. The effect of Lactobacillus helveticus fermented milk on sleep and health perception in elderly subjects. Eur J Clin Nutr. 2009;63:100–105.
  58. Kitano N, Tsunoda K, Tsuji T, et al. Association between difficulty initiating sleep in older adults and the combination of leisure-time physical activity and consumption of milk and milk products: a cross-sectional study. BMC Geriatr. 2014 Nov 18;14:118.
  59. Bae SM, et al. Effects of Melatonin-Rich Milk on Mild Insomnia Symptoms. Sleep Med Res 2016;7(2):60-67
  60. Crespi F, Jouvet M. Sleep and indolamine alterations induced by thiamine deficiency. Brain Res. 1982 Sep 30;248(2):275-83.
  61. Smidt LJ, Cremin FM, Grivetti LE, Clifford AJ. Influence of thiamin supplementation on the health and general well-being of an elderly Irish population with marginal thiamin deficiency. J Gerontol 1991;46:M16–M22.
  62. Wilkinson TJ, Hanger HC, Elmslie J, et al. The response to treatment of subclinical thiamine deficiency in the elderly. Am J Clin Nutr 1997;66:925–928
  63. Ghaleiha A, Davari H, Jahangard L, et al. Adjuvant thiamine improved standard treatment in patients with major depressive disorder: results from a randomized,  double-blind, and placebo-controlled clinical trial. Eur Arch Psychiatry Clin Neurosci. 2016 Dec;266(8):695-702.
  64. Costantini A, Pala MI, Tundo S, Matteucci P. High-dose thiamine improves the symptoms of fibromyalgia. BMJ Case Rep. 2013 May 20;2013.
  65. Murck H, Steiger A. Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men — possible therapeutic implications. Psychopharmacology (Berl). 1998 Jun;137(3):247-52. 
  66. Held K, Antonijevic IA, Kunzel H, Uhr M, Wetter TC, Golly IC, et al. Oral Mg2+ supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry. 2002;35:135–43. 
  67. Nielsen FH, Johnson LK, Zeng H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 2010 Dec;23(4):158-68
  68. Abbasi B, Kimiagar M, Sadeghniiat K, et al. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. J Res Med Sci. 2012 Dec;17(12):1161-9. 
  69. Cherasse Y, Saito H, Nagata N, Aritake K, Lazarus M, Urade Y. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice. Mol Nutr Food Res. 2015 Oct;59(10):2087-93.
  70. Zhang HQ, Li N, Zhang Z, Gao S, Yin HY, Guo DM, Gao X. Serum zinc, copper, and zinc/copper in healthy residents of Jinan. Biol Trace Elem Res. 2009 Oct;131(1):25-32.
  71. Song CH, Kim YH, Jung KI. Associations of zinc and copper levels in serum and hair with sleep duration in adult women. Biol Trace Elem Res. 2012 Oct;149(1):16-21..
  72. Ji X, Liu J. Associations between Blood Zinc Concentrations and Sleep Quality in Childhood: A Cohort Study. Nutrients. 2015 Jul 13;7(7):5684-96.
  73. Kordas K, Siegel EH, Olney DK, Katz J, Tielsch JM, Kariger PK, Khalfan SS, LeClerq SC, Khatry SK, Stoltzfus RJ. The effects of iron and/or zinc supplementation on maternal reports of sleep in infants from Nepal and Zanzibar. J Dev Behav Pediatr. 2009 Apr;30(2):131-9.
  74. Saito H, Cherasse Y, Suzuki R, Mitarai M, Ueda F, Urade Y. Zinc-rich oysters as well as zinc-yeast- and astaxanthin-enriched food improved sleep efficiency and sleep onset in a randomized controlled trial of healthy individuals. Mol Nutr Food Res. 2017 May;61(5).
  75. Gholipour Baradari A, Alipour A, Mahdavi A, Sharifi H, Nouraei SM, Emami Zeydi A. The Effect of Zinc Supplementation on Sleep Quality of ICU Nurses: A Double Blinded Randomized Controlled Trial. Workplace Health Saf. 2018 Apr;66(4):191-200.
  76. Rajendra S, Lynch JW, Schofield PR. The glycine receptor.  Pharmacol Ther. 1997;73:121–146
  77. Bannai M, Kawai N. New therapeutic strategy for amino acid medicine: glycine improves the quality of sleep. J Pharmacol Sci. 2012;118(2):145-8.
  78. Türközü D, Şanlier N. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit Rev Food Sci Nutr. 2017 May 24;57(8):1681-1687.
  79. Rao TP, Ozeki M, Juneja LR. In Search of a Safe Natural Sleep Aid. J Am Coll Nutr. 2015;34(5):436-47.
  80. Lyon MR, Kapoor MP, Juneja LR. The effects of L-theanine (Suntheanine®) on objective sleep quality in boys with attention deficit hyperactivity disorder (ADHD): a randomized, double-blind, placebo-controlled clinical trial. Altern Med Rev. 2011 Dec;16(4):348-54.
  81. Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev 2010; 34:387–407.
  82. Hartmann E. Effects of L-tryptophan on sleepiness and on sleep. J Psychiatr Res. 1982-1983;17(2):107-13.
  83. Demisch K, Bauer J, Georgi K, Demisch L. Treatment of severe chronic insomnia with L-tryptophan: results of a double-blind cross-over study. Pharmacopsychiatry Nov 1987;20(6):242e4.
  84. Hudson C, Hudson SP, Hecht T, MacKenzie J. Protein source tryptophan versus pharmaceutical grade tryptophan as an efficacious treatment for chronic insomnia. Nutr Neurosci Apr 2005;8(2):121e7.
  85. Capello AE, Markus CR. Effect of sub chronic tryptophan supplementation on stress-induced cortisol and appetite in subjects differing in 5-HTTLPR genotype and trait neuroticism. Psychoneuroendocrinology. 2014 Jul;45:96-107.
  86. Imeri L, Mancia M, Bianchi S, Opp MR. 5-Hydroxytryptophan, but not L-tryptophan, alters sleep and brain temperature in rats. Neuroscience. 2000;95(2):445-52.
  87. Wyatt RJ, Zarcone V, Engelman K, Dement WC, Snyder F, Sjoerdsma A. Effects of  5-hydroxytryptophan on the sleep of normal human subjects. Electroencephalogr Clin Neurophysiol. 1971 Jun;30(6):505-9.
  88. Lavialle M, Champeil-Potokar G, Alessandri JM, et al. An (n-3) polyunsaturated fatty  acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters. J Nutr. 2008 Sep;138(9):1719-24.
  89. Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H, Owada Y, Van Dongen HPA, Galante RJ, Dickinson K, Yin JCP, Pack AI, Frank MG. Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci Adv. 2017 Apr 5;3(4):e1602663.
  90. Cheruku SR, Montgomery-Downs HE, Farkas SL, Thoman EB, Lammi-Keefe CJ. Higher maternal plasma docosahexaenoic acid during pregnancy is associated with more mature neonatal sleep-state patterning. Am J Clin Nutr. 2002;76:608–13
  91. Burgess JR, Stevens L, Zhang W, Peck L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 2000;71(Suppl. 1):327S–330S.
  92. Papandreou C. Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome. J Sleep Res 2013; 22(5): 569-72
  93. Montgomery P, Burton JR, Sewell RP, Spreckelsen TF, Richardson AJ. Fatty acids and sleep in UK children: subjective and pilot objective sleep results from the DOLAB study–a randomized controlled trial. J Sleep Res. 2014 Aug;23(4):364-88.
  94. Blanchard LB, McCarter GC. Insomnia and exacerbation of anxiety associated with high-EPA fish oil supplements after successful treatment of depression. Oxf Med Case Reports. 2015 Mar 25;2015(3):244-5.
  95. Kumar A, Kalonia H. Effect of Withania somnifera on Sleep-Wake Cycle in Sleep-Disturbed Rats: Possible GABAergic Mechanism. Indian J Pharm Sci. 2008 Nov;70(6):806-10.
  96. Kumar A, Kalonia H. Protective effect of Withania somnifera Dunal on the behavioral and biochemical alterations in sleep-disturbed mice (Grid over water suspended method). Indian J Exp Biol. 2007 Jun;45(6):524-8.
  97. Kelgane SB, Salve J, Sampara P, Debnath K. Efficacy and Tolerability of Ashwagandha Root Extract in the Elderly for Improvement of General Well-being and Sleep: A Prospective, Randomized, Double-blind, Placebo-controlled Study. Cureus. 2020 Feb 23;12(2):e7083.
  98. Langade D, Thakare V, Kanchi S, Kelgane S. Clinical evaluation of the pharmacological impact of ashwagandha root extract on sleep in healthy volunteers and insomnia patients: A double-blind, randomized, parallel-group, placebo-controlled study. J Ethnopharmacol. 2021 Jan 10;264:113276.
  99. Miraj S, Alesaeidi S. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electron Physician. 2016 Sep 20;8(9):3024-3031.
  100. Zick SM, Wright BD, Sen A, et al. Preliminary examination of the efficacy and safety of a standardized chamomile extract for chronic primary insomnia: a randomized placebo-controlled pilot study. BMC Complement Altern Med 2011; 11(1):1.
  101. Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016 Feb;72(2):306-15.
  102. Abdullahzadeh M, Matourypour P, Naji SA. Investigation effect of oral chamomilla on sleep quality in elderly people in Isfahan: A randomized control trial. J Educ Health Promot. 2017 Jun 5;6:53.
  103. Bent S, Padula A, Moore D, Patterson M, Mehling W. Valerian for sleep: a systematic review and meta-analysis. Am J Med. 2006 Dec;119(12):1005-12.
  104. Taibi DM, Landis CA, Petry H, Vitiello MV. A systematic review of valerian as a sleep aid: safe but not effective. Sleep Med Rev. 2007 Jun;11(3):209-30.
  105. Fernández-San-Martín MI, Masa-Font R, Palacios-Soler L, Sancho-Gómez P, Calbó-Caldentey C, Flores-Mateo G. Effectiveness of Valerian on insomnia: a meta-analysis of randomized placebo-controlled trials. Sleep Med. 2010 Jun;11(6):505-11.
  106. Leach MJ, Page AT. Herbal medicine for insomnia: A systematic review and meta-analysis. Sleep Med Rev. 2015 Dec;24:1-12. doi: 10.1016/j.smrv.2014.12.003.
  107. Shinjyo N, Waddell G, Green J. Valerian Root in Treating Sleep Problems and Associated Disorders-A Systematic Review and Meta-Analysis. J Evid Based Integr Med. 2020 Jan-Dec;25:2515690X20967323.

Coronosomnia – UC Davis

The acute effects of the COVID-19 pandemic on insomnia and psychological symptoms. Sleep Med 202, S1389-9457(20)30261-6. DOI:10.1016/j.sleep.2020.06.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274952.

D, K, COVID and heart disease: Dr TRYGVE BERGELAND
1.    Clerkin, K. J., Fried, J. A., Raikhelkar, J., Sayer, G., Griffin, J. M., Masoumi, A., … & Schwartz, A. (2020). COVID-19 and cardiovascular disease. Circulation, 141(20), 1648-1655.
2.    Madjid, M., Safavi-Naeini, P., Solomon, S. D., & Vardeny, O. (2020). Potential effects of coronaviruses on the cardiovascular system: a review. JAMA cardiology, 5(7):831–840.
3.    Nishiga, M., Wang, D. aW., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 1-16.
4.    Driggin, E., Madhavan, M. V., Bikdeli, B., Chuich, T., Laracy, J., Biondi-Zoccai, G., … & Brodie, D. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75(18), 2352-2371.
5.    Bikdeli, B., Madhavan, M. V., Jimenez, D., Chuich, T., Dreyfus, I., Driggin, E., … & Tang, L. V. (2020). COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75(23), 2950-2973.
6.    Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X. (2020). COVID-a19 and the cardiovascular system. Nature Reviews Cardiology, 17(5), 259-260.
7.    Han, Y., Zeng, H., Jiang, H., Yang, Y., Yuan, Z., Cheng, X., … & Zhu, J. (2020). CSC expert consensus on principles of clinical management of patients with severe emergent cardiovascular diseases during the COVID-19 epidemic. Circulation, 141(20), e810-e816.
8.    Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., … & Zhao, Y. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069.
9.    Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … & Guan, L. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229): 1054–62.

10.    Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242.
11.    Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine, 46(5), 846-848.
12.    Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., … & Huang, H. (2020). Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA cardiology, 5(7):802-810.
13.    Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., … & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology. 5(7):811-818.
14.    Shi, S., Qin, M., Cai, Y., Liu, T., Shen, B., Yang, F., … & Huang, H. (2020). Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European Heart Journal, 41(22), 2070-2079.
15.    Klok, F. A., Kruip, M. J. H. A., Van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., … & Endeman, H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis research, 191: 145‐147.
16.    Puntmann, V. O., Carerj, M. L., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., … & Vehreschild, M. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA cardiology.
17.    Bergman, P., Lindh, Å. U., Björkhem-Bergman, L., & Lindh, J. D. (2013). Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PloS one, 8(6), e65835.
18.    Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., … & Goodall, E. C. (2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. bmj, 356:i6583
19.    Pham, H., Rahman, A., Majidi, A., Waterhouse, M., & Neale, R. E. (2019). Acute respiratory tract infection and 25-hydroxyvitamin D concentration: a systematic review and meta-analysis. International journal of environmental research and public health, 16(17), 3020.
20.   Zhou, Y. F., Luo, B. A., & Qin, L. L. (2019). The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine, 98(38).
21.    Ali, N. Role of Vitamin D in Preventing of COVID-19 Infection, Progression and Severity. Journal of infection and public health, S1876-0341.
22.    Alipio, M. (2020). Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19). Available at SSRN 3571484.
23.    D’Avolio, A., Avataneo, V., Manca, A., Cusato, J., De Nicolò, A., Lucchini, R., … & Cantù, M. (2020). 25-hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients, 12(5), 1359.
24.    Ilie, P. C., Stefanescu, S., & Smith, L. (2020). The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clinical and Experimental Research, 1-4.
25.    Im, J. H., Je, Y. S., Baek, J., Chung, M. H., Kwon, H. Y., & Lee, J. S. (2020). Nutritional status of patients with COVID-19. International Journal of Infectious Diseases, 100, 390-393.
26.    Kaufman, H. W., Niles, J. K., Kroll, M. H., Bi, C., & Holick, M. F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One, 15(9), e0239252.
27.    Maghbooli, Z., Ebrahimi, M., Shirvani, A., Nasiri, M., Pazoki, M., Kafan, S., … & Holick, M. F. (2020). Vitamin D sufficiency reduced risk for morbidity and mortality in COVID-19 patients. Available at SSRN 3616008.
28.    Meltzer, D. O., Best, T. J., Zhang, H., Vokes, T., Arora, V., & Solway, J. (2020). Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA network open, 3(9), e2019722-e2019722.
29.    Panagiotou, G., Tee, S. A., Ihsan, Y., Athar, W., Marchitelli, G., Kelly, D., … & Burns, G. (2020). Low serum 25‐hydroxyvitamin D (25 [OH] D) levels in patients hospitalized with COVID‐19 are associated with greater disease severity. Clinical endocrinology, 93(4), 508-511.
30.    Radujkovic, A., Hippchen, T., Tiwari-Heckler, S., Dreher, S., Boxberger, M., & Merle, U. (2020). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12(9), 2757.
31.    Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988.
32.    Van Ballegooijen, A. J., & Beulens, J. W. (2017). The role of vitamin K status in cardiovascular health: evidence from observational and clinical studies. Current nutrition reports, 6(3), 197-205.
33.    Janssen, R., Visser, M. P., Dofferhoff, A. S., Vermeer, C., Janssens, W., & Walk, J. (2020). Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in Covid-19. British Journal of Nutrition, 1-25.
34.    Lutsey, P. L., & Michos, E. D. (2013). Vitamin D, calcium, and atherosclerotic risk: evidence from serum levels and supplementation studies. Current atherosclerosis reports, 15(1), 293.
35.    Maresz, K. (2015). Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integrative Medicine: A Clinician’s Journal, 14(1), 34.
36.   Sung, K. C., Chang, Y., Ryu, S., & Chung, H. K. (2016). High levels of serum vitamin D are associated with a decreased risk of metabolic diseases in both men and women, but an increased risk for coronary artery calcification in Korean men. Cardiovascular diabetology, 15(1), 112.
37.    Wang, J., Zhou, J. J., Robertson, G. R., & Lee, V. W. (2018). Vitamin D in vascular calcification: a double-edged sword?. Nutrients, 10(5), 652.
38.    Van Ballegooijen, A. J., Pilz, S., Tomaschitz, A., Grübler, M. R., & Verheyen, N. (2017). The synergistic interplay between vitamins D and K for bone and cardiovascular health: a narrative review. International journal of endocrinology, 2017.
39.    Koshihara, Y., & Hoshi, K. (1997). Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. Journal of Bone and Mineral Research, 12(3), 431-438.
40.    Ushiroyama, T., Ikeda, A., & Ueki, M. (2002). Effect of continuous combined therapy with vitamin K2 and vitamin D3 on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas, 41(3), 211-221.
41.    Van Ballegooijen, A. J., & Beulens, J. W. (2017). The role of vitamin K status in cardiovascular health: evidence from observational and clinical studies. Current nutrition reports, 6(3), 197-205.
42.    Dofferhoff, A. S., Piscaer, I., Schurgers, L. J., Visser, M. P., van den Ouweland, J. M., de Jong, P. A., … & Maassen, C. (2020). Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clinical Infectious Diseases.
43.    Anastasi, E., Ialongo, C., Labriola, R., Ferraguti, G., Lucarelli, M., & Angeloni, A. (2020). Vitamin K deficiency and covid-19. Scandinavian Journal of Clinical and Laboratory Investigation, 80(7), 525-527.
44.    Pan, M. H., Maresz, K., Lee, P. S., Wu, J. C., Ho, C. T., Popko, J., … & Badmaev, V. (2016). Inhibition of TNF-α, IL-1α, and IL-1β by pretreatment of human monocyte-derived macrophages with menaquinone-7 and cell activation with TLR agonists in vitro. Journal of medicinal food, 19(7), 663-669.
45.    Reddi, K., Henderson, B., Meghji, S., Wilson, M., Poole, S., Hopper, C., … & Hodges, S. J. (1995). Interleukin 6 production by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin K) compounds. Cytokine, 7(3), 287-290.
46.    Xia, J., Matsuhashi, S., Hamajima, H., Iwane, S., Takahashi, H., Eguchi, Y., … & Ozaki, I. (2012). The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells. The Journal of Nutritional Biochemistry, 23(12), 1668-1675.

IBS

Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2020 Apr 12; S0016-5085(20)30487-X. https://www.gastrojournal.org/article/S0016-5085(20)30487-X/fulltext.

Association between Brachyspira and irritable bowel syndrome with diarrhoea.

Gut 2020, Online First: 11 November. DOI: 10.1136/gutjnl-2020-321466.  https://gut.bmj.com/content/early/2020/11/10/gutjnl-2020-321466.  

Controlled Delivery of Bile Acids to the Colon. Clinical and Translational Gastroenterology 2020, December, 11: 12, e00229. DOI: 10.14309/ctg.0000000000000229.

Allergy-Related Diseases During Childhood And Risk Of Irritable Bowel Syndrome at 16 Years: a Swedish Birth Cohort Study. Presented at UEG Week Virtual 2020. Related: The epidemiology of irritable bowel syndrome. Clinical Epidemiology 2014: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921083; Epidemiology and burden of chronic constipation. Canadian Journal of Gastroenterology.2011: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206560.

Randomised, double-blind, placebo controlled multi-centre study to assess the efficacy, tolerability and safety of Enterosgel® in the treatment of irritable bowel syndrome with diarrhoea (IBS-D) in adults. Trials 2020, 21, 122: https://doi.org/10.1186/s13063-020-4069-x.

RESEARCH

β-Carotene Oxygenase 1 Activity Modulates Circulating Cholesterol Concentrations in Mice and Humans. Journal of Nutrition 2020, 150: 8, 2023–30: https://doi.org/10.1093/jn/nxaa143.

β-carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice.  Journal of Lipid Research 2020, 61(11):1491-1503. DOI: 10.1194/jlr.RA120001066.

Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Science Translational Medicine 2020. DOI: 10.1126/scitranslmed.aaz8631.

Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarctionJournal of Molecular and Cellular Cardiology, 2020; 148: 106 DOI: 10.1016/j.yjmcc.2020.08.015.

Effects of a Fat-Rich Diet on the Spontaneous Release of Acetylcholine in the Neuromuscular Junction of MiceNutrients 2020, 12, 3216. Published online 2020 Oct 21. doi: 10.3390/nu12103216.

December 2020

WELCOME

Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Bruce N. Ames.

Proceedings of the National Academy of Sciences 2006, 103 (47) 17589-17594; DOI: 10.1073/pnas.0608757103. https://www.pnas.org/content/103/47/17589.full.

NEWS

“Dame Sally Davies: obesity scourge led to 50,000 Covid death toll”. The Times, Nov 15, 2020: https://www.thetimes.co.uk/article/dame-sally-davies-obesity-scourge-led-to-50-000-covid-death-toll.

Higher egg consumption associated with increased risk of diabetes in Chinese adults – China Health and Nutrition SurveyBritish Journal of Nutrition, 2020; 1 DOI: 10.1017/S0007114520003955.

Metabolic Profiling of High Egg Consumption and the Associated Lower Risk of Type 2 Diabetes in Middle‐Aged Finnish MenMolecular Nutrition & Food Research  2018; 1800605 DOI: 10.1002/mnfr.201800605.

Prof Richard Feinman: Nutrition in Crisis: Flawed Studies, Misleading Advice and the Real Science of Human Metabolism, (Chelsea Green Publishing, 2019). https://feinmantheother.com.

“The Problem with Epidemiological Studies”, by Georgia Ede, MD. Online at her diagnosis:Diet website: https://www.diagnosisdiet.com/full-article/epidemiological-studies.

Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. The Journal of Clinical Endocrinology & Metabolism, 2020. dgaa733, https://doi.org/10.1210/clinem/dgaa733.

Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: a feasibility studyPeerJ, 2020; 8: e10196 DOI: 10.7717/peerj.10196

Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adultsScientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-76160-9.

Structure and function of virion RNA polymerase of a crAss-like phage, Nature (2020). DOI: 10.1038/s41586-020-2921-5 , www.nature.com/articles/s41586-020-2921-5.

Alterations in the Intestinal Morphology, Gut Microbiota, and Trace Mineral Status Following Intra-Amniotic Administration (Gallus gallus) of Teff (Eragrostis tef) Seed Extracts. Nutrients 2020, 12, 3020.

Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy.

mSphere Oct 2020, 5 (5) e00314-20; DOI: 10.1128/mSphere.00314-20

Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Journal of Alzheimer’s Disease 2020,  78, 2, 683-697.

Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats. Nutrients 2020, 12, 3225. https://www.mdpi.com/2072-6643/12/11/3225.

VITAMIN C

Frontline Covid-19 Critical Care Alliance: https://covid19criticalcare.com.

Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-19 InfectionAging and Disease, 2020; DOI: 10.14336/AD.2020.0918.

INFLAMMATION
Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery
. Integr Med (Encinitas) 2020, 19(Suppl 1): 8–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190003.

Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction and Targeted Therapy, 2020, 5, Article number: 33. https://www.nature.com/articles/s41392-020-0148-4.  

Broadly-targeted autoreactivity is common in severe SARS-CoV-2 Infection.

Preprint, medRxiv 2020, ID: ppmedrxiv-20216192.

RESEARCH
Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function. 
Nutrients. 2020 doi.org/10.3390/nu12092808.

November 2020

WELCOME

Aspirin Use is Associated with Decreased Mechanical Ventilation, ICU Admission, and In-Hospital Mortality in Hospitalized Patients with COVID-19. Anesthesia & Analgesia: October 21, 2020 – Ahead of Print. https://journals.lww.com/anesthesia-analgesia/Abstract/9000/Aspirin_Use_is_Associated_with_Decreased.95423.aspx.

NEWS

How menaquinone-7 deficiency influences mortality and morbidity among COVID-19 patients. Biocatalysis and Agricultural Biotechnology 2020, 15 Sep, 29:101792. DOI: 10.1016/j.bcab.2020.101792.  

Reduced Vitamin K Status as A Potentially Modifiable Prognostic Risk Factor in COVID-19. Preprints 2020, 2020040457, doi: 10.20944/preprints202004.0457.v1.

Lower nocturnal blood glucose response to a potato-based mixed evening meal compared to rice in individuals with type 2 diabetes. Clinical Nutrition 2020, doi: https://doi.org/10.1016/j.clnu.2020.09.049.

Vitamin C and vitamin C plus E improve the immune function in the elderly.

Experimental Gerontology 2020, 111118, https://doi.org/10.1016/j.exger.2020.111118.

Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990-2017: results from the Global Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes 2020, doi:10.1093/ehjqcco/qcaa076.

2GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393:1958-1972.

Data shows the average age of death from coronavirus is 82.4 years.  David Rose. Daily Mail, 8 October 2020.

Stats are from the continuingly updated website of The Centre for Evidence-Based Medicine of the University Oxford, that includes contributions from Prof Carl Heneghan and Dr Jason Oke, Senior Statistician at the Nuffield Department of Primary Care Health Sciences. https://www.cebm.net,

Disorders of human coenzyme q10 metabolism: An overview. International Journal of Molecular Sciences 2020, 21(18): 6695: https://www.mdpi.com/1422-0067/21/18/6695/htm

Older age and frailty are the chief predictors of mortality in COVID-19 patients admitted to an acute medical unit in a secondary care setting- a cohort study
BMC Geriatrics 2020, 10-16. DOI: 10.1186/s12877-020-01803-5.

Pre-frailty factors in community-dwelling 40–75-year olds: opportunities for successful ageing. BMC Geriatr 20, 96 (2020). https://doi.org/10.1186/s12877-020-1490-7.

Is there scope for a novel mycelium category of proteins alongside animals and plants? Foods 2020, 9(9): 1151: https://www.mdpi.com/2304-8158/9/9/1151/htm.

BEN BROWN 

  1. Stein MB, Sareen J. Generalized Anxiety Disorder. N Engl J Med. 2015 Nov 19;373(21):2059-68.
  2. Allgulander C. Generalized anxiety disorder: What are we missing? Eur Neuropsychopharmacol. 2006 Jul;16 Suppl 2:S101-8.
  3. Parmentier H, García-Campayo J, Prieto R. Comprehensive review of generalized anxiety disorder in primary care in Europe. Curr Med Res Opin. 2013 Apr;29(4):355-67.
  4. Kane FJ Jr, Harper RG, Wittels E. Angina as a symptom of psychiatric illness. South Med J. 1988 Nov;81(11):1412-6.
  5. Jakubovski E, Johnson JA, Nasir M, Müller-Vahl K, Bloch MH. Systematic review and meta-analysis: Dose-response curve of SSRIs and SNRIs in anxiety disorders. Depress Anxiety. 2019 Mar;36(3):198-212. doi: 10.1002/da.22854. Epub 2018 Nov 26. PMID: 30479005.
  6. Carpenter JK, Andrews LA, Witcraft SM, Powers MB, Smits JAJ, Hofmann SG. Cognitive behavioral therapy for anxiety and related disorders: A meta-analysis of randomized placebo-controlled trials. Depress Anxiety. 2018 Jun;35(6):502-514. doi: 10.1002/da.22728. Epub 2018 Feb 16. PMID: 29451967; PMCID: PMC5992015.
  7. Bokma WA, Wetzer GAAM, Gehrels JB, Penninx BWJH, Batelaan NM, van Balkom ALJM. Aligning the many definitions of treatment resistance in anxiety disorders: A systematic review. Depress Anxiety. 2019 Sep;36(9):801-812.
  8. Bruce SE, Yonkers KA, Otto MW, Eisen JL, Weisberg RB, Pagano M, Shea MT, Keller MB. Influence of psychiatric comorbidity on recovery and recurrence in generalized anxiety disorder, social phobia, and panic disorder: a 12-year prospective study. Am J Psychiatry. 2005 Jun;162(6):1179-87.
  9. Ressler KJ. Translating Across Circuits and Genetics Toward Progress in Fear- and Anxiety-Related Disorders. Am J Psychiatry. 2020 Mar 1;177(3):214-222.
  10. Tarai S, Mukherjee R, Gupta S, Rizvanov AA, Palotás A, Chandrasekhar Pammi VS, Bit A. Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cogn Neurodyn. 2019 Jun;13(3):219-237.
  11. Machado-de-Sousa JP, Osório Fde L, Jackowski AP, Bressan RA, Chagas MH, Torro-Alves N, Depaula AL, Crippa JA, Hallak JE. Increased amygdalar and hippocampal volumes in young adults with social anxiety. PLoS One. 2014 Feb 11;9(2):e88523. doi: 10.1371/journal.pone.0088523. PMID: 24523911; PMCID: PMC3921212.
  12. Irle E, Ruhleder M, Lange C, Seidler-Brandler U, Salzer S, Dechent P, Weniger G, Leibing E, Leichsenring F. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J Psychiatry Neurosci. 2010 Mar;35(2):126-31. doi: 10.1503/jpn.090041. PMID: 20184810; PMCID: PMC2834794.
  13. Mah L, Szabuniewicz C, Fiocco AJ. Can anxiety damage the brain? Curr Opin Psychiatry. 2016 Jan;29(1):56-63. doi: 10.1097/YCO.0000000000000223. PMID: 26651008.
  14. Ressler KJ. Translating Across Circuits and Genetics Toward Progress in Fear- and Anxiety-Related Disorders. Am J Psychiatry. 2020 Mar 1;177(3):214-222.
  15. Lee JL, Milton AL, Everitt BJ. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci. 2006 Sep 27;26(39):10051-6. doi: 10.1523/JNEUROSCI.2466-06.2006. PMID: 17005868; PMCID: PMC6674482.
  16. Hofmann SG. D-cycloserine for treating anxiety disorders: making good exposures better and bad exposures worse. Depress Anxiety. 2014 Mar;31(3):175-7. doi: 10.1002/da.22257. PMID: 24677604; PMCID: PMC4006201.
  17. McEwen BS. In pursuit of resilience: stress, epigenetics, and brain plasticity. Ann N Y Acad Sci. 2016 Jun;1373(1):56-64.
  18. Ysseldyk R, McQuaid RJ, McInnis OA, Anisman H, Matheson K. The ties that bind: Ingroup ties are linked with diminished inflammatory immune responses and fewer mental health symptoms through less rumination. PLoS One. 2018 Apr 23;13(4):e0195237. doi: 10.1371/journal.pone.0195237. PMID: 29684053; PMCID: PMC5912761.
  19. Carlson MC, et al. Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. J Gerontol A Biol Sci Med Sci. 2009 Dec;64(12):1275-82
  20. Peen J, Schoevers RA, Beekman AT, Dekker J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr Scand. 2010 Feb;121(2):84-93. doi: 10.1111/j.1600-0447.2009.01438.x. Epub 2009 Jul 13. PMID: 19624573.
  21. Shanahan DF, Bush R, Gaston KJ, Lin BB, Dean J, Barber E, Fuller RA. Health Benefits from Nature Experiences Depend on Dose. Sci Rep. 2016 Jun 23;6:28551. doi: 10.1038/srep28551. PMID: 27334040; PMCID: PMC4917833.
  22. Alcock I, White MP, Wheeler BW, Fleming LE, Depledge MH. Longitudinal effects on mental health of moving to greener and less green urban areas. Environ Sci Technol. 2014 Jan 21;48(2):1247-55. doi: 10.1021/es403688w. Epub 2014 Jan 7. PMID: 24320055.
  23. Lederbogen F, et al. City living and urban upbringing affect neural social stress processing in humans. Nature. 2011;474(June):498–501
  24. Dadvand P, Pujol J, Macià D, Martínez-Vilavella G, Blanco-Hinojo L, Mortamais M, Alvarez-Pedrerol M, Fenoll R, Esnaola M, Dalmau-Bueno A, López-Vicente M, Basagaña X, Jerrett M, Nieuwenhuijsen MJ, Sunyer J. The Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren. Environ Health Perspect. 2018 Feb 23;126(2):027012. doi: 10.1289/EHP1876. PMID: 29504939; PMCID: PMC6066357.
  25. Maund PR, Irvine KN, Reeves J, Strong E, Cromie R, Dallimer M, Davies ZG. Wetlands for Wellbeing: Piloting a Nature-Based Health Intervention for the Management of Anxiety and Depression. Int J Environ Res Public Health. 2019 Nov 11;16(22):4413. doi: 10.3390/ijerph16224413. PMID: 31718035; PMCID: PMC6887757.
  26. Iwata Y., Dhubháin Á.N., Brophy J., Roddy D., Burke C., Murphy B. Benefits of group walking in forests for people with significant mental ill-health. Ecopsychology. 2016;8:16–26.
  27. Park S.-A., Lee A.-Y., Park H.-G., Lee W.-L. Benefits of gardening activities for cognitive function according to measurement of brain nerve growth factor levels. Int. J. Environ. Res. Public Health. 2019;16:760.
  28. Müller WE, Heiser J, Leuner K. Effects of the standardized Ginkgo biloba extract EGb 761® on neuroplasticity. Int Psychogeriatr. 2012 Aug;24 Suppl 1:S21-4. doi: 10.1017/S1041610212000592. PMID: 22784424.
  29. Lejri I, Grimm A, Eckert A. Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway. PLoS One. 2019 Dec 2;14(12):e0225761. doi: 10.1371/journal.pone.0225761. PMID: 31790465; PMCID: PMC6886765.
  30. Woelk H, Arnoldt KH, Kieser M, Hoerr R. Ginkgo biloba special extract EGb 761 in generalized anxiety disorder and adjustment disorder with anxious mood: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res. 2007 Sep;41(6):472-80. doi: 10.1016/j.jpsychires.2006.05.004. Epub 2006 Jun 30. PMID: 16808927.
  31. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3017-22.
  32. LeBouthillier DM, Asmundson GJG. The efficacy of aerobic exercise and resistance training as transdiagnostic interventions for anxiety-related disorders and constructs: A randomized controlled trial. J Anxiety Disord. 2017 Dec;52:43-52. doi: 10.1016/j.janxdis.2017.09.005. Epub 2017 Sep 23. PMID: 29049901.
  33. Hölzel BK, et al. Stress reduction correlates with structural changes in the amygdala. Soc Cogn Affect Neurosci. 2010 Mar;5(1):11-7.
  34. Sundquist J, Palmér K, Memon AA, Wang X, Johansson LM, Sundquist K. Long-term improvements after mindfulness-based group therapy of depression, anxiety and stress and adjustment disorders: A randomized controlled trial. Early Interv Psychiatry. 2019 Aug;13(4):943-952. doi: 10.1111/eip.12715. Epub 2018 Jul 3. PMID: 29968371.
  35. Brown BI. Stress-induced brain atrophy: A role for orthomolecular medicine. January 2014. Journal of Orthomolecular Medicine 29(3):115-12

GUT HEALTH

Faecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice. Experimental Neurology 2020, 334, 113439: https://doi.org/10.1016/j.expneurol.2020.113439.

Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in ratsPhysiological Genomics 2020,  52 (7): 280. DOI: 10.1152/physiolgenomics.00039.2020.

Mucosal or systemic microbiota exposures shape the B cell repertoireNature, 2020. DOI: 10.1038/s41586-020-2564-6.

Associations of equol‐producing status with white matter lesion and amyloid‐β deposition in cognitively normal elderly JapaneseAlzheimer’s & Dementia: Translational Research & Clinical Interventions 2020. DOI: 10.1002/trc2.12089.

Circadian Host-Microbiome Interactions in Immunity. Front Immunol 2020 Aug 14;11:1783. DOI: 10.3389/fimmu.2020.01783.

ANTIOXIDANTS

Additive effects of green tea and coffee on all-cause mortality in patients with type 2 diabetes mellitus: the Fukuoka Diabetes RegistryBMJ Open Diabetes Research & Care, 2020; 8 (1): e001252 DOI: 10.1136/bmjdrc-2020-001252.

An Antioxidant Enzyme Therapeutic for COVID‐19Advanced Materials, 2020; 2004901 DOI: 10.1002/adma.202004901.

Increased Antioxidant Capacity and Pro-Homeostatic Lipid Mediators in Ocular Hypertension – A Human Experimental ModelJ. Clin. Med. 2020, 9, 2979. https://doi.org/10.3390/jcm9092979.
Supplementing Glycine and N-acetylcysteine (GlyNAC) in Ageing HIV Patients Improves Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Endothelial Dysfunction, Insulin Resistance, Genotoxicity, Strength, and Cognition: Results of an Open-Label Clinical TrialBiomedicines 20208, 390. https://doi.org/10.3390/biomedicines8100390.

RESEARCH update

Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proceedings of the National Academy of Sciences 2020, Oct, 117 (41) 25869-25879. https://www.pnas.org/content/117/41/25869.

Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chemistry 2021, 335, 127645: https://doi.org/10.1016/j.foodchem.2020.127645.

Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genesInformatics in Medicine Unlocked, Oct. 12, 2020; DOI: 10.1016/j.imu.2020.100443.

Urbanization and market integration have strong, nonlinear effects on cardiometabolic health in the TurkanaScience Advances 2020; 6 (43): eabb1430 DOI: 10.1126/sciadv.abb1430.

InFocus - Immune Health, Nov 2020

HANNAH BRAYE:

  1. Harper, Ashton; Day, Richard; Vijayakumar V. Viral infections , the microbiome and probiotics. 2020.
  2. Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol 2019; 4: 35–45.
  3. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016; 535: 65–74.
  4. Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018; 9: 1.
  5. Rigo-Adrover M, Pérez-Berezo T, Ramos-Romero S, et al. A fermented milk concentrate and a combination of short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides/pectin-derived acidic oligosaccharides protect suckling rats from rotavirus gastroenteritis. Br J Nutr 2017; 117: 209–17.
  6. Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell. Microbiol. 2018; 20. DOI:10.1111/cmi.12966.
  7. Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015; 2015. DOI:10.1002/14651858.CD006895.pub3.
  8. Lenoir-Wijnkoop I, Merenstein D, Korchagina D, Broholm C, Sanders ME, Tancredi D. Probiotics Reduce Health Care Cost and Societal Impact of Flu-Like Respiratory Tract Infections in the USA: An Economic Modeling Study. Front Pharmacol 2019; 10: 980.
  9. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454: 428–35.
  10. Belkacem N, Serafini N, Wheeler R, et al. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One 2017; 12. DOI:10.1371/journal.pone.0184976.
  11. Dyakov IN, Mavletova DA, Chernyshova IN, et al. FN3 protein fragment containing two type III fibronectin domains from B. longum GT15 binds to human tumor necrosis factor alpha in vitro. Anaerobe 2020; 65: 102247.
  12. Fauci AS. Infectious diseases: Considerations for the 21st century. In: Clinical Infectious Diseases. Oxford Academic, 2001: 675–85.

 

 

HIFAS DA TERRA:

  1. Mizuno M1, Nishitani Y. Immunomodulating compounds in Basidiomycetes. J Clin Biochem Nutr. 2013 May;52(3):202-7.
  2. Ivan Jakopovich (2011) New dietary supplements from medicinal mushrooms: Dr Myko San–a registration report. Int J Med Mushrooms. 2011;13(3):307-13.
  3. Wachtel-Galor S, Yuen J, Buswell JA, et al.(2001) Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis. Chapter 9.
  4. Lindequist, U., Niedermeyer, T. H., & Jülich, W. D. (2005). The pharmacological potential of mushrooms. Evidence-based complementary and alternative medicine : eCAM, 2(3), 285–299.
  5. Li YQ1, Wang SF. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Lett. 2006 Jun;28(11):837-41. Epub 2006 May 31.
  6. El-Mekkawy, S., Mesellhy, M.R., Nakamura, N., Tesuka, Y., Hattori, M., Kakiuchi, N., Shimotohno, K., Kawahata, T., and Otake, T., Anti-HIV and anti-HIV-protease substances from Ganoderma lucidum, Phytochemistry, 49, 1651–1657, 1998.
  7. Lin JG, Fan MJ, Tang NY, Yang JS, Hsia TC, Lin JJ, Lai KC, Wu RS, Ma CY, Wood WG, Chung JG. An extract of Agaricus blazei Murill administered orally promotes immune responses in murine leuke-mia BALB/cmice in vivo. Integr Cancer Ther. 2012 Mar;11(1):29-36.
  8. Bouike G1, Nishitani Y, Shiomi H, Yoshida M, Azuma T, Hashimoto T, Kanazawa K, Mizuno M. Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice. Evid Based Complement Alternat Med. 2011;2011. pii: 532180. Epub 2010 Sep 26. Oral.
  9. Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. Wu SJ1, Lu TM, Lai MN, Ng LT.
  10. Xu X, Yan H, Zhang X. Structure and immuno-stimulating activities of a new heteropolysaccharide from Lentinula edodes. J Agric Food Chem. 2012 Nov 21; 60(46):11560-6. Epub 2012 Nov 12.
  11. Fan LP, Ding SD, Ai LZ, Deng KQ: Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr Polym, 2012;90(2): 870–874.
  12. Ahn WS1, Kim DJ, Chae GT, Lee JM, Bae SM, Sin JI, Kim YW, Namkoong SE, Lee IP. Int J Gynecol Cancer. 2004.Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy.Jul-Aug;14(4):589-94
  13. Aleem E. (2013) Anticancer Agents Med Chem. β-Glucans and their applications in cancer therapy: focus on human studies. Jun;13(5):709-19.
  14. Bao PP1, Lu W, Cui Y, Zheng Y, Gu K, Chen Z, Zheng W, Shu XO (2012) Ginseng and Ganoderma lucidum use after breast cancer diagnosis and quality of life: a report from the Shanghai Breast Cancer Survival Study. PLoS One. 2012;7(6):e39343.
  15. Biedron R, Tangen JM, Maresz K and Hetland G (2012) Functional Foods in Health and Disease. Agaricus blazei Murill – immunomodulatory properties and health benefits. 2012, 2(11):428-447
  16. Jiezhong CHENa,*, Robert SEVIOURb (2007) Mycological Research 111. 635–652. Medicinal importance of fungal b-(1/3), (1/6)-glucans
  17. Hazama S1, Watanabe S, Ohashi M, Yagi M, Suzuki M, Matsuda K, Yamamoto T, Suga Y, Suga T, Nakazawa S, Oka M (2009) Efficacy of orally administered superfine dispersed lentinan (beta-1,3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res. 2009 Jul;29(7):2611-7.
  18. Dr. Christopher Hobbs, Ph.D., L.Ac., A.H.G. Medicinal Mushrooms for cellular defense, immunity & longevity
  19. Shimizu K1, Watanabe S, Watanabe S, Matsuda K, Suga T, Nakazawa S, Shiratori K. (2009) Efficacy of oral administered superfine dispersed lentinan for advanced pancreatic cancer. Hepatogastroenterology. 2009 Jan-Feb;56(89):240-4.
  20. Suzuki N1, Takimoto Y, Suzuki R, Arai T, Uebaba K, Nakai M, Strong JM, Tokuda H. (2013) Asian Pac J Cancer Prev. 2013;14(6):3469-72. Efficacy of oral administration of Lentinula edodes mycelia extract for breast cancer patients undergoing postoperative hormone therapy.
  21. See D1, Mason S, Roshan R. (2002) Increased tumor necrosis factor alpha (TNF-alpha) and natural killer cell (NK) function using an integrative approach in late stage cancers. Immunol Invest. 2002 May;31(2):137-53.
  22. Maria Rita Carvalho Garbi Novaes, Fabiana Valadares, Mariana Campos Reis, Daniella Rodrigues Gonçalves, and Marilia da Cunha Menezes (2011) The effects of dietary supplementation with Agaricales mushrooms and other medicinal fungi on breast cancer: Evidence-based medicine Clinics (Sao Paulo). 2011 Dec; 66(12): 2133–2139.
  23. Ohno S1, Sumiyoshi Y, Hashine K, Shirato A, Kyo S, Inoue M. (2013) Complement Ther Med. 2013 Oct;21(5):460-7. doi: 10.1016/j.ctim.2013.07.001. Epub 2013 Aug 12. Quality of life improvements among cancer patients in remission following the consumption of Agaricus blazei Murill mushroom extract.
  24. Mehmet Öztürk, Gülsen Tel-Çayan, Akhtar Muhammad, Pınar Terzioğlu, Mehmet Emin Duru (2015) Mushrooms: A Source of Exciting Bioactive Compounds- Chapter 10 in book: Studies in Natural Products Chemistry Volume 45, 2015, Pages 363–456.
  25. Seetharaman Rajasekar, Palaniyappan Selvakumar, Karupannan Periasamy and Nanjian Raaman* Polysaccharides fromBasidiomycetes: A Promising Source for Immunostimulating and Anticancerous activity
  26. Agrawal RP, Chopra A, Lavekar GS, Padhi MM, Srikanth N, Ota S, Jain S (2010) Effect of oyster mushroom on glycemia, lipid profile and quality of life in type 2 diabetic patients. Global dispensary Australian Journal of Medical Herbalism 2010 22(2)
  27. Stig Palm Therkelsen,1,* Geir Hetland,2,5 Torstein Lyberg,3 Idar Lygren,4 and Egil Johnson1,5. (2016) Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. PLoS One 11(3): e0150191
  28. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Wasser SP1. Biomed J. 2014 Nov-Dec;37(6):345-56. doi: 10.4103/2319-4170.138318.
  29. MD-Medical Data 2013;5(3): 253-260
  30. Raghavendra Yarlagadda, Tadiyos Lemma, Messay Wolde-Mariam, Mebrahtom Gebrelibanos, Biruk Sintayehu, Seid Mussa Ahmed. A Systematic Review On Some Medicinal Mushrooms Showing Antioxidant and Anticancer Activities
  31. John W. M. Yuen and Mayur Danny I. Gohel. Anticancer Effects of Ganoderma lucidum: A Review of Scientific Evidence. Nutrition and Cancer, 53(1), 11–17
  32. Hong Zhao,Qingyuan Zhang, Ling Zhao,XuHuang, JincaiWang, and XinmeiKang (2012) Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Hindawi Publishing Corporation Evidence-Based Complementary and AlternativeMedicine Volume 2012, Article ID 809614, 8 pages
  33. Smith, Rowan and Sullivan. Medicinal Mushrooms:Their therapeutic properties and current medical usage with special emphasis on cancer treatments
  34. S. Bernardshaw*, E. Johnson* & G. Hetlandy. An Extract of the Mushroom Agaricus blazei Murill Administered Orally Protects Against Systemic Streptococcus pneumoniae Infection in Mice.  Scandinavian Journal of Immunology 62, 393–398
  35. G. Hetland*, E. Johnson?, T. Lyberg?, S. Bernardshaw§, A. M. A. Tryggestad* & B. Grinde–  Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer. Scandinavian Journal of Immunology 68, 363–370
  36. GeirHetland,1 Egil Johnson,2, 3 Torstein Lyberg,4 andGunnarKvalheim1 (2011) TheMushroom Effects on Tumor, Infection, Allergy, and Inflammation Agaricus blazei Murill ElicitsMedicinal through ItsModulation of Innate Immunity and Amelioration of Th1/Th2 Imbalance and Inflammation. Hindawi Publishing Corporation Advances in Pharmacological Sciences Volume 2011, Article ID 157015, 10 pages
  37. C. Kupfahl *, G. Geginat, H. Hof (2006) Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection. International Immunopharmacology 6 (2006) 686–696
  38. Chan, G.C., Chan, W.K. & Sze, D.M. The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2, 25 (2009). https://doi.org/10.1186/1756-8722-2-25.
  39. Daniel Roca-Lema et al. (2019 )n Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells. Int J Med Sci. 2019; 16(2): 231–240.
  40. Nishitani, Y. et al. Intestinal anti-inflammatory activity of lentinan: influence on IL-8 and TNFR1 expression in intestinal epithelial cells. PloS one 8, e62441, doi:10.1371/journal.pone.0062441 (2013).
  41. Chen, S. N. et al. The Effect of Mushroom Beta-Glucans from Solid Culture of Ganoderma lucidum on Inhibition of the Primary Tumor Metastasis. Evidence-based complementary and alternative medicine: eCAM 2014, 252171, doi:10.1155/2014/252171 (2014).
  42. Ahn, H., Jeon, E., Kim, J. et al. Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production. Sci Rep 7, 1314 (2017). https://doi.org/10.1038/s41598-017-01462-4
  43. Lull, Cristina et al. “Antiinflammatory and immunomodulating properties of fungal metabolites.” Mediators of inflammation vol. 2005,2 (2005): 63-80. doi:10.1155/MI.2005.63
  44. Stig Palm Therkelsen, Geir Hetland, Torstein Lyberg, Idar Lygren, Egil Johnson, Published: March 2, 2016. Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. https://doi.org/10.1371/journal.pone.0150191
  45. Chou, Wei-Ting, Sheih, I-Chuan, Fang, Tony. 2013. The Applications of Polysaccharides from Various Mushroom Wastes as Prebiotics in Different Systems. Journal of food science DO – 10.1111/1750-3841.12160

 

October 2020

NEWS
Effect of Omega-3 Dosage on Cardiovascular Outcomes
Mayo Clinic Proceedings, 2020; DOI: 10.1016/j.mayocp.2020.08.034.

British Heart Foundation:  www.bhf.org.uk › files › medical-information-sheet.

British Dietetic Association: https://www.bda.uk.com/resource/omega-3.html.

NHS: https://www.nhs.uk/news/heart-and-lungs/minimal-evidence-show-omega-3-prevents-heart-disease.

BBC: Fish oil supplements for a healthy heart ‘nonsense’ – BBC News

Trans-ethnic analysis reveals genetic and non-genetic associations with COVID-19 susceptibility and severity. medRxiv 2020, 09.04.20188318; PREPRINT. doi: https://doi.org/10.1101/2020.09.04.20188318

Zinc supplementation affects favorably the frequency of migraine attacks: a double-blind randomized placebo-controlled clinical trial. Nutr J 2020, 19, 101: https://doi.org/10.1186/s12937-020-00618-9.

Effects of fermented human milk oligosaccharides on gut microbiota and barrier function in adults. Nutrients 2020, 12(9), 2808; DOI: 10.3390/nu12092808

Paul Bastard et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19Science, Sept. 24, 2010; DOI: 10.1126/science.abd4585

Qian Zhang et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19Science, Sept. 24, 2020; DOI: 10.1126/science.abd4570

Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer. Carcinogenesis, 2020, bgaa090, https://doi.org/10.1093/carcin/bgaa090.

BEN BROWN

  1. Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008 Apr;19(2):73-82.
  2. Gerber W, Steyn JD, Kotzé AF, Hamman JH. Beneficial Pharmacokinetic Drug Interactions: A Tool to Improve the Bioavailability of Poorly Permeable Drugs. Pharmaceutics. 2018 Jul 26;10(3):106.
  3. Gibson RS. The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull. 2007 Mar;28(1 Suppl International):S77-100. doi: 10.1177/15648265070281S108. PMID: 17521121.
  4. Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv Nutr. 2017 May 15;8(3):423-435.
  5. Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr. 2018 Aug 21;38:69-96.
  6. Lindberg JS, Zobitz MM, Poindexter JR, Pak CY. Magnesium bioavailability from  magnesium citrate and magnesium oxide. J Am Coll Nutr. 1990 Feb;9(1):48-5
  7. Muhlbauer B. Schwenk M, Coran WM et al. Magnesium-L-aspartate-HCL and magnesium-oxide: bioavailability in healthy volunteers. Eur J Clin Pharmacol 1991; 40: 437-438.
  8. Schuette SA, Lashner BA, Janghorbani M. Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. JPEN J Parenter  Enteral Nutr. 1994 Sep-Oct;18(5):430-5.
  9. Schuette SA, Janghorbani M, Young VR, Weaver CM. Dysprosium as a nonabsorbable marker for studies of mineral absorption with stable isotope tracers in human subjects. J Am Coll Nutr. 1993 Jun;12(3):307-15.
  10. Firoz M, Graber M. Bioavailability of US commercial magnesium preparations. Magnes Res. 2001 Dec;14(4):257-62.
  11. Walker AF, Marakis G, Christie S, Byng M. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res. 2003  Sep;16(3):183-91.
  12. Siener R, Jahnen A, Hesse A. Bioavailability of magnesium from different pharmaceutical formulations. Urol Res. 2011 Apr;39(2):123-7.
  13. Shechter M, Saad T, Shechter A, Koren-Morag N, Silver BB, Matetzky S. Comparison of magnesium status using X-ray dispersion analysis following magnesium oxide and magnesium citrate treatment of healthy subjects. Magnes Res.  2012 Mar 1;25(1):28-39.
  14. Kappeler, D., Heimbeck, I., Herpich, C. et al. Higher bioavailability of magnesium citrate as compared to magnesium oxide shown by evaluation of urinary excretion and serum levels after single-dose administration in a randomized cross-over study. BMC Nutr 3, 7 (2017). https://doi.org/10.1186/s40795-016-0121-3
  15. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010 Jan 28;65(2):165-77.
  16. Kass L, Rosanoff A, Tanner A, Sullivan K, McAuley W, Plesset M. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study. PLoS One. 2017 Apr 12;12(4):e0174817.
  17. Gröber U, Werner T, Vormann J, Kisters K. Myth or Reality-Transdermal Magnesium? Nutrients. 2017 Jul 28;9(8):813.
  18. Magnesium, in; Braun & Cohen. Magnesium, in Herbs and Natural Supplements, 3rd Edition. Churchill Livingstone Australia, 2011.
  19. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004 Oct 15;10(20):6847-54. doi: 10.1158/1078-0432.CCR-04-0744. PMID: 15501961.
  20. Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006 Dec;4(12):1502-6.
  21. Kuptniratsaikul V, Dajpratham P, Taechaarpornkul W, et al. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014 Mar 20;9:451-8
  22. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012 Nov;35(11):2121-7. doi: 10.2337/dc12-0116.
  23. Khayat S, Fanaei H, Kheirkhah M, Moghadam ZB, Kasaeian A, Javadimehr M. Curcumin attenuates severity of premenstrual syndrome symptoms: A randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2015 Jun;23(3):318-24
  24. Yu JJ, Pei LB, Zhang Y, Wen ZY, Yang JL. Chronic Supplementation of Curcumin Enhances the Efficacy of Antidepressants in Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. J Clin Psychopharmacol. 2015 Aug;35(4):406-10.
  25. Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H, Murakami N, Krishna UK. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012 Oct;33(4):499-504.
  26. Shen L, Liu CC, An CY, Ji HF. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep. 2016 Feb 18;6:20872. doi: 10.1038/srep20872. PMID: 26887346; PMCID: PMC4757858.
  27. Lopresti AL. The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? Adv Nutr. 2018 Jan 1;9(1):41-50. doi: 10.1093/advances/nmx011. PMID: 29438458; PMCID: PMC6333932.
  28. Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, Togni S, Dixon BM. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 2011 Apr 25;74(4):664-9. doi: 10.1021/np1007262. Epub 2011 Mar 17. PMID: 21413691.
  29. Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, Gelfand JM. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. J Am Acad Dermatol. 2008 Apr;58(4):625-31. doi: 10.1016/j.jaad.2007.12.035. Epub 2008 Feb 4. Erratum in: J Am Acad Dermatol. 2008 Jun;58(6):1050. PMID: 18249471; PMCID: PMC4131208.
  30. Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. Biomed Res Int. 2015;2015:283634. doi: 10.1155/2015/283634. Epub 2015 May 18. PMID: 26090395; PMCID: PMC4450233.
  31. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014 Mar;58(3):516-27. doi: 10.1002/mnfr.201300724. Epub 2014 Jan 9. Erratum in: Mol Nutr Food Res. 2014 Mar;58(3):647. Dosage error in article text. PMID: 24402825.
  32. Kocher A, Bohnert L, Schiborr C, Frank J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol Nutr Food Res. 2016 Jul;60(7):1555-63.

 

EMMA BESWICK

Histamine & Nutrigenomics

Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Latorre-Moratalla M, Vidal-Carou MDC. Histamine Intolerance: The Current State of the Art. Biomolecules. 2020;10(8):1181. Published 2020 Aug 14. doi:10.3390/biom10081181 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463562/

Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and Its Anti-Allergic Immune Response. Molecules. 2016;21(5):623. Published 2016 May 12. doi:10.3390/molecules21050623

NHS UK. Health A to Z. Food Allergy https://www.nhs.uk/conditions/food-allergy/causes/

Swiss Interest Group for Histamine Intolerance https://histaminintoleranz.ch

Histamine  Intolerance – the  extended edition

Aditi Hazra, Peter Kraft, Ross Lazarus, Constance Chen, Stephen J. Chanock, Paul Jacques, Jacob Selhub, David J. Hunter, Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway, Human Molecular Genetics, Volume 18, Issue 23, 1 December 2009, Pages 4677–4687, https://academic.oup.com/hmg/article/18/23/4677/666577

Agúndez JA, Ayuso P, Cornejo-García JA, et al. The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs. PLoS One. 2012;7(11):e47571. doi:10.1371/journal.pone.0047571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495953

Ayuso P, García-Martín E, Martínez C, Agúndez JA. Genetic variability of human diamine oxidase: occurrence of three nonsynonymous polymorphisms and study of their effect on serum enzyme activity. Pharmacogenet Genomics. 2007;17(9):687-693. doi:10.1097/FPC.0b013e328012b8e4 https://pubmed.ncbi.nlm.nih.gov/17700358/

García-Martín E, et al. Diamine oxidase rs10156191 and rs2052129 variants are associated with the risk for migraine. Headache, 2015 Feb. PMID 25612138. https://www.ncbi.nlm.nih.gov/pubmed/25612138/

Hagel AF, Layritz CM, Hagel WH, et al. Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(9):789-793. doi:10.1007/s00210-013-0880-1. https://pubmed.ncbi.nlm.nih.gov/23666445/

Jarisch R, Wantke F. Wine and headache. Int Arch Allergy Immunol. 1996;110(1):7-12. doi:10.1159/000237304. https://pubmed.ncbi.nlm.nih.gov/8645981/

Maintz L, Yu CF, Rodríguez E, et al. Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities. Allergy. 2011;66(7):893-902. doi:10.1111/j.1398-9995.2011.02548.x https://pubmed.ncbi.nlm.nih.gov/21488903/

National Center for Biotechnology Information. Gene. https://www.ncbi.nlm.nih.gov/gene/26

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:80

Tanaka, Toshiko et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. American journal of human genetics vol. 84,4 (2009): 477-82. doi:10.1016/j.ajhg.2009.02.011 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667971/

Uchida K, Mitsui M, Kawakishi S. Monooxygenation of N-acetylhistamine mediated by L-ascorbate. Biochim Biophys Acta. 1989;991(2):377-379. doi:10.1016/0304-4165(89)90131-1. https://pubmed.ncbi.nlm.nih.gov/2719978/

Yip KH, Kolesnikoff N, Yu C, et al. Mechanisms of vitamin D₃ metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol. 2014;133(5):1356-136514. doi:10.1016/j.jaci.2013.11.030 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154631/

Hormones & Histamine

Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):92-99. doi:10.1097/ACI.0b013e32835a6dd6 https://pubmed.ncbi.nlm.nih.gov/23090385/

Foer D, Buchheit KM. Presentation and natural history of progestogen hypersensitivity. Ann Allergy Asthma Immunol. 2019;122(2):156-159. doi:10.1016/j.anai.2018.10.023 https://pubmed.ncbi.nlm.nih.gov/30712576/

Hamada Y, et al. Effect of the menstrual cycle on serum diamine oxidase levels in healthy women. Clin Biochem, 2013 Jan. PMID 23099198 https://www.ncbi.nlm.nih.gov/pubmed/23099198/

Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev. 2012;11(6-7):A502-A514. doi:10.1016/j.autrev.2011.12.003 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431799/

Kanda N, Hoashi T, Saeki H. The Roles of Sex Hormones in the Course of Atopic Dermatitis. Int J Mol Sci. 2019;20(19):4660. Published 2019 Sep 20. doi:10.3390/ijms20194660

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802354/

Maintz L, Schwarzer V, Bieber T, van der Ven K, Novak N. Effects of histamine and diamine oxidase activities on pregnancy: a critical review. Hum Reprod Update. 2008;14(5):485-495. doi:10.1093/humupd/dmn014 https://pubmed.ncbi.nlm.nih.gov/18499706/

Štefan Čikoš, Dušan Fabian, Alexander V. Makarevich, Peter Chrenek, Juraj Koppel, Biogenic monoamines in preimplantation development, Human Reproduction, Volume 26, Issue 9, September 2011, Pages 2296–2305, https://doi.org/10.1093/humrep/der233 https://academic.oup.com/humrep/article/26/9/2296/727734

Suyama K, Akagawa M. Amine oxidase‐like activity of polyphenols. European Journal of Biochemistry. Volume268, Issue7, April 2001, Pages 1953-1963. https://doi.org/10.1046/j.1432-1327.2001.02068.x

Vasiadi M, Kempuraj D, Boucher W, Kalogeromitros D, Theoharides TC. Progesterone inhibits mast cell secretion. Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4):787-94. doi: 10.1177/039463200601900408. PMID: 17166400. https://pubmed.ncbi.nlm.nih.gov/17166400/

Zierau Oliver, Zenclussen Ana, Jensen Federico. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Frontiers in Immunology. 2012 Vol 3. DOI=10.3389/fimmu.2012.00169 https://www.frontiersin.org/articles/10.3389/fimmu.2012.00169/full

HNMT – Interior Methylator

Adem Y. Dawed, Zhou et al, Variation in the Plasma Membrane Monoamine Transporter (PMAT) (Encoded by SLC29A4) and Organic Cation Transporter 1 (OCT1) (Encoded by SLC22A1) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care Jun 2019, 42 (6) 1027-1033; DOI: 10.2337/dc18-2182 https://care.diabetesjournals.org/content/42/6/1027

Naganuma F, Nakamura T, Yoshikawa T, et al. Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci Rep. 2017;7(1):15899. Published 2017 Nov 21. doi:10.1038/s41598-017-16019-8 https://pubmed.ncbi.nlm.nih.gov/29162912/

National Center for Biotechnology Information. Gene. https://www.ncbi.nlm.nih.gov/gene/3176

Preuss CV, Wood TC, Szumlanski CL, et al. Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity. Mol Pharmacol. 1998;53(4):708-717. doi:10.1124/mol.53.4.708 https://pubmed.ncbi.nlm.nih.gov/9547362/

Szczepankiewicz A, Bręborowicz A, Sobkowiak P, Popiel A. Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study. Clin Mol Allergy. 2010;8:14. Published 2010 Nov 1. doi:10.1186/1476-7961-8-14 https://pubmed.ncbi.nlm.nih.gov/21040557/

Stevenson J, Sonuga-Barke E, McCann D, et al. The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms. Am J Psychiatry. 2010;167(9):1108-1115. doi:10.1176/appi.ajp.2010.09101529 https://pubmed.ncbi.nlm.nih.gov/20551163/

Yoshikawa T, Nakamura T, Yanai K. Histamine N-Methyltransferase in the Brain. Int J Mol Sci. 2019;20(3):737. Published 2019 Feb 10. doi:10.3390/ijms20030737 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386932/#B60-ijms-20-00737]

MAOB – a double edged sword

Fowler, J. S., Volkow, N. D., Wang, G.-J., Pappas, N., Logan, J., MacGregor, R., Alexoff, D., Shea, C., Schlyer, D., Wolf, A. P., Warner, D., Zezulkova, I., Cilento, R. Inhibition of monoamine oxidase B in the brains of smokers. Nature 379: 733-736, 1996. https://www.ncbi.nlm.nih.gov/pubmed/8602220]

Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here?. Mol Neurobiol. 2004;30(1):77-89. doi:10.1385/MN:30:1:077  https://pubmed.ncbi.nlm.nih.gov/15247489/

Rendu F, Peoc’h K, Berlin I, Thomas D, Launay JM. Smoking related diseases: the central role of monoamine oxidase. Int J Environ Res Public Health. 2011;8(1):136-147. doi:10.3390/ijerph8010136 https://pubmed.ncbi.nlm.nih.gov/21318020/

OMIM® Online Mendelian Inheritance in Man®. The Johns Hopkins University. https://www.omim.org/entry/309860

ROS – the consequences

Hiramoto K, Kida T, Kikugawa K. Increased urinary hydrogen peroxide levels caused by coffee drinking. Biol Pharm Bull. 2002 Nov;25(11):1467-71. doi: 10.1248/bpb.25.1467. PMID: 12419961. https://pubmed.ncbi.nlm.nih.gov/12419961/

National Center for Biotechnology Information. dbSNP https://www.ncbi.nlm.nih.gov/snp/rs1229984

Soerensen M, Christensen K, Stevnsner T, Christiansen L. The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mech Ageing Dev. 2009 May;130(5):308-14. doi: 10.1016/j.mad.2009.01.005. Epub 2009 Feb 5. PMID: 19428448; PMCID: PMC2720516. https://pubmed.ncbi.nlm.nih.gov/19428448/

Yahyah Aman, Yumin Qiu, Jun Tao, Evandro F. Fang, Therapeutic potential of boosting NAD+ in aging and age-related diseases, Translational Medicine of Aging, Volume 2, 2018, Pages 30-37, ISSN 2468-5011, https://doi.org/10.1016/j.tma.2018.08.003.

RESEARCH

 A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin stormeLife, 2020; 9 DOI: 10.7554/eLife.59177.

SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 2020, 15(9): e0239252: https://doi.org/10.1371/journal.pone.0239252.

A randomized controlled study of weighted chain blankets for insomnia in psychiatric disordersJournal of Clinical Sleep Medicine, 2020; 16 (9): 1567 DOI: 10.5664/jcsm.8636.

Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive MucosaInternational Journal of Molecular Sciences, 2020; 21 (1): 337 DOI: 10.3390/ijms21010337.

Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve miceExperimental Neurology, 2020; 334: 113439 DOI: 10.1016/j.expneurol.2020.113439.

September 2020

WELCOME 

“Cases”:
https://mrc.ukri.org/news/browse/obesity/obesity.

ONS:
https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/obesityascauseofdeath

Chinese restaurant:
https://www.bbc.com/news/world-asia-china-53792871#:~:text=A%20restaurant%20in%20central%20China,at%20its%20entrance%20this%20week.

COVID deaths per million, August 24:
https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/

Obesity and vaccine response:

Research summary for Prof Melinda Beck, who has a new paper in process: https://cehs.uni.edu/npod/dr-melinda-beck.  

NEWS 

The Effect of a Multivitamin and Mineral Supplement on Immune Function in Healthy Older Adults: A Double-Blind, Randomized, Controlled TrialNutrients, 2020; 12 (8): 2447 DOI: 10.3390/nu12082447

Mercola: https://articles.mercola.com/sites/articles/archive/2020/08/24/quercetin-and-vitamin-c-synergistic-effect.aspx?

Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging 2020; 12:15784-15796. https://doi.org/10.18632/aging.103888

COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet 2020,  396, 10248, P381-389, August 8: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31356-8/fulltext.

Excess Cardiac Arrest in the Community During the COVID-19 Pandemic. JACC. Cardiovascular interventions 2020, 13 (16), 1968–9: https://doi.org/10.1016/j.jcin.2020.06.022.

Eggs: buried in the new guidelines available at https://www.dietaryguidelines.gov.

Antibiotic use and the development of inflammatory bowel disease: a national case-control study in SwedenThe Lancet Gastroenterology & Hepatology, 2020; DOI: 10.1016/S2468-1253(20)30267-3.

Metabolic Syndrome and Viral Pathogenesis: Lessons from Influenza and CoronavirusesJournal of Virology, 2020; DOI: 10.1128/JVI.00665-20.

Effects of weight loss during a very low carbohydrate diet on specific adipose tissue depots and insulin sensitivity in older adults with obesity: a randomized clinical trial. Nutrition & Metabolism, 2020; 17 (1) DOI: 10.1186/s12986-020-00481-9.

 A Randomized Controlled Trial of Long-Term (R)-α-Lipoic Acid Supplementation Promotes Weight Loss in Overweight or Obese Adults without Altering Baseline Elevated Plasma Triglyceride Concentrations.The Journal of Nutrition, 2020, nxaa203, https://doi.org/10.1093/jn/nxaa203.

ATOPY – BEN BROWN

  1. Justiz Vaillant AA, Modi P, Jan A. Atopy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 10, 2020
  2. Johansson SG, Bieber T, Dahl R, et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832-836.
  3. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135(2):299-311. doi:10.1016/j.jaci.2014.12.1871
  4. Ferrando M, Bagnasco D, Varricchi G, et al. Personalized Medicine in Allergy. Allergy Asthma Immunol Res. 2017;9(1):15-24. doi:10.4168/aair.2017.9.1.15
  5. Muraro A, Lemanske RF Jr, Hellings PW, et al. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2016;137(5):1347-1358. doi:10.1016/j.jaci.2016.03.010
  6. Mersha TB, Afanador Y, Johansson E, et al. Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches [published online ahead of print, 2020 May 6]. Clin Rev Allergy Immunol. 2020;10.1007/s12016-020-08787-5. doi:10.1007/s12016-020-08787-5
  7. Bland JS. Systems Biology Meets Functional Medicine. Integr Med (Encinitas). 2019;18(5):14-18.
  8. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014;40(6):833-842. doi:10.1016/j.immuni.2014.05.014
  9. Neerven RJJV, Savelkoul H. Nutrition and Allergic Diseases. Nutrients. 2017;9(7):762. Published 2017 Jul 17. doi:10.3390/nu9070762
  10. Papamichael MM, Itsiopoulos C, Susanto NH, Erbas B. Does adherence to the Mediterranean dietary pattern reduce asthma symptoms in children? A systematic review of observational studies. Public Health Nutr. 2017;20(15):2722-2734.
  11. Papamichael MM, Katsardis C, Lambert K, et al. Efficacy of a Mediterranean diet supplemented with fatty fish in ameliorating inflammation in paediatric asthma: a randomised controlled trial. J Hum Nutr Diet. 2019;32(2):185-197. doi:10.1111/jhn.12609
  12. Bath-Hextall F, Delamere FM, Williams HC. Dietary exclusions for established atopic eczema. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD005203.
  13. Kwiatkowski L, Mitchell J, Langland J. Resolution of Allergic Rhinitis and Reactive Bronchospasm With Supplements and Food-specific Immunoglobulin G Elimination: A Case Report. Altern Ther Health Med. 2016;22(S3):24-28.
  14. Virdee K, Musset J, Baral M, et al. Food-specific IgG Antibody-guided Elimination Diets Followed by Resolution of Asthma Symptoms and Reduction in Pharmacological Interventions in Two Patients: A Case Report. Glob Adv Health Med. 2015 Jan;4(1):62-6.
  15. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185-1196. doi:10.1093/ajcn/85.5.1185
  16. Worm M, Ehlers I, Sterry W, Zuberbier T. Clinical relevance of food additives in adult patients with atopic dermatitis. Clin Exp Allergy. 2000 Mar;30(3):407-14
  17. Lee JM, Jin HJ, Noh G, Lee SS. Effect of processed foods on serum levels of eosinophil cationic protein among children with atopic dermatitis. Nutr Res Pract. 2011 Jun;5(3):224-9.
  18. Lyons SA, Dijk AMV, Knulst AC, Alquati E, Le TM, Os-Medendorp HV. Dietary Interventions in Pollen-Related Food Allergy. Nutrients. 2018;10(10):1520. Published 2018 Oct 16. doi:10.3390/nu10101520
  19. Ruegsegger GN, Booth FW. Health Benefits of Exercise. Cold Spring Harb Perspect Med. 2018;8(7):a029694. Published 2018 Jul 2. doi:10.1101/cshperspect.a029694
  20. Woods JA, Vieira VJ, Keylock KT. Exercise, inflammation, and innate immunity. Immunol Allergy Clin North Am. 2009;29(2):381-393. doi:10.1016/j.iac.2009.02.011
  21. Bermon S, Petriz B, Kajėnienė A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70-79.
  22. Moreira A, Delgado L, Haahtela T, et al. Physical training does not increase allergic inflammation in asthmatic children. Eur Respir J. 2008;32(6):1570-1575. doi:10.1183/09031936.00171707
  23. Wicher IB, Ribeiro MA, Marmo DB, et al. Effects of swimming on spirometric parameters and bronchial hyperresponsiveness in children and adolescents with moderate persistent atopic asthma. J Pediatr (Rio J). 2010;86(5):384-390. doi:10.2223/JPED.2022
  24. Fanelli A, Cabral AL, Neder JA, Martins MA, Carvalho CR. Exercise training on disease control and quality of life in asthmatic children. Med Sci Sports Exerc. 2007;39(9):1474-1480. doi:10.1249/mss.0b013e3180d099ad
  25. Mendes FA, Almeida FM, Cukier A, et al. Effects of aerobic training on airway inflammation in asthmatic patients. Med Sci Sports Exerc. 2011;43(2):197-203. doi:10.1249/MSS.0b013e3181ed0ea3
  26. Jaakkola MS, Aalto SAM, Hyrkäs-Palmu H, Jaakkola JJK. Association between regular exercise and asthma control among adults: The population-based Northern Finnish Asthma Study. PLoS One. 2020;15(1):e0227983. Published 2020 Jan 23. doi:10.1371/journal.pone.0227983
  27. Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci. 2004 Jun;1024:138-46
  28. Herberth G, Röder S, Bockelbrink A, et al. Stressful life events in childhood and allergic sensitization. Allergol Select. 2018;2(1):1-9.
  29. Kilpeläinen M, Koskenvuo M, Helenius H, Terho EO. Stressful life events promote the manifestation of asthma and atopic diseases. Clin Exp Allergy. 2002;32(2):256-263. doi:10.1046/j.1365-2222.2002.01282.x
  30. Brown LA, Fisk AS, Pothecary CA, Peirson SN. Telling the Time with a Broken Clock: Quantifying Circadian Disruption in Animal Models. Biology (Basel). 2019;8(1):18. Published 2019 Mar 21. doi:10.3390/biology8010018
  31. Nakao A, Nakamura Y, Shibata S. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015;70(5):467-473. doi:10.1111/all.12596
  32. Tanabe K, Kitagawa E, Wada M, et al. Antigen exposure in the late light period induces severe symptoms of food allergy in an OVA-allergic mouse model. Sci Rep. 2015;5:14424. Published 2015 Sep 30. doi:10.1038/srep14424
  33. Roenneberg T, Merrow M. The Circadian Clock and Human Health. Curr Biol. 2016;26(10):R432-R443. doi:10.1016/j.cub.2016.04.011
  34. Nakao A. Circadian Regulation of the Biology of Allergic Disease: Clock Disruption Can Promote Allergy. Front Immunol. 2020;11:1237.
  35. Nurmatov U, Devereux G, Sheikh A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol. 2011;127(3):. doi:10.1016/j.jaci.2010.11.001
  36. Maslova E, Hansen S, Strøm M, Halldorsson TI, Olsen SF. Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort. Br J Nutr. 2014;111(6):1096-1108.
  37. Nishida K, Uchida R. Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses. J Immunol Res. 2018;2018:5749120. Published 2018 Nov 25. doi:10.1155/2018/5749120
  38. Seo HM, Kim YH, Lee JH, Kim JS, Park YM, Lee JY. Serum Zinc Status and Its Association with Allergic Sensitization: The Fifth Korea National Health and Nutrition Examination Survey. Sci Rep. 2017;7(1):12637. Published 2017 Oct 3. doi:10.1038/s41598-017-13068-x
  39. Rerksuppaphol S, Rerksuppphol L. Zinc Supplementation in Children with Asthma Exacerbation. Pediatr Rep. 2016;8(4):6685. Published 2016 Dec 9. doi:10.4081/pr.2016.6685
  40. Ghaffari J, Khalilian A, Salehifar E, et al. Effect of zinc supplementation in children with asthma: a randomized, placebo-controlled trial in northern Islamic Republic of Iran. East Mediterr Health J. 2014 Jun 18;20(6):391-6.
  41. Kim JE, Yoo SR, Jeong MG, Ko JY, Ro YS. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Derm Venereol. 2014 Sep;94(5):558-62.
  42. Magnesium deficiency in experimental animals, mainly rats, leads to characteristic hyperemia, an increase in IgE, neutrophilia and eosinophilia, an increase in the level of proinflammatory cytokines, mastocyte degranulation, histaminemia, and splenomegaly
  43. Gontijo-Amaral C, Ribeiro MA, Gontijo LS, Condino-Neto A, Ribeiro JD. Oral magnesium supplementation in asthmatic children: a double-blind randomized placebo-controlled trial. Eur J Clin Nutr. 2007;61(1):54-60. doi:10.1038/sj.ejcn.1602475
  44. Hill J, Micklewright A, Lewis S, Britton J. Investigation of the effect of short-term change in dietary magnesium intake in asthma. Eur Respir J. 1997 Oct;10(10):2225-9.
  45. Cipolla C, Occhionero T, Orciari P, Lugo G, D’Antuono G. Magnesium pidolate in the treatment of seasonal allergic rhinitis. Preliminary data. Magnes Res. 1990;3(2):109-112.
  46. Proksch E, Nissen HP, Bremgartner M, Urquhart C. Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. Int J Dermatol. 2005;44(2):151-157. doi:10.1111/j.1365-4632.2005.02079.x
  47. Hartmann B, Heine G, Babina M, et al. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. Allergy. 2011;66(4):540-548. doi:10.1111/j.1398-9995.2010.02513.x
  48. Heine G, Tabeling C, Hartmann B, et al. 25-hydroxvitamin D3 promotes the long-term effect of specific immunotherapy in a murine allergy model. J Immunol. 2014;193(3):1017-1023. doi:10.4049/jimmunol.1301656
  49. Souto Filho JTD, de Andrade AS, Ribeiro FM, Alves PAS, Simonini VRF. Impact of vitamin D deficiency on increased blood eosinophil counts. Hematol Oncol Stem Cell Ther. 2018;11(1):25-29. doi:10.1016/j.hemonc.2017.06.003
  50. Martineau AR, Cates CJ, Urashima M, et al. Vitamin D for the management of asthma. Cochrane Database Syst Rev. 2016;9(9):CD011511. Published 2016 Sep 5. doi:10.1002/14651858.CD011511.pub2
  51. Bakhshaee M, Sharifian M, Esmatinia F, Rasoulian B, Mohebbi M. Therapeutic effect of vitamin D supplementation on allergic rhinitis. Eur Arch Otorhinolaryngol. 2019;276(10):2797-2801. doi:10.1007/s00405-019-05546-x
  52. Camargo CA Jr, Ganmaa D, Sidbury R, et al. Randomized trial of vitamin D supplementation for winter-related atopic dermatitis in children. J Allergy Clin Immunol 2014; 134: 831–835
  53. Qu J, Li Y, Zhong W, Gao P, Hu C. Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis. 2017;9(1):E32-E43. doi:10.21037/jtd.2017.01.05
  54. Ji H, Li XK. Oxidative Stress in Atopic Dermatitis. Oxid Med Cell Longev. 2016;2016:2721469
  55. Rosenlund H, Magnusson J, Kull I, et al. Antioxidant intake and allergic disease in children. Clin Exp Allergy. 2012;42(10):1491-1500.
  56. Gref A, Rautiainen S, Gruzieva O, et al. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Clin Exp Allergy. 2017;47(6):751-759.
  57. Wood LG, Garg ML, Smart JM, Scott HA, Barker D, Gibson PG. Manipulating antioxidant intake in asthma: a randomized controlled trial. Am J Clin Nutr. 2012;96(3):534-543.
  58. Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166(5):703-709. doi:10.1164/rccm.2112074
  59. Fabian E, Pölöskey P, Kósa L, Elmadfa I, Réthy LA. Nutritional supplements and plasma antioxidants in childhood asthma. Wien Klin Wochenschr. 2013;125(11-12):309-315.
  60. Javanbakht M, Keshavarz S, Mirshafiey A, et al. The effects of vitamins e and d supplementation on erythrocyte superoxide dismutase and catalase in atopic dermatitis. Iran J Public Health. 2010;39(1):57-63.
  61. Javanbakht MH, Keshavarz SA, Djalali M, et al. Randomized controlled trial using vitamins E and D supplementation in atopic dermatitis. J Dermatolog Treat. 2011;22(3):144-150. doi:10.3109/09546630903578566
  62. Fogarty A, Lewis S, Weiss S, Britton J. Dietary vitamin E, IgE concentrations, and atopy. Lancet. 2000;356(9241):1573-1574.
  63. Shahar E, Hassoun G, Pollack S. Effect of vitamin E supplementation on the regular treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004;92(6):654-658. doi:10.1016/S1081-1206(10)61432-9
  64. Montaño Velázquez BB, Jáuregui-Renaud K, Bañuelos Arias Adel C, et al. Vitamin E effects on nasal symptoms and serum specific IgE levels in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2006;96(1):45-50. doi:10.1016/s1081-1206(10)61039-3
  65. Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G. Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol. 2002;41(3):146-150. doi:10.1046/j.1365-4362.2002.01423.x
  66. Butawan M, Benjamin RL, Bloomer RJ. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients. 2017;9(3):290.
  67. Barrager E, Veltmann JR Jr, Schauss AG, Schiller RN. A multicentered, open-label trial on the safety and efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. J Altern Complement Med. 2002;8(2):167-173.
  68. Hewlings S, Kalman DS. Evaluating the Impacts of Methylsulfonylmethane on Allergic Rhinitis After a Standard Allergen Challenge: Randomized Double-Blind Exploratory Study. JMIR Res Protoc. 2018;7(11):e11139. Published 2018 Nov 29. doi:10.2196/11139
  69. Cianferoni A, Annesi-Maesano I. Precision medicine in atopic diseases. Curr Opin Allergy Clin Immunol. 2019;19(6):654-664.
  70. Agache I, Sugita K, Morita H, Akdis M, Akdis CA. The Complex Type 2 Endotype in Allergy and Asthma: From Laboratory to Bedside. Curr Allergy Asthma Rep. 2015;15(6):29. doi:10.1007/s11882-015-0529-x
  71. Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma [published correction appears in Am J Respir Crit Care Med. 2009 Oct 15;180(8):796]. Am J Respir Crit Care Med. 2009;180(5):388-395.
  72. Park HJ, Lee CM, Jung ID, et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol. 2009 Mar;9(3):261-7.
  73. Müller S, März R, Schmolz M, et al. Placebo-controlled randomized clinical trial on the immunomodulating activities of low- and high-dose bromelain after oral administration – new evidence on the antiinflammatory mode of action of bromelain. Phytother Res. 2013 Feb;27(2):199-204.
  74. Srivastava RM, Singh S, Dubey SK, et al. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol. 2011 Mar;11(3):331-41.
  75. Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid Med Cell Longev. 2017;2017:3247528. doi:10.1155/2017/3247528
  76. Chang HH, Chen CS, Lin JY. High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio, but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized and challenged mice. J Agric Food Chem. 2009 Nov 11;57(21):10471-6.
  77. Lucas RM, Gorman S, Geldenhuys S, et al. Vitamin D and immunity. F1000Prime Rep. 2014 Dec 1;6:118.
  78. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012 Apr 1;16(7):705-43.
  79. Farjadian S, Moghtaderi M, Kalani M, et al. Effects of omega-3 fatty acids on serum levels of T-helper cytokines in children with asthma. Cytokine. 2016 Sep;85:61-6.
  80. Kawai M, Hirano T, Arimitsu J, et al. Effect of enzymatically modified isoquercitrin, a flavonoid, on symptoms of Japanese cedar pollinosis: a randomized double-blind placebo-controlled trial. Int Arch Allergy Immunol. 2009;149(4):359-368.
  81. Hirano T, Kawai M, Arimitsu J, et al. Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis. Allergol Int. 2009;58(3):373-382. doi:10.2332/allergolint.08-OA-0070
  82. Braun JM, Schneider B, Beuth HJ. Therapeutic use, efficiency and safety of the proteolytic pineapple enzyme Bromelain-POS in children with acute sinusitis in Germany. In Vivo. 2005;19(2):417-421.
  83. Büttner L, Achilles N, Böhm M, Shah-Hosseini K, Mösges R. Efficacy and tolerability of bromelain in patients with chronic rhinosinusitis–a pilot study. B-ENT. 2013;9(3):217-225.
  84. Cingi C, Conk-Dalay M, Cakli H, Bal C. The effects of spirulina on allergic rhinitis. Eur Arch Otorhinolaryngol. 2008;265(10):1219-1223. doi:10.1007/s00405-008-0642-8
  85. Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT. Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives. Int Immunopharmacol. 2016;37:43-58.
  86. Wang X, Robertson AL, Li J, et al. Inhibitors of neutrophil recruitment identified using transgenic zebrafish to screen a natural product library. Dis Model Mech. 2014;7(1):163-169. doi:10.1242/dmm.012047

Air pollution and asthma

Air pollution and family related determinants of asthma onset and persistent wheezing in children: nationwide case-control studyBMJ, 2020; m2791 DOI: 10.1136/bmj.m2791.

CBD

In Search of Preventative Strategies: Novel Anti-Inflammatory High-CBD Cannabis Sativa  Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues. Preprints 2020, 2020040315. https://www.preprints.org/manuscript/202004.0315/v1.

Cannabidiol Modulates Cytokine Storm in Acute Respiratory Distress Syndrome Induced by Simulated Viral Infection Using Synthetic RNACannabis and Cannabinoid Research 2020; DOI: 10.1089/can.2020.0043.

The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study. J Psychopharmacology 2020, first published online August 7.

https://doi.org/10.1177/0269881120936419

Delta-9-Tetrahydrocannabinol and Cannabidiol Drug-Drug InteractionsMedical Cannabis and Cannabinoids 2020; 1 DOI: 10.1159/000507998.

MITOCHONDRIA – Dr CHANDLER MARRS, PhD

  1. Medication-induced mitochondrial damage and diseaseMol Nutr Food Res. 2008;52(7):780-788. doi:10.1002/mnfr.200700075.
  2. Mitochondria in the regulation of innate and adaptive immunity.Immunity. 2015;42(3):406-417. doi:10.1016/j.immuni.2015.02.002.
  3. Role of mitochondria in steroidogenesis.Best Pract Res Clin Endocrinol Metab. 2012;26(6):771-790. doi:10.1016/j.beem.2012.05.002.
  4. Mitochondrial Mechanisms of Neuronal Cell Death: Potential TherapeuticsAnnu Rev Pharmacol Toxicol. 2017;57:437-454. doi:10.1146/annurev-pharmtox-010716-105001.
  5. Metabolic features and regulation of the healing cycle – a new model for chronic disease pathogenesis and treatmentMitochondrion. 2019;46:278-297. doi:10.1016/j.mito.2018.08.001.
  6. Metabolic features of the cell danger response. Mitochondrion 2014, 16, May, 7-17.

https://www.sciencedirect.com/science/article/pii/S1567724913002390.
7. HIF1-α-mediated gene expression induced by vitamin B1 deficiencyInt J Vitam Nutr Res. 2013;83(3):188-197. doi:10.1024/0300-9831/a000159.

  1. “Oxygenation, Nutrition and Cancer”, by Derrick Lonsdale MD, FACN, CNS:

https://www.hormonesmatter.com/oxygenation-nutrition-cancer.

  1. Evidence that protein requirements have been significantly underestimated.Curr Opin Clin Nutr Metab Care. 2010;13(1):52-57. doi:10.1097/MCO.0b013e328332f9b7,
  2. Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy WomenNutrients. 2018;10(9):1254, doi:10.3390/nu10091254.
  3. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle.Appl Physiol Nutr Metab. 2009;34(3):465-472. doi:10.1139/H09-045
  4. Exercise Modifies the Gut Microbiota with Positive Health Effects.

Oxidative Medicine and Cellular Longevity 2017, ID 3831972: https://doi.org/10.1155/2017/3831972.

RESEARCH

Cruciferous vegetable intake is inversely associated with extensive abdominal aortic calcification in elderly women: a cross-sectional studyBritish Journal of Nutrition, 2020; 1 DOI: 10.1017/S0007114520002706.

Trajectories of childhood adversity and mortality in early adulthood: a population-based cohort study. The Lancet, 2020; 396 (10249): 489 DOI: 10.1016/S0140-6736(20)30621-8.

Influence of cinnamon on glycaemic control in subjects with prediabetes: a randomized controlled trial. Journal of the Endocrine Society 2020, publishd online July 212. DOI: 10.1210/jendso/bvaa094.

Gut Microbiota in T1DM-Onset Pediatric Patients: Machine Learning Algorithms to Classify Microganisms Disease-Linked. The Journal of Clinical Endocrinology & Metabolism 2020, published online July 21: https://doi.org/10.1210/clinem/dgaa407.

Resolution Response – Dr BARRY SEARS

Dietary Technologies to Optimize Healing from Injury-Induced Inflammation. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 2020, 19, 1-12. Open Access available at https://www.eurekaselect.com/181889/article.

  1. Sears B. The Resolution Zone.  Zone Press.  Palm City, FL (2019)
  2. Pasteur L. “On germ theory.”  Science 2: 420-422 (1881)
  3. Dubos R. Louis Pasteur:  Freelance of Science.  Little Brown.  New York, NY  (1950)
  4. Oates JA. “The 1982 Nobel Prize in Physiology and Medicine.” Science 218: 765-766 (1982)
  5. Serhan CN. “Pro-resolving lipid mediators are leads for resolution physiology.”  Nature 510:  92-101 (2014)
  6. Sen R and Baltimore D. “Multiple nuclear factors interact with the immunoglobulin enhancer sequences.”  Cell 46: 705-716 (1986)
  7. Zhang Q, Lenardo MI, and Baltimore D. “30 years of NF-κB:  A blossoming of relevance to human pathobiology.”  Cell 168: 37-57 (2017)
  8. Spite M, Claria J, and Serhan CN. “Resolvins, specialized pro-resolving lipid mediators, and their potential roles in metabolic disease.” Cell Metab 19: 21-36 (2014)
  9. Chiang N, Fredman G, Bäckhed F, Oh SF, Vickery T, Schmidt BA, and Serhan CN. “Infection regulates pro-resolving mediators that lower antibiotic requirements.”  Nature 484: 524-528 (2012)
  10. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, and Imai Y. “The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza.”  Cell 28;153: 112-125 (2013)
  11. Ramon S, Baker SF, Sahler JM, Kim N, Feldsott EA, Serhan CN, Martínez-Sobrido L, Topham DJ, and Phipps RP. “The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant?” J Immunol 193: 6031-6040 (2014)
  1. Chen X, Li X, Zhang W, He J, Xu B, Lei B, Wang Z, Cates C, Rousselle T, and Li J. “Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway.’  Metabolism 83: 256-270 (2018)
  1. Hotamisligil GS. “Inflammation, metaflammation, and immunometabolic disorders.”  Nature. 542: 177-185 (2017)
  2. Salminen A and Kaarniranta K. “AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network.” Ageing Res Rev 11: 230-241 (2012)
  3. Salminen A, Kaarniranta K, and Kauppinen A. “Immunosenescence: The potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency.”  Cell Mol Life Sci 76: 1901-1918 (2019)
  4. Del Pinto R and Ferri C. “Inflammation-accelerated senescence and the cardiovascular system: Mechanisms and perspectives.”  Int J Mol Sci 19: E3701 (2018)
  5. Campisi J. “Aging, cellular senescence, and cancer.”  Annu Rev Physiol 75: 685-705 (2013)
  6. Kirkland JL and Tchkonia T. “Cellular senescence: A translational perspective.” EBioMedicine 21: 21-28 (2017)
  7. Prata LGPL, Ovsyannikova IG, Tchkonia T, and Kirkland JL. “Senescent cell clearance by the immune system: Emerging therapeutic opportunities.” Semin Immunol 40: 101275 (2018)
  8. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, and von Zglinicki T. “A senescent cell bystander effect: senescence-induced senescence.”  Aging Cell 11: 345-349 (2012)
  1. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, and van Deursen JM. “Senescent cells: An emerging target for diseases of ageing.”  Nat Rev Drug Discov 16: 718-735 (2017)
  2. Wynn TA. “Cellular and molecular mechanisms of fibrosis.” J Pathol 214: 199-210 (2008)
  3. Eming SA, Wynn TA, and Martin P. “Inflammation and metabolism in tissue repair and regeneration.”  Science 356: 1026-1030 (2017)
  4. Salminen A. “Activation of immunosuppressive network in the aging process.”  Ageing Res Rev 57: 100998 (2020)
  5. Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, Litwa HP, Neibart SS, Kadiyala M, Wong MZ, Mizrahi MM, Yim NL, Ramme AJ, Egol KA, and Leucht P. “Age-related inflammation triggers skeletal stem/progenitor cell dysfunction.”  Proc Natl Acad Sci U S A 116: 6995-7004 (2019)
  6. Sears B. The Zone.  Regan Books.  New York, NY (1995)
  7. Bell SJ and Sears B. “The Zone diet: An anti-inflammatory, low glycemic-load diet.” Metabol Synd and Related Disord 2: 24-38 (2004)
  8. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, and Roberts SB. “High glycemic index foods, overeating, and obesity.”  Pediatrics 103: E26 (1999)
  9. Rabassa M, Cherubini A, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L, and Andres- Lacueva C. “Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: The Invecchiare in Chianti study.” J Am Geriatr Soc 63:938-946 (2015)
  10. Rabassa M, Zamora-Ros R, Andres-Lacueva C, Urpi-Sarda M, Bandinelli S, Ferrucci L, and Cherubini A. “Association between both total baseline urinary and dietary polyphenols and substantial physical performance decline risk in older adults: A 9-year follow-up of the InCHIANTI study.” J Nutr Health Aging 20:478-485 (2016)
  11. Urpi-Sarda M, Andres-Lacueva C, Rabassa M, Ruggiero C, Zamora-Ros R, Bandinelli S, Ferrucci L, and Cherubini A. “The relationship between urinary total polyphenols and the frailty phenotype in a community-dwelling older population: The InCHIANTI study.” J Gerontol A Biol Sci Med Sci 70: 1141-1147 (2015)
  12. Zamora-Ros R, Rabassa M, Cherubini A, Urpí-Sardà M, Bandinelli S, Ferrucci L, and Andres-Lacueva C. “High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults.” J Nutr 143: 1445-1450 (2013)
  13. Sears B, Bailes J, and Asselin B. “Therapeutic uses of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury.”  PharmaNutrition 1: 86-89 (2013)
  14. Georgiou T, Neokleous A, Nikolaou D, and Sears B. “Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids.”  PharmaNutrition 2: 8-11 (2014)
  15. Baidal DA, Ricordi C, Garcia-Contreras M, Sonnino A, and Fabbri A. “Combination high-dose omega-3 fatty acids and high-dose cholecalciferol in new onset type 1 diabetes: a potential role in preservation of beta-cell mass.” Eur Rev Med Pharmacol Sci 20: 3313-3318 (2016)
  16. Cadario F, Savastio S, Rizzo AM, Carrera D, Bona G, and Ricordi C. “Can Type 1 diabetes progression be halted? Possible role of high dose vitamin D and omega 3 fatty acids.” Eur Rev Med Pharmacol Sci 21: 1604-1609 (2017)
  17. Cadario F, Savastio S, Ricotti R, Rizzo AM, Carrera D, Maiuri L, and Ricordi C. “Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes.” Eur Rev Med Pharmacol Sci 22: 512-515 (2018)
  18. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, and Verdin E. “From discoveries in ageing research to therapeutics for healthy ageing.”  Nature 571: 183-192 (2019).

 

 

 

 

August 2020

WELCOME

Do vitamin D supplements help prevent respiratory tract infections?

BMJ 2017; 356 doi: https://doi.org/10.1136/bmj.j456.

NEWS

Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBio Medicine 2020, Open Access, publishe July 17. DOI:https://doi.org/10.1016/j.ebiom.2020.102883

Women’s Health in the UK – Dietary and Health Challenges across the Life Cycle with a Focus on Micronutrients. J Virol Mycol 2020, 4: 118. DOI: 10.29011/2688-8750.100018.

Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). International Journal of Molecular Medicine 2020, 46, 17-26. https://doi.org/10.3892/ijmm.2020.4575.

Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients.

medRxiv 2020, pre-print, 05.02.20080036; doi: https://doi.org/10.1101/2020.05.02.20080036

Influence of cinnamon on glycaemic control in subjects with prediabetes: a randomized controlled trial. Journal of the Endocrine Society 2020, publishd online July 212. DOI: 10.1210/jendso/bvaa094.

Gut Microbiota in T1DM-Onset Pediatric Patients: Machine Learning Algorithms to Classify Microganisms Disease-Linked. The Journal of Clinical Endocrinology & Metabolism 2020, published online July 21: https://doi.org/10.1210/clinem/dgaa407.

Investigating Ketone Bodies as Immunometabolic Countermeasures Against Respiratory Viral Infections. Med 2020. https://doi.org/10.1016/j.medj.2020.06.008.

BEN BROWN

  1. Peacock A, Leung J, Larney S, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113(10):1905-1926. doi:10.1111/add.14234
  2. Wu LT, McNeely J, Subramaniam GA, et al. DSM-5 substance use disorders among adult primary care patients: Results from a multisite study. Drug Alcohol Depend. 2017;179:42-46.
  3. Pace CA, Uebelacker LA. Addressing Unhealthy Substance Use in Primary Care. Med Clin North Am. 2018;102(4):567-586.
  4. Hasin DS, O’Brien CP, Auriacombe M, et al. DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry. 2013;170(8):834-851. doi:10.1176/appi.ajp.2013.12060782
  5. McLellan AT. Substance Misuse and Substance use Disorders: Why do they Matter in Healthcare?. Trans Am Clin Climatol Assoc. 2017;128:112-130.
  6. Jeynes KD, Gibson EL. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend. 2017;179:229-239.
  7. Hoffer A. Treatment Protocol for Alcoholism. Orthomolecular Medicine News Service, July 1, 2005.
  8. Reihana PK, Blampied NM, Rucklidge JJ. Novel Mineral-Vitamin Treatment for Reduction in Cigarette Smoking: A Fully Blinded Randomized Placebo-Controlled Trial. Nicotine Tob Res. 2019;21(11):1496-1505.
  9. Duailibi MS, Cordeiro Q, Brietzke E, et al. N-acetylcysteine in the treatment of craving in substance use disorders: Systematic review and meta-analysis. Am J Addict. 2017;26(7):660-666.
  10. Buydens-Branchey L, Branchey M, McMakin DL, Hibbeln JR. Polyunsaturated fatty acid status and relapse vulnerability in cocaine addicts. Psychiatry Res. 2003;120(1):29-35. doi:10.1016/s0165-1781(03)00168-9
  11. Buydens-Branchey L, Branchey M, Hibbeln JR. Low plasma levels of docosahexaenoic acid are associated with an increased relapse vulnerability in substance abusers. Am J Addict. 2009;18(1):73-80.
  12. Buydens-Branchey L, Branchey M. n-3 polyunsaturated fatty acids decrease anxiety feelings in a population of substance abusers. J Clin Psychopharmacol. 2006;26(6):661-665. doi:10.1097/01.jcp.0000246214.49271.f1
  13. Buydens-Branchey L, Branchey M, Hibbeln JR. Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):568-575.
  14. Zaparoli JX, Sugawara EK, de Souza AA, Tufik S, Galduróz JC. Omega-3 Levels and Nicotine Dependence: A Cross-Sectional Study and Clinical Trial. Eur Addict Res. 2016;22(3):153-162. doi:10.1159/000439525
  15. Rabinovitz S. Effects of omega-3 fatty acids on tobacco craving in cigarette smokers: A double-blind, randomized, placebo-controlled pilot study. J Psychopharmacol. 2014;28(8):804-809. doi:10.1177/0269881114536477
  16. Sadeghi-Ardekani K, Haghighi M, Zarrin R. Effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males: A double-blind, randomized, placebo-controlled clinical trial. J Psychopharmacol. 2018;32(9):995-1002. doi:10.1177/0269881118788806
  17. Prousky J. The Treatment of Alcoholism with Vitamin B 3. Journal of Orthomolecular Medicine 29(3):123-131. January 2014.
  18. Roach MK, Williams RJ. Impaired and inadequate glucose metabolism in the brain as an underlying cause of alcoholism–an hypothesis. Proc Natl Acad Sci U S A. 1966;56(2):566-571. doi:10.1073/pnas.56.2.566
  19. Ghaderi A, Rasouli-Azad M, Vahed N, et al. Clinical and metabolic responses to crocin in patients under methadone maintenance treatment: A randomized clinical trial. Phytother Res. 2019;33(10):2714-2725. doi:10.1002/ptr.6445
  20. Nemat Shahi M, Asadi A, Behnam Talab E, Nemat Shahi M. The Impact of Saffron on Symptoms of Withdrawal Syndrome in Patients Undergoing Maintenance Treatment for Opioid Addiction in Sabzevar Parish in 2017. Adv Med. 2017;2017:1079132. doi:10.1155/2017/1079132
  21. Morgan CJ, Das RK, Joye A, Curran HV, Kamboj SK. Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addict Behav. 2013;38(9):2433-2436. doi:10.1016/j.addbeh.2013.03.011
  22. Hurd YL, Spriggs S, Alishayev J, et al. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial [published correction appears in Am J Psychiatry. 2020 Jul 1;177(7):641]. Am J Psychiatry. 2019;176(11):911-922. doi:10.1176/appi.ajp.2019.18101191
  23. Hurd YL, Spriggs S, Alishayev J, et al. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial [published correction appears in Am J Psychiatry. 2020 Jul 1;177(7):641]. Am J Psychiatry. 2019;176(11):911-922. doi:10.1176/appi.ajp.2019.18101191

 

Lustig: additional material from SIMON MARTIN

Is fast food addictive? Curr Drug Abuse Rev 2011;4(3):146-162. DOI : 10.2174/1874473711104030146.

Hyper‐Palatable Foods: Development of a Quantitative Definition and Application to the US Food System Database. Obesity 2019; 27 (11): 1761. DOI: 10.1002/oby.22639.

Why it can be hard to stop eating even when you’re full: Some foods may be designed that way”, by Tera Fazzino and Kaitlyn Rohde. The Conversation, December 6, 2019: https://theconversation.com/why-it-can-be-hard-to-stop-eating-even-when-youre-full-some-foods-may-be-designed-that-way-126729.

DIGESTIVE HEALTH

 

  1. An Oral Formulation of the Probiotic, Bacillus subtilisHU58, was Safe and Well Tolerated in a Pilot Study of Patients with Hepatic Encephalopathy. Sayed Yossef et al. Evidence-Based Complementary and Alternative Medicine 2020, 1463108: https://doi.org/10.1155/2020/1463108.
  2. Probiotic Bacillus Spores Protect Against Acetaminophen Induced Acute Liver Injury in Rats. Neag, et al. Nutrients 2020, Mar; 12(3): 632. DOI: 10.3390/nu12030632.
  3. “A synbiotic concept containing spore-forming Bacillusstrains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro.”Duysburgh, Cindy et al. International journal of pharmaceutics: X, vol. 1 100021. 6 Jul. 2019, doi:10.1016/j.ijpx.2019.100021.

 

MtcB, a member of the MttB superfamily from the human gut acetogen Eubacterium limosum, is a cobalamin-dependent carnitine demethylase. Duncan J. Kountz et al. Journal of Biological Chemistry, 2020; jbc.RA120.012934.  DOI: 10.1074/jbc.RA120.012934.

High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel DiseaseCell Host & Microbe 2020. DOI: 10.1016/j.chom.2020.06.001.

Standard gastroenterologist versus multidisciplinary treatment for functional gastrointestinal disorders (MANTRA): an open-label, single-centre, randomised controlled trial.  The Lancet Gastroenterology & Hepatology 2020, July 14, 2020DOI: https://doi.org/10.1016/S2468-1253(20)30215-6.

The small intestine shields the liver from fructose-induced steatosis. Nat Metab 2020, 2, 586–93: https://doi.org/10.1038/s42255-020-0222-9.

Fitness trade-offs incurred by ovary-to-gut steroid signalling in DrosophilaNature 2020, July 8. DOI: 10.1038/s41586-020-2462-y.

WEIGHT LOSS

 

  1. Short-term, but not acute, intake of New Zealand blackcurrant extract improves insulin sensitivity and free-living postprandial glucose excursions in individuals with overweight or obesity. Nolan, A., Brett, R., Strauss, J.A. et alEur J Nutr2020:  https://doi.org/10.1007/s00394-020-02329-7.
  2. Effects of blackcurrant extract on arterial functions in older adults: a randomized, double-blind, placebo-controlled, crossover trial.Takanobu Okamoto et al. Clinical and Experimental Hypertension 2020, 42:7, 640-647, DOI: 10.1080/10641963.2020.1764015.
  3. Why So Many People with Diabetes Stop Taking Metformin”: https://www.healthline.com/health-news/why-so-many-people-with-diabetes-stop-taking-metformin#1.

 

The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism 2020, online July 10: https://doi.org/10.1016/j.cmet.2020.06.011.

 Dr EVE PEARCE

  1. WJ G, ZY N, Y H, WH L, CQ O, JX H, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med [Internet]. 2020 [cited 2020 May 14];382(18). Available from: https://pubmed.ncbi.nlm.nih.gov/32109013/
  2. Dietz W, Santos‐Burgoa C. Obesity and its Implications for COVID‐19 Mortality. Obesity [Internet]. 2020 Apr 18 [cited 2020 May 14];oby.22818. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/oby.22818
  3. Qingxian C, Fengjuan C, Fang L, Xiaohui L, Tao W, Qikai W, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. SSRN Electron J [Internet]. 2020 Mar 13 [cited 2020 May 14]; Available from: https://www.ssrn.com/abstract=3556658
  4. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell LF, Chernyak Y, et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv [Internet]. 2020 Apr 11 [cited 2020 May 14];2020.04.08.20057794. Available from: https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1
  5. Tamara A, Tahapary DL. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab Syndr Clin Res Rev [Internet]. 2020 May 12 [cited 2020 May 14]; Available from: https://www.sciencedirect.com/science/article/pii/S1871402120301399
  6. Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol [Internet]. 2020 Apr 23 [cited 2020 May 14];1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32327737
  7. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell [Internet]. 2020 Apr 16 [cited 2020 May 20];181(2):271-280.e8. Available from: https://www.sciencedirect.com/science/article/pii/S0092867420302294
  8. Busse LW, Chow JH, McCurdy MT, Khanna AK. COVID-19 and the RAAS—a potential role for angiotensin II? Crit Care [Internet]. 2020 [cited 2020 May 14];24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137402/
  9. H H, M G, A M, M K, M P, GH F, et al. Susceptibility to SARS Coronavirus S Protein-Driven Infection Correlates With Expression of Angiotensin Converting Enzyme 2 and Infection Can Be Blocked by Soluble Receptor. Biochem Biophys Res Commun [Internet]. 2004 [cited 2020 May 20];319(4). Available from: https://pubmed.ncbi.nlm.nih.gov/15194496/
  10. AE M, MM CR, F B, G I. Targeting the Adipose Tissue in COVID-19. Obesity (Silver Spring) [Internet]. 2020 [cited 2020 May 20]; Available from: https://pubmed.ncbi.nlm.nih.gov/32314871/?from_term=ace2+adipose+tissue&from_pos=3
  11. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ [Internet]. 2020 Mar 26 [cited 2020 May 20];368. Available from: https://www.bmj.com/content/368/bmj.m1091?ijkey=1ff98e7c75f3235066790e3ff67a131f62162c74&keytype2=tf_ipsecsha
  12. Wang H, Yuan Z, Pavel MA, Hansen SB. The role of high cholesterol in age-related COVID19 lethality. bioRxiv [Internet]. 2020 May 10 [cited 2020 May 20];2020.05.09.086249: https://www.biorxiv.org/content/10.1101/2020.05.09.086249v2.
  13. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med [Internet]. [cited 2020 May 20];0(0). Available from: https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30216-2/fulltext
  14. Messina G, Polito R, Monda V, Cipolloni L, Di Nunno N, Di Mizio G, et al. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int J Mol Sci [Internet]. 2020 Apr 28 [cited 2020 May 20];21(9):3104. Available from: https://www.mdpi.com/1422-0067/21/9/3104
  15. Schaeffer L. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet [Internet]. 2006 Apr 21 [cited 2016 Nov 13];15(11):1745–56. Available from: http://www.hmg.oxfordjournals.org/cgi/doi/10.1093/hmg/ddl117
  16. Bokor S, Dumont J, Spinneker A, Gonzalez-Gross M, Nova E, Widhalm K, et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res [Internet]. 2010 Aug [cited 2016 Nov 13];51(8):2325–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20427696

 

RESEARCH

Extrapulmonary manifestations of COVID-19Nat Med 26, 1017–1032 (2020). https://doi.org/10.1038/s41591-020-0968-3.

Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutrition, Prevention & Health 2020, bmjnph-2019-000053. DOI: 10.1136/bmjnph-2019-000053.

Oxytocin reverses Aβ-induced impairment of hippocampal synaptic plasticity in miceBiochemical and Biophysical Research Communications 2020, 528 (1): 174 DOI: 10.1016/j.bbrc.2020.04.046.

Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro. Journal of General Virology 2020; DOI: 10.1099/jgv.0.001466.

Evidence for improved systemic and local vascular function after long‐term passive static stretching training of the musculoskeletal system. J Physiol 2020: doi:10.1113/JP279866.

Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with ObesityCell Metabolism, 2020; DOI: 10.1016/j.cmet.2020.06.018

Avocado (Persea americana) pulp improves cardiovascular and autonomic recovery following submaximal running: a crossover, randomized, double-blind and placebo-controlled trial. Sci Rep 10, 10703 (2020). https://doi.org/10.1038/s41598-020-67577-3.

July 2020

WELCOME

Estimated Inactivation of Coronaviruses by Solar Radiation With Special Reference to COVID‐19. Jose‐Luis Sagripanti and C. David Lytle. Accepted for publication in Photochemistry and Photobiology 2020:  

https://doi.org/10.1111/php.13293.

NEWS

Obesity and covid-19: the role of the food industry. Tan M, He FJ, MacGregor GA. BMJ 2020, 369, Editorial. DOI: https://doi.org/10.1136/bmj.m2237. June 10.

Air Pollution as a Contributor to the Inflammatory Activity of Multiple Sclerosis/ Andrea Cortese, Luca Lova, Patrizia Comoli et al. Journal of Neuroinflammation 2020, PREPRINT May 11. DOI: 10.21203/rs.3.rs-26983/v1.

n-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Jiang-Zhou Yu et al. Molecular Psychiatry 2020, DOI: 10.1038/s41380-020-0786-5.

Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. Craig R. Cohen et al. N Engl J Med 2020; 382:1906-1915. DOI: 10.1056/NEJMoa1915254.

Do arsenic levels in rice pose a health risk to the UK population? Manoj Menon et al. Ecotoxicology and Environmental Safety 2020, 197, 110601. https://doi.org/10.1016/j.ecoenv.2020.110601.

Between-centre differences for COVID-19 ICU mortality from early data in England. Zhaozhi Qian et al. Accepted for publication in Intensive Care Medicine. Preprint: https://www.medrxiv.org/content/10.1101/2020.04.19.20070722v4.

Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure. Alison E. Thompson et al.  JAMA Intern Med 2020; doi: 10.1001/jamainternmed.2020.3030.  

COVID and blood type: https://blog.23andme.com/23andme-research/23andme-finds-evidence-that-blood-type-plays-a-role-in-covid-19.

Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Robbiani DF et al. Nature 2020. https://doi.org/10.1038/s41586-020-2456-9.

“The end of exponential growth: The decline in the spread of coronavirus”, by Isaac Ben-Israel. The Times of Israel, April 19 , 2020: https://www.timesofisrael.com/the-end-of-exponential-growth-the-decline-in-the-spread-of-coronavirus.

Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on Ascorbic Acid. Paul E Marik. Nutrients 2018, Nov 14;10(11):1762.

DOI: 10.3390/nu10111762

BEN BROWN – PTSD

  1. Lowe SR, Bonumwezi JL, Valdespino-Hayden Z, Galea S. Posttraumatic Stress and Depression in the Aftermath of Environmental Disasters: A Review of Quantitative Studies Published in 2018. Curr Environ Health Rep. 2019;6(4):344-360.
  2. Atwoli L, Stein DJ, Koenen KC, McLaughlin KA. Epidemiology of posttraumatic stress disorder: prevalence, correlates and consequences. Curr Opin Psychiatry. 2015;28(4):307-311.
  3. Davydow DS, Gifford JM, Desai SV, Needham DM, Bienvenu OJ. Posttraumatic stress disorder in general intensive care unit survivors: a systematic review. Gen Hosp Psychiatry. 2008;30(5):421-434.
  4. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-920.
  5. Benjet C, Bromet E, Karam EG, et al. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol Med. 2016;46(2):327-343.
  6. Horn SR, Charney DS, Feder A. Understanding resilience: New approaches for preventing and treating PTSD. Exp Neurol. 2016;284(Pt B):119-132.
  7. Koenen KC, Ratanatharathorn A, Ng L, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47(13):2260-2274.
  8. Greenberg N, Brooks S, Dunn R. Latest developments in post-traumatic stress disorder: diagnosis and treatment. Br Med Bull. 2015;114(1):147-155.
  9. Spottswood M, Davydow DS, Huang H. The Prevalence of Posttraumatic Stress Disorder in Primary Care: A Systematic Review. Harv Rev Psychiatry. 2017;25(4):159-169.
  10. Diagnostic and Statistical Manual of Mental Disorders. Vol. 5. Arlington, VA: American Psychiatric Association; 2013
  11. Watson P. PTSD as a Public Mental Health Priority. Curr Psychiatry Rep. 2019;21(7):61.
  12. Shalev A, Liberzon I, Marmar C. Post-Traumatic Stress Disorder. N Engl J Med. 2017;376(25):2459-2469.
  13. Pitman RK, Rasmusson AM, Koenen KC, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769-787.
  14. Speer K, Upton D, Semple S, McKune A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J Inflamm Res. 2018;11:111-121.
  15. Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative Stress, Inflammation, and Neuroprogression in Chronic PTSD. Harv Rev Psychiatry. 2018;26(2):57-69.
  16. Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis. 2018;41(4):585-596.
  17. Speer KE, Semple S, Naumovski N, D’Cunha NM, McKune AJ. HPA axis function and diurnal cortisol in post-traumatic stress disorder: A systematic review. Neurobiol Stress. 2019;11:100180.
  18. Leclercq S, Forsythe P, Bienenstock J. Posttraumatic Stress Disorder: Does the Gut Microbiome Hold the Key?. Can J Psychiatry. 2016;61(4):204-213.
  19. Roberts NP, Roberts PA, Jones N, Bisson JI. Psychological interventions for post-traumatic stress disorder and comorbid substance use disorder: A systematic review and meta-analysis. Clin Psychol Rev. 2015;38:25-38.
  20. Hoskins M, Pearce J, Bethell A, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry. 2015;206(2):93-100.
  21. Sornborger J, Fann A, Serpa JG, et al. Integrative Therapy Approaches for Posttraumatic Stress Disorder: A Special Focus on Treating Veterans. Focus (Am Psychiatr Publ). 2017;15(4):390-398.
  22. Wahbeh H, Senders A, Neuendorf R, Cayton J. Complementary and Alternative Medicine for Posttraumatic Stress Disorder Symptoms: A Systematic Review. J Evid Based Complementary Altern Med. 2014;19(3):161-175.
  23. Hilton LG, Libretto S, Xenakis L, et al. Evaluation of an Integrative Post-Traumatic Stress Disorder Treatment Program. J Altern Complement Med. 2019;25(S1):S147-S152.
  24. Hall KS, Hoerster KD, Yancy WS Jr. Post-traumatic stress disorder, physical activity, and eating behaviors. Epidemiol Rev. 2015;37:103-115.
  25. Ciccotti M, Raguzzini A, Sciarra T, et al. Nutraceutical-based Integrative Medicine: Adopting a Mediterranean Diet Pyramid for Attaining Healthy Ageing in Veterans with Disabilities. Curr Pharm Des. 2018;24(35):4186-4196.

 

  1. Godfrey KM, Lindamer LA, Mostoufi S, Afari N. Posttraumatic stress disorder and health: a preliminary study of group differences in health and health behaviors. Ann Gen Psychiatry. 2013;12(1):30. Published 2013 Sep 26. doi:10.1186/1744-859X-12-30
  2. Gavrieli A, Farr OM, Davis CR, Crowell JA, Mantzoros CS. Early life adversity and/or posttraumatic stress disorder severity are associated with poor diet quality, including consumption of trans fatty acids, and fewer hours of resting or sleeping in a US middle-aged population: A cross-sectional and prospective study. Metabolism. 2015;64(11):1597-1610.
  3. Talbot LS, Maguen S, Epel ES, Metzler TJ, Neylan TC. Posttraumatic stress disorder is associated with emotional eating. J Trauma Stress. 2013;26(4):521-525. doi:10.1002/jts.21824
  4. Mason SM, Frazier PA, Austin SB, et al. Posttraumatic Stress Disorder Symptoms and Problematic Overeating Behaviors in Young Men and Women. Ann Behav Med. 2017;51(6):822-832.
  5. Mitchell KS, Wolf EJ. PTSD, food addiction, and disordered eating in a sample of primarily older veterans: The mediating role of emotion regulation. Psychiatry Res. 2016;243:23-29.
  6. Hirth JM, Rahman M, Berenson AB. The association of posttraumatic stress disorder with fast food and soda consumption and unhealthy weight loss behaviors among young women. J Womens Health (Larchmt). 2011;20(8):1141-1149.
  7. Vilija M, Romualdas M. Unhealthy food in relation to posttraumatic stress symptoms among adolescents. Appetite. 2014;74:86-91.
  8. Jesus M, Silva T, Cagigal C, Martins V, Silva C. Dietary Patterns: A New Therapeutic Approach for Depression? Curr Pharm Biotechnol. 2019;20(2):123-129.
  9. Ross K, VanNortwick M, Dragone D. Innovative therapies for mood disorders: A case report. Explore (NY). 2020;S1550-8307(20)30117-8.
  10. Rucklidge JJ, Kaplan BJ. Broad-spectrum micronutrient formulas for the treatment of psychiatric symptoms: a systematic review. Expert Rev Neurother. 2013;13(1):49-73.
  11. Rucklidge J, Johnstone J, Harrison R, Boggis A. Micronutrients reduce stress and anxiety in adults with Attention-Deficit/Hyperactivity Disorder following a 7.1 earthquake. Psychiatry Res. 2011;189(2):281-287. doi:10.1016/j.psychres.2011.06.016
  12. Rucklidge JJ, Andridge R, Gorman B, Blampied N, Gordon H, Boggis A. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Hum Psychopharmacol. 2012;27(5):440-454.
  13. Rucklidge JJ, Blampied N, Gorman B, Gordon HA, Sole E. Psychological functioning 1 year after a brief intervention using micronutrients to treat stress and anxiety related to the 2011 Christchurch earthquakes: a naturalistic follow-up. Hum Psychopharmacol. 2014;29(3):230-243.
  14. Sole, E. J., Rucklidge, J. J., & Blampied, N. M. (2017). Anxiety and stress in children following an earthquake: Clinically beneficial effects of treatment with micronutrients. Journal of Child and Family Studies, 26(5), 1422–1431.
  15. Kaplan BJ, Rucklidge JJ, Romijn AR, Dolph M. A randomised trial of nutrient supplements to minimise psychological stress after a natural disaster. Psychiatry Res. 2015;228(3):373-379. doi:10.1016/j.psychres.2015.05.080
  16. Blampied NM, Mulder RT, Afzali MU, Bhattacharya O, Blampied MF, Rucklidge JJ. Disasters, policies and micronutrients: the intersect among ethics, evidence and effective action. N Z Med J. 2020;133(1508):8-11.
  17. Terock J, Hannemann A, Van der Auwera S, et al. Posttraumatic stress disorder is associated with reduced vitamin D levels and functional polymorphisms of the vitamin D binding-protein in a population-based sample. Prog Neuropsychopharmacol Biol Psychiatry. 2020;96:109760.
  18. Al-Daghri NM, Mohammed AK, Bukhari I, et al. Efficacy of vitamin D supplementation according to vitamin D-binding protein polymorphisms. Nutrition. 2019;63-64:148-154.
  19. Slow S, Florkowski CM, Chambers ST, et al. Effect of monthly vitamin D3 supplementation in healthy adults on adverse effects of earthquakes: randomised controlled trial. BMJ. 2014;349:g7260.
  20. Casseb GAS, Kaster MP, Rodrigues ALS. Potential Role of Vitamin D for the Management of Depression and Anxiety. CNS Drugs. 2019;33(7):619-637.
  21. Matsuoka Y, Nishi D, Hamazaki K. Serum levels of polyunsaturated fatty acids and the risk of posttraumatic stress disorder. Psychother Psychosom. 2013;82(6):408-410.
  22. Kalinić D, Borovac Štefanović L, Jerončić A, Mimica N, Dodig G, Delaš I. Eicosapentaenoic acid in serum lipids could be inversely correlated with severity of clinical symptomatology in Croatian war veterans with posttraumatic stress disorder. Croat Med J. 2014;55(1):27-37.
  23. Matsuoka YJ, Hamazaki K, Nishi D, Hamazaki T. Change in blood levels of eicosapentaenoic acid and posttraumatic stress symptom: A secondary analysis of data from a placebo-controlled trial of omega3 supplements. J Affect Disord. 2016;205:289-291.
  24. Matsumura K, Noguchi H, Nishi D, Hamazaki K, Hamazaki T, Matsuoka YJ. Effects of omega-3 polyunsaturated fatty acids on psychophysiological symptoms of post-traumatic stress disorder in accident survivors: A randomized, double-blind, placebo-controlled trial. J Affect Disord. 2017;224:27-31.
  25. Nishi D, Koido Y, Nakaya N, et al. Fish oil for attenuating posttraumatic stress symptoms among rescue workers after the great east Japan earthquake: a randomized controlled trial. Psychother Psychosom. 2012;81(5):315-317. doi:10.1159/000336811
  26. Guu TW, Mischoulon D, Sarris J, et al. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother Psychosom. 2019;88(5):263-273.
  27. Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(4):e457-e466.
  28. Duailibi MS, Cordeiro Q, Brietzke E, et al. N-acetylcysteine in the treatment of craving in substance use disorders: Systematic review and meta-analysis. Am J Addict. 2017;26(7):660-666.
  29. Back SE, McCauley JL, Korte KJ, et al. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders. J Clin Psychiatry. 2016;77(11):e1439-e1446.
  30. Cohen J, Wei Z, Phang J, Laprairie RB, Zhang Y. Cannabinoids as an Emerging Therapy for Posttraumatic Stress Disorder and Substance Use Disorders. J Clin Neurophysiol. 2020;37(1):28-34.
  31. Cohen J, Wei Z, Phang J, Laprairie RB, Zhang Y. Cannabinoids as an Emerging Therapy for Posttraumatic Stress Disorder and Substance Use Disorders. J Clin Neurophysiol. 2020;37(1):28-34.
  32. Shannon S, Opila-Lehman J. Effectiveness of Cannabidiol Oil for Pediatric Anxiety and Insomnia as Part of Posttraumatic Stress Disorder: A Case Report. Perm J. 2016;20(4):16-005. doi:10.7812/TPP/16-005
  33. Elms L, Shannon S, Hughes S, Lewis N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J Altern Complement Med. 2019;25(4):392-397. doi:10.1089/acm.2018.0437

Skin

Acne vulgaris, probiotics and the gut-brain-skin axis – back to the future? Bowe WP, Logan AC. Gut Pathog.2011 Jan 31;3(1):1. Free online at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038963.

The effect on the skin of emotional and nervous statestheoretical and practical consideration of a gastro-intestinal mechanism. Stokes J, Pillsbury D. Arch Derm Syphilol. 1930;22(6):962–993. doi:10.1001/archderm.1930.01440180008002.

RESEARCH

Hookworm Treatment for Relapsing Multiple Sclerosis. Radu Tanasescu et al. JAMA Neurology 2020; DOI: 10.1001/jamaneurol.2020.1118

Patient genetics is linked to chronic wound microbiome composition and healing. Craig D. Tipton et al. PLOS Pathogens, 2020; 16 (6): e1008511 DOI: 10.1371/journal.ppat.1008511

The Neurobiology of Social Distance, Danilo Bzdok, Robin I.M. Dunbar.

Trends in Cognitive Sciences 2020: https://doi.org/10.1016/j.tics.2020.05.016.

Vitamin K status, cardiovascular disease, and all-cause mortality: A participant-level meta-analysis of 3 US cohorts. Shea, MK et al.  Am J Clin Nutr 2020. https://doi.org/10.1093/ajcn/nqaa082

Daily listening to Mozart reduces seizures in individuals with epilepsy: A randomized control study. Marjan Rafiee et al. Epilepsia Open, 2020; 5 (2): 285 DOI: 10.1002/epi4.12400.

Copper(II)-binding equilibria in human blood. Kirsipuu, T., Zadorožnaja, A., Smirnova, J. et al. Sci Rep 2020, 10, 5686. https://doi.org/10.1038/s41598-020-62560-4.

A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Yuan Zhang et al.

PNAS, DOI: 10.1073/pnas.2000208117, 2020.

Chromatin Priming Renders T Cell Tolerance-Associated Genes Sensitive to Activation below the Signaling Threshold for Immune Response Genes. Sarah L. Bevington et al. Cell Reports 2020; 31 (10): 107748 DOI: 10.1016/j.celrep.2020.107748.

A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Michael P. O’Donnell et al. Nature, 2020; DOI: 10.1038/s41586-020-2395-5.

June 2020

WELCOME

“More is less and less is more? Breaking the cycle of polypharmacy with deprescribing”, by Dr Henry J. Woodford is Chair of the British Geriatric Society’s Medicine Optimisation SIG. January 21 2020: https://www.bgs.org.uk/blog/more-is-less-and-less-is-more-breaking-the-cycle-of-polypharmacy-with-deprescribing.  

 “Reflections on the COVID-19 Pandemic”, by Dr Jeff Bland, PhD: medium.com/@jeffreyblandphd/reflections-on-the-covid-19-pandemic-b78b3af65d42

NEWS

The Possible Role of Vitamin D in Suppressing Cytokine Storm and Associated Mortality in COVID-19 Patients. Ali Daneshkhah et al. medRxiv 2020, posted April 30. 2020: https://www.medrxiv.org/content/10.1101/2020.04.08.20058578v4.

Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. Michael F. Holick et al. The Journal of Clinical Endocrinology & Metabolism 2011, Volume 96, Issue 7, 1 July, 1911-30: https://doi.org/10.1210/jc.2011-0385.

Persistent organic pollutant exposure and coeliac disease: a pilot study. Abigail Gaylord et al. Environmental Research 2020; 109439.

DOI: 10.1016/j.envres.2020.109439.

Niacin Cures Systemic NAD Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metabolism 2020. DOI: 10.1016/j.cmet.2020.04.008.

C9orf72 suppresses systemic and neural inflammation induced by gut bacteria.  Nature 2020. DOI: 10.1038/s41586-020-2288-7.

In Search of Preventative Strategies: Novel Anti-Inflammatory High-CBD Cannabis Sativa Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues. Wang B et al. Preprints 2020, 2020040315. DOI: 10.20944/preprints202004.0315.v1. Pre-print manuscript, not peer-reviewed.

Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Qi Yan Ang et al. Cell 2020, May 20: DOI: https://doi.org/10.1016/j.cell.2020.04.027.

Association of social relationships with incident cardiovascular events and all-cause mortality. Gronewold J, Kropp R, Lehmann N et al. EAN Virtual Congress 2020. 

BEN BROWN

  1. Mizgerd JP. Lung infection–a public health priority. PLoS Med. 2006;3(2):e76.
  2. Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014;14(1):57‐69.
  3. Keshavarz M, Solaymani-Mohammadi F, Namdari H, Arjeini Y, Mousavi MJ, Rezaei F. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett. 2020;25:15. Published 2020 Mar 5. doi:10.1186/s11658-020-00211-2
  4. Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25(39-40):6852‐6862. doi:10.1016/j.vaccine.2007.07.027
  5. Foll M, Poh YP, Renzette N, et al. Influenza virus drug resistance: a time-sampled population genetics perspective. PLoS Genet. 2014;10(2):e1004185. Published 2014 Feb 27. doi:10.1371/journal.pgen.1004185
  6. Gu L, Deng H, Ren Z, et al. Dynamic Changes in the Microbiome and Mucosal Immune Microenvironment of the Lower Respiratory Tract by Influenza Virus Infection. Front Microbiol. 2019;10:2491. Published 2019 Nov 1. doi:10.3389/fmicb.2019.02491
  7. Bland J. Reflections on the COVID-19 Pandemic. Medium. April 12, 2020.
  8. Beck MA, Handy J, Levander OA. Host nutritional status: the neglected virulence factor. Trends Microbiol. 2004;12(9):417‐423. doi:10.1016/j.tim.2004.07.007
  9. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China [published online ahead of print, 2020 Apr 28]. Am J Clin Nutr. 2020;nqaa095. doi:10.1093/ajcn/nqaa095
  10. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):E236.
  11. Davison G, Kehaya C, Wyn Jones A. Nutritional and Physical Activity Interventions to Improve Immunity. Am J Lifestyle Med. 2014;10(3):152–169.
  12. Calatayud FM, Calatayud B, Gallego JG, Gonzalez-Martin C, Alguacil LF. Effects of Mediterranean Diet in Patients with Recurring Colds and Frequent Complications. Allergol Immunopathol. 2017 Sept-Oct (5):217–24.
  13. van der Gaag E, Brandsema R, Nobbenhuis R, van der Palen J, Hummel T. Influence of Dietary Advice Including Green Vegetables, Beef, and Whole Dairy Products on Recurrent Upper Respiratory Tract Infections in Children: A Randomized Controlled Trial. Nutrients. 2020;12(1):272. Published 2020 Jan 20. doi:10.3390/nu12010272
  14. Fondell E, Christensen SE, Bälter O, Bälter K. Adherence to the Nordic Nutrition Recommendations as a measure of a healthy diet and upper respiratory tract infection. Public Health Nutr. 2011;14(5):860‐869. doi:10.1017/S136898001000265X
  15. Hunter DC, Skinner MA, Wolber FM, et al. Consumption of gold kiwifruit reduces severity and duration of selected upper respiratory tract infection symptoms and increases plasma vitamin C concentration in healthy older adults. Br J Nutr. 2012;108(7):1235–1245. doi:10.1017/S0007114511006659
  16. Jeong SC, Koyyalamudi SR, Pang G. Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition. 2012;28(5):527–531. doi:10.1016/j.nut.2011.08.005
  17. Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (Shiitake) Mushrooms Daily Improves Human Immunity: A Randomized Dietary Intervention in Healthy Young Adults. J Am Coll Nutr. 2015;34(6):478–487. doi:10.1080/07315724.2014.950391
  18. Stephen AI, Avenell A. A systematic review of multivitamin and multimineral supplementation for infection. J Hum Nutr Diet. 2006;19(3):179‐190. doi:10.1111/j.1365-277X.2006.00694.x
  19. Barringer TA, Kirk JK, Santaniello AC, Foley KL, Michielutte R. Effect of a multivitamin and mineral supplement on infection and quality of life. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2003;138(5):365‐371. doi:10.7326/0003-4819-138-5-200303040-00005
  20. Maier HE, Lopez R, Sanchez N, et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults. J Infect Dis. 2018;218(9):1378‐1382.
  21. Maffetone PB, Laursen PB. The Perfect Storm: Coronavirus (Covid-19) Pandemic Meets Overfat Pandemic. Front Public Health. 2020;8:135. Published 2020 Apr 23. doi:10.3389/fpubh.2020.00135
  22. Marshall RJ, Armart P, Hulme KD, et al. Glycemic Variability in Diabetes Increases the Severity of Influenza. mBio. 2020;11(2):e02841-19. Published 2020 Mar 24. doi:10.1128/mBio.02841-19
  23. Aguilera ER, Lenz LL. Inflammation as a Modulator of Host Susceptibility to Pulmonary Influenza, Pneumococcal, and Co-Infections. Front Immunol. 2020;11:105.
  24. Edmunds WJ, Medley GF, O’Callaghan CJ. Social ties and susceptibility to the common cold. JAMA. 1997;278(15):1231–1232. doi:10.1001/jama.278.15.1231b
  25. Cohen S, Tyrrell DA, Smith AP. Psychological stress and susceptibility to the common cold. N Engl J Med. 1991;325(9):606–612.
  26. Cohen S, Doyle WJ, Turner RB, Alper CM, Skoner DP. Emotional style and susceptibility to the common cold. Psychosom Med. 2003;65(4):652–657.
  27. Nieman DC, Henson DA, Austin MD, Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45(12):987–992. doi:10.1136/bjsm.2010.077875

 

Stress

Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk

Sheldon Cohen et al. PNAS 2012, April 2: https://doi.org/10.1073/pnas.1118355109.  

PROBIOTICS

Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. Wanglong Gou et al. Pre-print: not peer-reviewed. medRxiv 2020.04.22.20076091; doi: https://doi.org/10.1101/2020.04.22.20076091.

Gut Microbes Could Predict How Seriously Ill A Covid-19 Patient Might Get, Preliminary Study Suggests. By Kashmira Gander. April 28, 2020. https://www.newsweek.com/gut-microbes-could-predict-how-seriously-ill-covid-19-patient-might-get-preliminary-study-suggests-1500568

Genetic and metabolic links between the murine microbiome and memory. Jian-Hua Mao et al. Microbiome 2020, 8 (1) DOI: 10.1186/s40168-020-00817-w.

Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Schaupp L et al. Cell 2020 May 6. doi: https://doi.org/10.1016/j.cell.2020.04.022

Prof Glenn Gibson:

Can probiotics and prebiotics go viral? Prof Glenn Gibson.

isappscience.org/can-probiotics-and-prebiotics-go-viral.

March 18, 2020.


Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial.
De Vrese M et al. Clin Nutr 2005 Aug;24(4):481-91. Epub 2005 Apr 21.

Probiotics for Preventing Acute Upper Respiratory Tract Infections. Qiukui Hao et al. Cochrane Database Syst Rev 2015, Feb 3;(2):CD006895,  doi: 10.1002/14651858.CD006895.pub3.

2019 Novel coronavirus infection and gastrointestinal tract. Qin Yan Gao et al. J Digestive Diseases 2020, First published:25 February 2020.  

https://doi.org/10.1111/1751-2980.12851.

“Can bacteria help humans fight COVID-19?” Gregor Reid,

Professor, Western University and Lawson Institute. Nature Research Microbiology March 17, 2020: https://naturemicrobiologycommunity.nature.com/users/323417-gregor-reid/posts/62121-can-bacteria-help-humans-fight-coronavirus.

“Coronavirus: Australian scientists map how immune system fights virus”.

March 17 2020: https://www.bbc.com/news/world-australia-51921403.

HEART

Effects of blackcurrant extract on arterial functions in older adults: A randomized, double blind, placebo-controlled, crossover trial. Okamoto T et al. Clinical and Experimental Hypertension 2020, May 12: DOI: 10.1080/10641963.2020.1764015.

Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. Cook MD et al. Journal of Nutrition in Gerontology and Geriatrics 2020, online Jan 6. DOI:

10.1080/21551197.2019.1707740.

Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. Adriaan A Voors et al. European Heart Journal, 2020; DOI: 10.1093/eurheartj/ehaa373.

Plasma angiotensin-converting enzyme 2: novel biomarker in heart failure with implications for COVID-19. Marc A Pfeffer, Gavin Y Oudit. European Heart Journal, 2020; DOI: 10.1093/eurheartj/ehaa414.

Euro Heart J special issue: https://academic.oup.com/eurheartj/issue/41/19).

Sugar‐Sweetened Beverage Intake and Cardiovascular Disease Risk in the California Teachers Study. Lorena S. Pacheco et al. Journal of the American Heart Association 2020: DOI: 10.1161/JAHA.119.014883.

Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction. Gobinath Shanmugam et al. Antioxidants & Redox Signaling 2020:  DOI: 10.1089/ars.2019.7808.

The Mediterranean diet, plasma metabolome, and cardiovascular disease risk Liming Liang et al.  European Heart Journal 2020. DOI: 10.1093/eurheartj/ehaa209.

COVID

“Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials”. Carine Dion et al. Nutr Metab (Lond) 2016; 13: 28. DOI: 10.1186/s12986-016-0086-x.

“Proprietary arabinogalactan extract increases antibody response to the pneumonia vaccine: a randomized, double-blind, placebo-controlled, pilot study in healthy volunteers”. Udani JK et al. Nutr J. 2010, Aug 26;9:32. DOI: 10.1186/1475-2891-9-32.

Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Ryu D et al. Nat Med. 2016;22(8):879‐888. DOI:10.1038/nm.4132

RESEARCH

Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Maira Di Tano et al. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-16243-3.

Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell FunctionCell Metabolism, 2020; 31 (5): 920 DOI: 10.1016/j.cmet.2020.03.004.

Effect of yoga as add-on therapy in migraine (CONTAIN)Neurology, 2020; 10.1212/WNL.0000000000009473 DOI: 10.1212/WNL.0000000000009473

Effect of Acupuncture for Postprandial Distress Syndrome: a Randomized Clinical Trial. Annals of Internal Medicine 2020, May 12. https://doi.org/10.7326/M19-2880.

Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in miceScience, 2020; 368 (6491): 620 DOI: 10.1126/science.aaz8899.

Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring CohortThe American Journal of Clinical Nutrition, 2020; DOI: 10.1093/ajcn/nqaa079.

Randomised double-blind placebo-controlled intervention study on the nutritional efficacy of a food for special medical purposes (FSMP) and a dietary supplement in reducing the symptoms of veisalgia. Bernhard Lieb, Patrick Schmitt.  BMJ Nutrition, Prevention & Health 2020. DOI: http://dx.doi.org/10.1136/bmjnph-2019-000042.

May 2020
WELCOME

Quote of the Month

“On Covid-19, a Respected Science Watchdog Raises Eyebrows”, by Michael Schulson, April 24: https://undark.org/2020/04/24/john-ioannidis-covid-19-death-rate-critics.
COVID-19 Antibody Seroprevalence in Santa Clara County, California.

Eran Bendavid et al. medRxiv 2020.04.14.20062463 (pre-print). DOI: https://doi.org/10.1101/2020.04.14.20062463

Also see report at https://www.sciencemag.org/news/2020/04/antibody-surveys-suggesting-vast-undercount-coronavirus-infections-may-be-unreliable.

Self‐reported olfactory loss associates with outpatient clinical course in Covid‐19.

Carol H. Yan et al. Allergy & Rhinology 2020, April 24:

https://doi.org/10.1002/alr.22592

NEWS

Digestion of Intact Gluten Proteins by Bifidobacterium Species: Reduction of Cytotoxicity and Proinflammatory Responses. Natália Ellen Castilho de Almeida et al.

Journal of Agricultural and Food Chemistry 2020, 68, 15, 4485-92. March 20, 2020DOI: 10.1021/acs.jafc.0c01421.

COVID-19, pneumonia & inflammasomes – the melatonin connection. Doris Loh. March 14, 2020. https://www.evolutamente.it/covid-19-pneumonia-inflammasomes-the-melatonin-connection.

Vitamin D on Prevention and Treatment of COVID-19 (COVITD-19): https://clinicaltrials.gov/ct2/show/NCT04334005.

Vitamin D deficiency in Spain. Reality or myth? Navarro Valverde C, Quesada Gómez JM. Rev Osteoporos Metab Miner 2014; 6 (1) suplemento: 5-10.

Zinc in Infection and Inflammation. Gammoh NZ, Rink L. Nutrients. 2017 Jun 17;9(6). pii: E624. doi: 10.3390/nu9060624.

Is Quercetin a Safer Alternative to Hydroxychloroquine? https://articles.mercola.com/sites/articles/archive/2020/04/27/is-quercetin-safer-alternative-to-hydroxychloroquine.aspx?

“Absolutely not”: Press Association, April 3, 2020

New analysis recommends less reliance on ventilators to treat coronavirus patients. Sharon Begley. https://www.statnews.com/2020/04/21/coronavirus-analysis-recommends-less-reliance-on-ventilators.

Respiratory Support in Novel Coronavirus Disease (COVID-19) Patients, with a Focus on Resource-Limited Settings. Arjen M. Dondorp et al.  American Journal of Tropical Medicine and Hygiene 2020.  Available online: 21 April. DOI: https://doi.org/10.4269/ajtmh.20-0283

Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status.  Rebekah E. T. Moore et al. Metallomics, 2019,11, 1506-1517. https://doi.org/10.1039/C9MT00160C.

Phylogenetic network analysis of SARS-CoV-2 genomes. Peter Forster et al. PNAS  April 8, 2020. https://doi.org/10.1073/pnas.2004999117.

Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. David Welch et al. Scientific Reports 2018, volume 8, Article number: 2752.

Ultraviolet Irradiation of Blood: “The Cure That Time Forgot”? Michael R. Hamblin.

Adv Exp Med Biol. 2017; 996: 295–309. doi: 10.1007/978-3-319-56017-5_25.

PMID: 29124710

Pre-frailty factors in community-dwelling 40–75 year olds: opportunities for successful ageing. SJ Gordon, N Baker, M Kidd, A Maeder and KA Grimmer. BMC Geriatrics 2020, April.  DOI: 10.1186/s12877-020-1490-7. https://rdcu.be/b2D5L

Human Herpesvirus-6 Reactivation, Mitochondrial Fragmentation, and the Coordination of Antiviral and Metabolic Phenotypes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Philipp Schreiner et al.

ImmunoHorizons 2020, 4 (4) 201-215. DOI: 10.4049/immunohorizons.2000006.

Free online at: https://www.immunohorizons.org/content/4/4/201.

BEN BROWN – COVID-19 and VITAMIN D 

  1. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1):10.1002/rmv.1909. doi:10.1002/rmv.1909
  2. Jolliffe DA, Griffiths CJ, Martineau AR. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J Steroid Biochem Mol Biol. 2013;136:321–329. doi:10.1016/j.jsbmb.2012.11.017
  3. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583
  4. Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States. Dermatoendocrinol. 2009;1(4):215–219. doi:10.4161/derm.1.4.9063
  5. Linday LA, Umhau JC, Shindledecker RD, Dolitsky JN, Holick MF. Cod liver oil, the ratio of vitamins A and D, frequent respiratory tract infections, and vitamin D deficiency in young children in the United States. Ann Otol Rhinol Laryngol. 2010;119(1):64–70.
  6. Rhodes JM, Subramanian S, Laird E, Anne Kenny R. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North – supports vitamin D as a factor determining severity [published online ahead of print, 2020 Apr 20]. Aliment Pharmacol Ther. 2020;10.1111/apt.15777.
  7. Panarese A, Shahini E. Letter: Covid-19, and vitamin D [published online ahead of print, 2020 Apr 12]. Aliment Pharmacol Ther. 2020;10.1111/apt.15752.
  8. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617–624. doi:10.1136/thoraxjnl-2014-206680
  9. Zhou YF, Luo BA, Qin LL. The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine (Baltimore). 2019;98(38):e17252.
  10. Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017;39(5):541–550. doi:10.1007/s00281-017-0636-y
  11. Lipworth B, Chan R, Lipworth S, RuiWen Kuo C. Weathering the cytokine storm in susceptible patients with severe SARS-CoV-2 infection [published online ahead of print, 2020 Apr 17]. J Allergy Clin Immunol Pract. 2020;S2213-2198(20)30365-2. doi:10.1016/j.jaip.2020.04.014
  12. Tsujino I, Ushikoshi-Nakayama R, Yamazaki T, Matsumoto N, Saito I. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J Clin Biochem Nutr. 2019;65(3):245–251. doi:10.3164/jcbn.19-48
  13. Huang F, Zhang C, Liu Q, et al. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog. 2020;16(3):e1008341. Published 2020 Mar 16. doi:10.1371/journal.ppat.1008341
  14. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide‑induced acute lung injury via regulation of the renin‑angiotensin system. Mol Med Rep. 2017;16(5):7432–7438. doi:10.3892/mmr.2017.7546
  15. Kong J, Zhu X, Shi Y, et al. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol. 2013;27(12):2116–2125.
  16. Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? [published online ahead of print, 2020 Apr 19]. FASEB J. 2020;10.1096/fj.202000782.
  17. Garami AR. Preventing a covid-19 pandemic – Is there a magic bullet to save COVID-19 patients? We can give it a try! BMJ 2020;368:m810
  18. Jakovac H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention?. Am J Physiol Endocrinol Metab. 2020;318(5):E589.
  19. Jolliffe DA, Greiller CL, Mein CA, Hoti M, Bakhsoliani E, Telcian AG, Simpson A, Barnes NC, Curtin JA, Custovic A, Johnston SL, Griffiths CJ, Walton RT, Martineau AR. Vitamin D receptor genotype influences risk of upper respiratory infection. Br J Nutr 120: 891–900, 2018
  20. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):E988. Published 2020 Apr 2. doi:10.3390/nu12040988
  21. Grant, WB. Preventing a covid-19 pandemic: Can vitamin D supplementation reduce the spread of COVID-19? Try first with health care workers and first responders. BMJ. Accesses online 21.04.2020 at: https://www.bmj.com/content/368/bmj.m810/rr-42
  22. Caccialanza R, Laviano A, Lobascio F, et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol [published online ahead of print, 2020 Apr 3]. Nutrition. 2020;110835. doi:10.1016/j.nut.2020.110835
  23. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19. Ir Med J. 2020;113(4):58. Published 2020 Apr 3.
  24. Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets [published online ahead of print, 2020 Apr 10]. Clin Rheumatol. 2020;10.1007/s10067-020-05073-9. doi:10.1007/s10067-020-05073-9
  25. Nutrition Advice Team, Public Health England. Stakeholder Communication. April 2020.
  26. NHS. Vitamin D. Accesses online 21.04.2020 at: https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-d/
  27. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline [published correction appears in J Clin Endocrinol Metab. 2011 Dec;96(12):3908]. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi:10.1210/jc.2011-0385
  28. Clinical Trials. Vitamin D on Prevention and Treatment of COVID-19 (COVITD-19). Access on 22.04.2020 at: https://clinicaltrials.gov/ct2/show/NCT04334005

“Treat vitamin D deficiency to prevent deadly lung attacks”:

Vitamin D to prevent exacerbations of COPD: systematic review and meta-analysis of individual participant data from randomised controlled trials. David A. Jolliffe et al. Thorax 2019, 74: 337-345.DOI: 10.1136/thoraxjnl-2018-212092

SUPERFOODS

Beta-glucan

  1. Buddle BM, et al, Vet Microbiol 16(1): 67-76, Jan 1988.
  2. Vetvicka V, Vetvickova J, Ann Transl Med, 3(2):22 PMID 25738142, Feb 2015.
  3. Minerva Medical; 100(3):237-245; Pub Med 19571787;  Jun 2009.
  4. Jung K, Y Ha, et al, Clinical Trial, J Vet Med & B Infect Dis Vet Public Health 51(2) 72-6, PMID: 15030604, Mar 2004.
  5. Bohn JA, BMiller JN, Carbohydrate Polymers, Vol 28, Issue 1, 3-14, 1995.
  6. Jamas S, Easson D, Ostroff G: U.S. Patent Application 20020032170, March 14, 2002.
  7. Hunter K, Gault R, Jordan F; Department of Microbiology, University of Nevada School of Medicine, Jan 2001.
  8. Browder IW., Williams D., Pretus H., et al. Ann. Surg 1990, Vol 211: 605-613.
  9. Czop, Joyce K., Pathology and Immunopathology Research; 5:286-296, 1986.
  10. DiLuzio N.R.,Trends in Pharmacol. SCI., 4:344-347, 1983.

Biobran

  1. Acute Oral Toxicity Test
    Test: LD50
    Lab: AMA Laboratories, New York, USA (Ref: WP96-BERN1/LD504881.DP). (Animal Experiment involving rats to determine any potential toxicity of MGN-3. Above material can be classified as non-toxic according to the reference. LD50 > 36.0g / kg.)
  2. Experience with Administration of Biobran in Patients with Chronic Rheumatism
    Author: Kenichi Ichihashi (Ichihashi Clinic)
    Journal: Clinical Pharmacology and Therapy Vol. 14/No.4
  3. Anti-HIV activity in vitro of MGN-3, an activated arabinoxylan from rice bran
    Author: M. Ghoneum
    Journal: Biochemical and Biophysical Research Communications Journal 243, 25-29 (1998), Article No. RC978047. (This is a detailed write up of the abstract Ghoneum presented in July 1996 at the International Conference on AIDS in Vancouver.)
  4. Modified Rice Bran Improves Glucose Tolerance in NIDDM Adult Rats Given Streptozotocin as Neonates
    Authors: Ohara, K. Onai and H. Maeda, 2002
  5. Hyrolyzed rice bran reduces the aggravation of protein metabolism in streptozotocin-induced diabetic rats
    Presenters: Kitamura N., Ohara I., (Aichi Gakusen University) and Maeda H. (Daiwa Pharmaceutical)
    Event: 45th Annual Meeting of the American College of Nutrition in California. Kitamura 2004
  6. Therapeutic Effects of Biobran, Modified Arabinoxylan Rice Bran, in Improving Symptoms of Diarrhea Predominant or Mixed Type Irritable Bowel Syndrome: A Pilot, Randomized Controlled Study
    Authors: Takeshi Kamiya, Michiko Shikano, Mamoru Tanaka, Keiji Ozeki, Masahide Ebi, Takahito Katano, Shingo Hamano, Hirotaka Nishiwaki, Hironobu Tsukamoto, Tsutomu Mizoshita, Yoshinori Mori, Eiji Kubota, Satoshi Tanida, Hiromi Kataoka, Noriaki Okuda, and Takashi Joh
    Journal: Evidence-Based Complementary and Alternative Medicine / Hindawi Publishing Corporation Volume 2014, Article ID 828137, 6 pages
  7. Evaluation of the effects of asthma prevention and symptom reduction by enzymatically modified rice-bran foods in asthmatic model mice
    Presenters: Kanbayashi H. and Endo Y., Department of Pathological Molecular Medicine, McMaster University
    Event: 52nd Conference of Japanese Society of Allergology, Jokohama, Japan
  8. Protective effect of low molecular fraction of MGN-3, a modified arabinoxylan from rice bran, on acute liver injury by inhibition of NF-kB and JNK/MAPK expression
    Presenters: Surina Zheng, Shunsuke Sugita, Shizuka Hirai, Yukari Egashira
    Event: International Immunopharmacology 14 (2012) 764–769
  9. Biobran-augmented maturation of human monocyte-derived dendritic cells
    Authors: D. Cholujova, J. Jakugikova, J. Sedlak
    Journal: Neoplasma 56, 2, 2009.
  10. Activation of Human Monocyte-Derived Dendritic Cells In Vitro by the Biological Response Modifier Arabinoxylan Rice Bran (MGN-3/Biobran)
    Authors: M. Ghoneum and S. Agrawal
    Journal: Journal of Immunopathology and Pharmacology, Vol.24, no.4, 941-948 (2011)
  11. Enhancement of Natural Killer Cell Activity of Aged Mice by Modified arabinoxylan rice bran (MGN3/Biobran)
    Authors: Ghoneum, Abedi
    Journal: J Pharm Pharmacol 2004;56:1581-8.
  12. Evalutation of flow cytometry-based assay for natural killer cell activity in clinical settings
    Authors: Valiathan, Lewis, Melillo, Leonard, Alis, Asthana
    Journal: Scandinavian Journal of Immunology 2011; 1365-3083
  13. Arabinoxylan rice bran (MGN3/Biobran) enhances natural killer cell-mediated cytotoxicity against neuroblastoma in vitro and in vivo.
    Authors: Perez-Martinez, Valentin, Fernandez, Hernandez-Jimenez, Lopez-Collezo, Zerbes, Schworer, Nunez, Martin, Sallis, Diaz, Handgretinger and Pfeiffer.
    Journal: Cytotherapy, 2015, 0:1-2.
  14. An Open-label, randomized clinical trial to assess the immunomodulatory activity of a novel oligosaccharide compound in healthy adult
    Authors: K. H. Ali, A. B. Melillo, S. M. Leonard, D. Asthana, Judi M. Woolger, A. H. Wolfson, H. R. McDaniel, J. E. Lewis
    Journal: Functional Foods in Health and Disease 2012, 2(7): 265-279
  15. Biobran/MGN-3, an arabinoxylan rice bran, enhances NK cell activity in geriatric subjects: A randomized, double-blind, placebo-controlled clinical trial. Ahmed F. Elsaid, Magda Shaheen and Mamdooh Ghoneum. Exp Ther Med. 2018 Mar;15(3):2313-2320. doi: 10.3892/etm.2018.5713. Epub 2018 Jan 8.
  16. Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner.  Zhao Z, Cheng W, Qu W, Wang K. Biomed Pharmacother. 2020 Apr;124:109855. doi: 10.1016/j.biopha.2020.109855. Epub 2020 Jan 24.

Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Albino Carrizzo et al. Hypertension 2019;73:449–57. https://doi.org/10.1161/HYPERTENSIONAHA.118.11801

Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Mark F. McCarty, James J. DiNicolantonio, Progress in Cardiovascular Diseases 2020, https://doi.org/10.1016/j.pcad.2020.02.007

An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. McCarty MF, DiNicolantonio JJ. Age (Dordr) 2015, Oct;37(5):96. doi: 10.1007/s11357-015-9823-8. Epub 2015 Sep 11.

PATRICK HOLFORD – ARDS

1 C Wu et al, ‘Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China.’ JAMA Internal Medicine, (2020), published online.  [https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2763184]; see also Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster https://www.medrxiv.org/content/10.1101/2020.03.05.20030502v1.full.pdf

  1. https://chemrxiv.org/articles/COVID-19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173
  2. Read Doris Loh’s article at https://www.evolutamente.it/covid-19-ards-cell-free-hemoglobin-the-ascorbic-acid-connection
  3. P Lu et al, ‘Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase.’ Proceedings of the National Academy of Sciences of the USA, (2014), 111(5):1813-8. [https://www.pnas.org/content/111/5/1813.short]
  4. Hospital treatment of serious and critical COVID-19 infection with high-dose Vitamin C | Cheng Integrative Health Center Blog: http://www.drwlc.com/blog/2020/03/18/hospital-treatment-of-serious-and-critical-covid-19-infection-with-high-dose-vitamin-c/?fbclid=IwAR3qzrI-tjYloYMlqGQRWUfoionQPWNYjFrRyv-GQ18Rg3GSG9Sn-Z7Ln58.
  5. https://www.clinicaltrials.gov/ct2/show/NCT04323514.
  6. https://nypost.com/2020/03/24/new-york-hospitals-treating-coronavirus-patients-with-vitamin-c.

.

  1. https://www.medicomundial.com/news/3-us-hospitals-use-ivs-vitamin-c-other-low-cost-readily-available-drugs. #
  2. https://jintensivecare.biomedcentral.com/track/pdf/10.1186/s40560-020-0432-y.
  3. O Fonorow and S Hickey, ‘Unexpected Early Response in Oral Bioavailability of Ascorbic Acid’. Townsend Letter, (2020), prior to print publication. [https://www.townsendletter.com/article/online-unexpected-oral-vitamin-c-response/]
  4. K Takenouchi and K Aso, ‘The Relation Between Melanin Formation And Ascorbic Acid.’ The Journal of Vitaminology, (1964), 10:123-34. [https://www.jstage.jst.go.jp/article/jnsv1954/10/2/10_2_123/_article/-char/ja/]

12 Read more on the cytokine storm here https://www.newscientist.com/term/cytokine-storm/#ixzz6Hfzd6fsv.

  1. J Zhang and J An, ‘Cytokines, Inflammation and Pain.’ International Anesthesiology Clinics, (2007), 45(2):27-37. [https://journals.lww.com/anesthesiaclinics/Citation/2007/04520/Cytokines,_Inflammation,_and_Pain.4.aspx]
  2. https://www.sciencealert.com/ibuprofen-and-covid-19-symptoms-here-s-what-you-need-to-know.
  3. https://www.theguardian.com/world/2020/mar/16/health-experts-criticise-nhs-advice-to-take-ibuprofen-for-covid-19

16. Little et al, Ibuprofen, paracetamol, and steam for patients with respiratory tract infections in primary care: pragmatic randomised factorial trial. British Medical Journal, (2013), 347:f6041. [https://www.bmj.com/content/347/bmj.f6041.full]

  1. Basille et al, ‘Non-steroidal Anti-inflammatory Drugs may Worsen the Course of Community-Acquired Pneumonia: A Cohort Study.’ Lung, (2017), 195(2):201-8. [https://link.springer.com/article/10.1007/s00408-016-9973-1]
  2. Li et al, ‘A meta-analysis of randomized controlled trials: Efficacy of selenium treatment for sepsis.’ Medicine (Baltimore), (2019), 98(9):e14733. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831114/]
  3. A Mahmoodpoo et al, ‘Antioxidant reserve of the lungs and ventilator-associated pneumonia: A clinical trial of high dose selenium in critically ill patients.’ Journal of Critical Care, (2018), 44:357-62. [https://www.sciencedirect.com/science/article/abs/pii/S0883944117315873],
  4. See http://2yuan.xjtu.edu.cn/Html/News/Articles/21774.html This p. is translatable at https://translate.google.com
  5. Virus pneumonia and its treatment with vitamin C Klemmer FR. South Med Surg.1948 Feb;110(2):36-8.
  6. H Hemilä and P Louhiala, Review of Vitamin C for preventing and treating pneumonia. Cochrane Database of Systematic Reviews, (2013), 8:CD005532. [https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005532.pub3/abstract].
  7. H Hemilä, Vitamin C and infections. Nutrients 2017, 9(4):339. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409678.
  8. W Kim et al, ‘Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study.’ Journal of Critical Care, (2018), 47:211-8. https://www.sciencedirect.com/science/article/pii/S0883944118307780.
  9. E Smith et al, High-Dose Vitamin D3 administration is associated with increases in hemoglobin concentrations in mechanically ventilated critically ill adults: A Pilot Double-Blind, Randomized, Placebo-Controlled Trial. Journal of Parenteral and Enteral Nutrition, (2018), 42:87-94. https://onlinelibrary.wiley.com/doi/abs/10.1177/0148607116678197.
  10. J Han Et al, High Dose Vitamin D Administration in Ventilated

Intensive Care Unit Patients: A Pilot Double Blind Randomized Controlled Trial. Journal of Clinical & Translational Endocrinology, (2016), 4:59-65. https://www.sciencedirect.com/science/article/pii/S2214623716300084.

  1. Hemilä, ‘Vitamin E administration may decrease the incidence of pneumonia in elderly males.’ Clinical Interventions in Aging, (2016), 11:1379-85. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055121/]

 

GILIAN CROWTHER – MITOCHONDRIA

  1. https://www.sciencedirect.com/science/article/pii/S1567724913002390
  2. https://www.ncbi.nlm.nih.gov/pubmed/22700427
  3. https://www.omf.ngo/2016/09/09/updated-metabolic-features-of-chronic-fatigue-syndrome-q-a-with-robert-naviaux-md/
  4. https://www.pnas.org/content/113/37/E5472
  5. https://www.ncbi.nlm.nih.gov/pubmed/30099222
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783224/
  7. https://www.thecanary.co/global/world-analysis/2020/03/15/the-other-potential-coronavirus-catastrophe-no-one-is-talking-about/

RESEARCH UPDATE

Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Gregory D. Poore et al. Nature 2020; DOI: 10.1038/s41586-020-2095-1.

Cécilia Samieri et al. Using network science tools to identify novel diet patterns in prodromal dementiaNeurology 2020; 10.1212/WNL.0000000000009399 DOI: 10.1212/WNL.0000000000009399.

Impairment of Glycolysis-Derived l-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer’s Disease. Juliette Le Douce et al. Cell Metabolism, 2020; 31 (3): 503 DOI: 10.1016/j.cmet.2020.02.004.

The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. Nadya M. Morrow, Amy C. Burke, Joshua P. Samsoondar, Kyle E. Seigel, Andrew Wang, Dawn E. Telford, Brian G. Sutherland, Conor O’Dwyer, Gregory R. Steinberg, Morgan D. Fullerton, Murray W. Huff. Journal of Lipid Research, 2020; 61 (3): 387 DOI: 10.1194/jlr.RA119000542.

Dietary prebiotics alter novel microbial dependent fecal metabolites that improve sleep. Robert S. Thompson, Fernando Vargas, Pieter C. Dorrestein, Maciej Chichlowski, Brian M. Berg, Monika Fleshner. Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-60679-y

April 2020

NEWS

 

Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production.

Sencio V et al. Cell Rep. 2020 Mar 3;30(9):2934-2947.e6. doi: 10.1016/j.celrep.2020.02.013.

Nutritional deficiencies in heart disease
1. Beattie J, et al. Iron deficiency in 78 805 people admitted with heart failure across England: a retrospective cohort study openheart. 2020;7:e001153
2. Data on file: Hospital Episode Statistic Data 2015/2016 (accessed under a commercial re-use licence via Harvey Walsh Ltd.)
3. National Institute for Health and Care Excellence. Chronic heart failure in adults: diagnosis and management. Available at: https://www.nice.org.uk/guidance/ng106. Accessed September 2019.
4. McDonagh T and Macdougall I C. Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral? Eur J Heart Fail. 2015;17(3):248-262.
5. The King’s Fund. 2019. Trusts in deficit. Available at: https://www.kingsfund.org.uk/projects/nhs-in-a-nutshell/trusts-deficit. Accessed September 2019.
6. The King’s Fund. 2018. How is the NHS performing? June 2018 quarterly monitoring report. Available at: https://www.kingsfund.org.uk/publications/how-nhs-performing-june-2018. Accessed September 2019.
7. NHS England. 2019. Annual Report and Accounts 2018/19. Available at: https://www.england.nhs.uk/wp-content/uploads/2019/07/Annual-Report-Full-201819.pdf. Accessed September 2019.
8. The King’s Fund. 2012. Emergency hospital admissions for ambulatory care-sensitive conditions: identifying the potential for reductions. Available at: https://www.kingsfund.org.uk/sites/default/files/field/field_publication_file/data-briefing-emergency-hospital-admissions-for-ambulatory-care-sensitive-conditions-apr-2012.pdf. Accessed September 2019.
9. Ponikowski P, et al. European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37(27):2129-2200. doi: 10.1093/eurheartj/ehw128.
10. Scottish Intercollegiate Guidelines Network. 2016. Management of chronic heart failure. A national clinical guideline. Available at: http://www.sign.ac.uk/assets/sign147.pdf. Accessed September 2019.
11. Yancy CW, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776-803. doi.org/10.1016/j.jacc.2017.04.025.
12. Abbaspour N, Hurrell R and Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-174.
13. Jankowska E A, et al. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J. 2013;34:816-829. doi: 10.1093/eurheartj/ehs224.
14. Ponikowski P, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2014;36(11):657-668. doi:10.1093/eurheartj/ehu385.

Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: evidence from a large population based cohort study. Li Zhi-Hao, Zhong Wen-Fang, Liu Simin, Kraus Virginia Byers, Zhang Yu-Jie, Gao Xiang et alBMJ 2020; 368 :m456.

Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19, James H Diaz. Journal of Travel Medicine, taaa041, https://doi.org/10.1093/jtm/taaa041.

NUTRIENT-DEPENDENT – Ben Brown

  1. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–664.
  2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423.
  3. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.
  4. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–192.
  5. Quammen D. We Made the Coronavirus Epidemic. New York Times. Jan. 28, 2020.
  6. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know [published online ahead of print, 2020 Mar 11]. Int J Infect Dis. 2020;S1201-9712(20)30123-5.
  7. Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths [published online ahead of print, 2020 Mar 4]. J Microbiol Immunol Infect. 2020;S1684-1182(20)30040-2.
  8. WHO. Coronavirus disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [accessed 25th March 2020].
  9. Mizgerd JP. Acute lower respiratory tract infection. N Engl J Med. 2008;358(7):716–727. doi:10.1056/NEJMra074111
  10. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):236.
  11. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. Published 2018 Oct 17. doi:10.3390/nu10101531
  12. Childs CE, Calder PC, Miles EA. Diet and Immune Function. Nutrients. 2019;11(8):1933. Published 2019 Aug 16. doi:10.3390/nu11081933
  13. Alpert, P. The role of vitamins and minerals on the immune system. Home Health Care Manag. Pract. 2017, 29,199–202.
  14. Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339. Published 2017 Mar 29. doi:10.3390/nu9040339
  15. ClinicalTrials.gov Vitamin C Infusion for the Treatment of Severe 2019-nCoV Infected Pneumonia . ClinicalTrials.gov Identifier: NCT04264533 [accessed 25th March 2020].
  16. https://nypost.com/2020/03/24/new-york-hospitals-treating-coronavirus-patients-with-vitamin-c/
  17. Cheng R. Successful High-Dose Vitamin C Treatment of Patients with Serious and Critical COVID-19 Infection. Orthomolecular Medicine News Service, Mar 18, 2020
  18. Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr. 2009;90(5):1252–1263. doi:10.3945/ajcn.2008.27016
  19. Pfeiffer CM, Sternberg MR, Schleicher RL, Rybak ME. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of U.S. adults. J Nutr. 2013;143(6):957S–65S. doi:10.3945/jn.112.173021
  20. Hsiao PY, Mitchell DC, Coffman DL, et al. Dietary patterns and diet quality among diverse older adults: the University of Alabama at Birmingham Study of Aging. J Nutr Health Aging. 2013;17(1):19–25. doi:10.1007/s12603-012-0082-4
  21. Teixeira A, Carrie AS, Genereau T, Herson S, Cherin P. Vitamin C deficiency in elderly hospitalized patients. Am J Med. 2001;111:502.
  22. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;(1):CD000980. Published 2013 Jan 31. doi:10.1002/14651858.CD000980.pub4
  23. Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339. Published 2017 Mar 29. doi:10.3390/nu9040339
  24. Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339. Published 2017 Mar 29. doi:10.3390/nu9040339
  25. Kashiouris MG, L’Heureux M, Cable CA, Fisher BJ, Leichtle SW, Fowler AA. The Emerging Role of Vitamin C as a Treatment for Sepsis. Nutrients. 2020;12(2):292. Published 2020 Jan 22. doi:10.3390/nu12020292
  26. Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533–537. doi:10.7326/0003-4819-140-7-200404060-00010
  27. Davis JL, Paris HL, Beals JW, et al. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury. Nutr Metab Insights. 2016;9:25–30. Published 2016 Jun 20. doi:10.4137/NMI.S39764
  28. Hathcock JN, Azzi A, Blumberg J, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr. 2005;81(4):736–745. doi:10.1093/ajcn/81.4.736
  29. Cathcart RF. Vitamin C, titrating to bowel tolerance, anascorbemia, and acute induced scurvy. Med Hypotheses. 1981;7(11):1359–1376. doi:10.1016/0306-9877(81)90126-2
  30. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019;10(4):696–710. doi:10.1093/advances/nmz013
  31. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2011;(2):CD001364. Published 2011 Feb 16. doi:10.1002/14651858.CD001364.pub3
  32. Prasad AS, Beck FW, Bao B, et al. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr. 2007;85(3):837–844. doi:10.1093/ajcn/85.3.837
  33. Barnett JB, Hamer DH, Meydani SN. Low zinc status: a new risk factor for pneumonia in the elderly?. Nutr Rev. 2010;68(1):30–37. doi:10.1111/j.1753-4887.2009.00253.x
  34. Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: A clinical review [published online ahead of print, 2019 Jul 4]. Clin Nutr. 2019;S0261-5614(19)30280-8. doi:10.1016/j.clnu.2019.06.024
  35. Cazzola M, Calzetta L, Page C, Rogliani P, Matera MG. Thiol-Based Drugs in Pulmonary Medicine: Much More than Mucolytics. Trends Pharmacol Sci. 2019;40(7):452–463. doi:10.1016/j.tips.2019.04.015
  36. Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res. 2018;150:202–216. doi:10.1016/j.antiviral.2018.01.002
  37. Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-L-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82(5):548–555. doi:10.1016/j.bcp.2011.05.014
  38. Mata M, Sarrion I, Armengot M, et al. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One. 2012;7(10):e48037. doi:10.1371/journal.pone.0048037
  39. De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J. 1997;10(7):1535–1541. doi:10.1183/09031936.97.10071535
  40. Rasmussen JB, Glennow C. Reduction in days of illness after long-term treatment with N-acetylcysteine controlled-release tablets in patients with chronic bronchitis. Eur Respir J. 1988;1(4):351–355.
  41. Zhang Q, Ju Y, Ma Y, Wang T. N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia: A randomized controlled trial. Medicine (Baltimore). 2018;97(45):e13087. doi:10.1097/MD.0000000000013087
  42. Lai KY, Ng WY, Osburga Chan PK, Wong KF, Cheng F. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann Intern Med. 2010;152(10):687–688. doi:10.7326/0003-4819-152-10-201005180-00017
  43. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8(12):1955–1962. doi:10.1517/14728220802517901
  44. Molnár Z, Shearer E, Lowe D. N-Acetylcysteine treatment to prevent the progression of multisystem organ failure: a prospective, randomized, placebo-controlled study. Crit Care Med. 1999;27(6):1100–1104. doi:10.1097/00003246-199906000-00028
  45. Kleinveld HA, Demacker PN, Stalenhoef AF. Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur J Clin Pharmacol. 1992;43(6):639–642. doi:10.1007/bf02284964
  46. Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2017, 3, CD008524.
  47. Mathew JL. Vitamin A supplementation for prophylaxis or therapy in childhood pneumonia: a systematic review of randomized controlled trials. Indian Pediatr. 2010;47(3):255–261. doi:10.1007/s13312-010-0042-1
  48. Thorne-Lyman A, Fawzi WW. Vitamin A supplementation, infectious disease and child mortality: a summary of the evidence. Nestle Nutr Inst Workshop Ser. 2012;70:79–90. doi:10.1159/000337445
  49. Chen H, Zhuo Q, Yuan W, Wang J, Wu T. Vitamin A for preventing acute lower respiratory tract infections in children up to seven years of age. Cochrane Database Syst Rev. 2008;(1):CD006090. Published 2008 Jan 23. doi:10.1002/14651858.CD006090.pub2
  50. Grotto I, Mimouni M, Gdalevich M, Mimouni D. Vitamin A supplementation and childhood morbidity from diarrhea and respiratory infections: a meta-analysis. J Pediatr. 2003;142(3):297–304. doi:10.1067/mpd.2003.116
  51. Friedman A, Sklan D. Antigen-specific immune responseimpairment in the chick as influence by dietary vitamin A.Journal of Nutrition 1989;119:790-5.
  52. Friedman A, Meidovsky A, Leitner G, Sklan D. Decreasedresistance and immune response to Escherichia coli infection inchicks with low or high intakes of vitamin A. Journal of Nutrition1991;121:395-400.
  53. Fortes C, Forastiere F, Agabiti N, et al. The effect of zinc and vitamin A supplementation on immune response in an older population. J Am Geriatr Soc. 1998;46(1):19–26. doi:10.1111/j.1532-5415.1998.tb01008.x
  54. Griffiths JK. The vitamin A paradox. J Pediatr. 2000;137(5):604–607.
  55. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211.
  56. Hemilä H. Vitamin C and the common cold. Br J Nutr. 1992;67(1):3–16.
  57. Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J. 1997;16(9):836–837.
  58. Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339.
  59. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int J Gen Med. 2011;4:105–113.
  60. Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res. 2018;150:202–216.
  61. De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J. 1997;10(7):1535–1541.
  62. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019;10(4):696–710.
  63. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013;(6):CD001364.

 

ALLERGY and IMMUNITY

 

Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Thevarajan, I., Nguyen, T.H.O., Koutsakos, M. et al. Nat Med (2020). https://doi.org/10.1038/s41591-020-0819-2.

Published16 March 2020. DOI: https://doi.org/10.1038/s41591-020-0819-2

Exclusive breastfeeding for the first 3 months of life may reduce the risk of respiratory allergies and some asthma in children at the age of 6 years. Galya Bigman. Acta Paediatrica, 2020; DOI: 10.1111/apa.15162

Structure of intact IgE and the mechanism of ligelizumab revealed by electron microscopy. Rasmus K Jensen, Frederic Jabs, Michaela Miehe, Brian Mølgaard, Wolfgang Pfützner, Christian Möbs, Edzard Spillner, Gregers R Andersen. Allergy, 2020; DOI: 10.1111/all.14222

VIRUS – Simon Martin

Prof Michael Levitt interview: https://www.calcalistech.com/ctech/articles/0,7340,L-3800632,00.html.

Ebola stats: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease.

Ebola antibodies: The Barcelona Institute for Global Health, ISGlobal – https://www.isglobal.org/en/ebola.

Air vents: Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. Ong SWX, Tan YK, Chia PY, et al. JAMA. Published online March 04, 2020. DOI:10.1001/jama.2020.3227.

Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Cheng VC, Lau SK, Woo PC, Yuen KY. Clin Microbiol Rev. 2007;20(4):660–694. DOI:10.1128/CMR.00023-07.

Italy’s National Institute of Health report: https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_17_marzo-v2.pdf.

NHS survey: Health Survey for England 2018 Longstanding Conditions: https://files.digital.nhs.uk/AA/E265E0/HSE18-Longstanding-Conditions-rep.pdf.

Intensive Care National Audit and Research Centre report: https://www.icnarc.org/About/Latest-News/2020/03/22/Report-On-196-Patients-Critically-Ill-With-Covid-19.

Into the Eye of the Cytokine Storm. Jennifer R. Tisoncik et al.

Microbiol Mol Biol Rev. 2012 Mar; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11.

COVID-19: consider cytokine storm syndromes and immunosuppression.

Puja Mehta et al. The Lancet 2020, March 16. DOI:https://doi.org/10.1016/S0140-6736(20)30628-0.

Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality. Gagnon A, Miller MS, Hallman SA, et al. PLoS One. 2013;8(8):e69586. Published 2013 Aug 5. doi:10.1371/journal.pone.0069586.

A, D and Chris Kresser: https://chriskresser.com.

ACE-2 graphic: “ACE-2: The Receptor for SARS-CoV-2”: https://www.rndsystems.com/resources/articles/ace-2-sars-receptor-identified.

BLOOD TYPE – Peter D’Adamo

Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Jiao Zhao et al. medRxiv 2020.03.11.20031096; doi: https://doi.org/10.1101/2020.03.11.20031096.

Pre-print: not peer-reviewed.

Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies.

Guillon P et al. Glycobiology. 2008 Dec;18(12):1085-93. DOI: 10.1093/glycob/cwn093.

SCUTELLARIA – Anna Haynes (Boudrain in the issue)

https://www.verywellhealth.com/the-health-benefits-of-skullcap-89584

https://blog.paleohacks.com/antiviral-herbs/

The effects of acute and repeated oroxylin A treatments on Aβ25–35-induced memory impairment in mice. Dong Hyun Kim et al.

Neuropharmacology. Vol 55, Issue 5, October 2008, Pages 639-64.

https://doi.org/10.1016/j.neuropharm.2008.05.019

Characterization of Chemical Constituents in Scutellaria baicalensis with Antiandrogenic and Growth-Inhibitory Activities toward Prostate Carcinoma.

Michael Bonham et al. Clin Cancer Res May 15 2005 (11) (10) 3905-3914; DOI: 10.1158/1078-0432.CCR-04-1974. https://clincancerres.aacrjournals.org/content/11/10/3905.

https://www.verywellhealth.com/what-is-the-purpose-of-clinical-trials-224935

Chinese Skullcap (Scutellaria baicalensis Georgi) inhibits inflammation and proliferation on benign prostatic hyperplasia in rats. Bo-RamJin et al.  Journal of Ethnopharmacology, Volume 235, 10 May 2019, Pages 481-488.

https://doi.org/10.1016/j.jep.2019.01.039

RESEARCH

A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Ina Nemet, Prasenjit Prasad Saha, Nilaksh Gupta, Weifei Zhu, Kymberleigh A. Romano, Sarah M. Skye, Tomas Cajka, Maradumane L. Mohan, and others

Cell 2020Vol. 180, Issue 5, p862–877.e22, March 5.

Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Luke Hatchwell, Dylan J. Harney, Michelle Cielesh, Kieren Young, Yen Chin Koay, John F. O’Sullivan, Mark Larance. Cell Reports, 2020; 30 (10): 3566 DOI: 10.1016/j.celrep.2020.02.051.

Propionic acid shapes multiple sclerosis disease course by immunomodulatory mechanism. Alexander Duscha, Aiden Haghikia et al. Cell 2020, DOI: 10.1016/j.cell.2020.02.035.

Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Jingyun Yang, Ravi Chawla, Kathy Y. Rhee, Rachit Gupta, Michael D. Manson, Arul Jayaraman, Pushkar P. Lele. Proceedings of the National Academy of Sciences, 2020; 201916974 DOI: 10.1073/pnas.1916974117

Zebrafish-Based Screening of Antiseizure Plants Used in Traditional Chinese Medicine: Magnolia officinalis Extract and Its Constituents Magnolol and Honokiol Exhibit Potent Anticonvulsant Activity in a Therapy-Resistant Epilepsy Model. Jing Li, Daniëlle Copmans, Michèle Partoens, Borbála Hunyadi, Walter Luyten, Peter de Witte. ACS Chemical Neuroscience, 2020; 11 (5): 730. DOI: 10.1021/acschemneuro.9b00610.

IN PRACTICE – Jenny Phillips

  1. 2012 Insulin Resistance and Type 2 Diabetes

https://diabetes.diabetesjournals.org/content/61/4/778

  1. 2014 Mechanisms of insulin resistance in obesity

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936017

  1. 2019 Insulin resistance is a cardiovascular risk factor in humans https://www.ncbi.nlm.nih.gov/pubmed/31336505
  2. 2015 Hyperinsulinemia, insulin resistance and colorectal adenomas: A meta-analysis

https://www.ncbi.nlm.nih.gov/pubmed/26169471

  1. 2019 Insulin resistance in prostate cancer patients and predisposing them to acute ischemic heart disease https://www.ncbi.nlm.nih.gov/pubmed/31300527
  2. 2017 Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer’s Disease https://www.ncbi.nlm.nih.gov/pubmed/27988872
  3. 2016 Insulin Resistance and Polycystic Ovary Syndrome https://www.ncbi.nlm.nih.gov/pubmed/27510482

 

Case history

  1. Damasiewicz-Bodzek, A., Wielkoszyński, T. (2008) Serologic markers of celiac disease in psoriatic patients. Journal of the European Academy of Dermatology & Venereology; Sep2008, Vol. 22 Issue 9, p1055-1061.
    2. Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L (2019) Low carb diets in type 1 and type 2 diabetes. Nutrients May; 11(5):962.
  2. Caldesi & Phillips (2019) The diabetes weight-loss cookbook Kyle books.

References In Focus gut:

Christina Georgallou:

[1]

Hoskin-Parr L et al., “Antibiotic exposure in the first two years of life and development of asthma and allergic diseases by 7.5 yr: A dose dependent relationship,” Pediatric allergy and immunology, pp. 24 (8): 762-771, 2013.

[2]

Saari A et al., “Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life,” Pediatrics, pp. 135 (4): 617-626, 2015.

[3]

Robertson R et al., “The human microbiome and child growth- First 1000 days and beyond,” Trends in Microbiology, pp. 27 (2): 131-147 , 2019.

[4]

Stokholm et al., “Antibiotic use during pregnancy alters the commensal vaginal microbiota,” Clinical Microbiology and Infection, pp. 20 (7): 629-635, 2014.

[5]

Browne P et al., “Human milk microbiome and maternal postnatal pyschosocial distress,” Frontiers in Microbiology, pp. 10, doi= 10. 3389/fmicb.2019.02333, 2019.

[6]

Chua MC et al., “Effect of synbiotic on the gut microbiota of Cesarean delivered infants. A randomised, double blind, multicenter study,” Journal of Pediatric Gastroenterology and Nutrition, pp. 65 (1): 102-106, 2017.

[7]

Kosuwon P et al., “A synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V increases faecal Bifidobacterium in healthy young children,” Beneficial Microbes, pp. 541-552, 2018.

[8]

Patole et al., “Effect of Bifidobacterium breve M-16V supplementation on faecal Bifidobacteria in preterm neonates- a randomised double blind placebo controlled trial,” PLoS one, p. 9 (3): e89511, 2014.

[9]

Davidson L E et al., “Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomised double blind placebo controlled trial,” European Journal of Clinical Nutrition, vol. 65 , no. 4, p. 501, 2011.

[10]

Schultz M et al., “Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers,” Jounral of Dairy Research, vol. 70, no. 2, p. 165, 2003.

[11]

Hikaru U et al., “Bifidobacteria prevents preterm infants from developing infection and sepsis,” International Journal of Probiotics and Prebiotics, pp. 5 (1) 33-36, 2010.

[12]

Satoh Y et al., “Bifidobacteria prevents nectrotising enterocolitis and infection in preterm infants.,” International Journal of Probiotics & Prebiotics, p. 2; 49, 2007.

[13]

“Pharmaceutical Services Neotiating Comittee,” PSNC, May 2018. [Online]. Available: https://psnc.org.uk/services-commissioning/essential-facts-stats-and-quotes-relating-to-asthma/. [Accessed 28 Feb 2020].

[14]

Van der Aa et al., “Synbiotics prevent asthma-like symptoms in infants with atopic dermatitis,” Allergy , pp. 170-177, 2011.

[15]

Stojkovic A et al., “CLinical trial (consort compliant): Optimal time period to achieve the effects on synbiotic- controlled wheezing and respiratory infections in young children,” Serbian journal of management , vol. 144, no. (1-2), pp. 38-45, 2016.

[16]

“Allergy UK,” 19 April 2017. [Online]. Available: https://www.allergyuk.org/about/latest-news/310-eczema-are-we-just-scratching-the-surface. [Accessed 28 02 2020].

[17]

Hattori K et al., “Effects of administration of bifidobacteria on faecal microflora and clinical symptoms in infants with atopic dermatitis,” Arerugi, pp. 5, 387, 2003.

[18]

Wolke D., “Systematic review and meta analysis: fussing and crying duractions and prevalence of colic in infants,” Journal of Pediatrics, vol. 185, pp. 55-61, 2017.

[19]

Chau K et al., “Probiotics for infantile colic: a randomised double blind placebo controlled trial investigating Lactobacillus reuteri DSM 17938,” J. Pediatr, vol. 166, pp. 74-78, 2014.

[20]

Savino F et al., “Preventative effects of oral probiotic on intantile colic: a prospective, randomised, blinded, controlled trial using Lactobacillus reuteri DSM 17938,” Beneficial Microbes, vol. 6, no. 3, pp. 245-251, 2015.

[21]

Cazzola, “Efficacy of a synbiotic supplementation in the prevention of common winter diseases in children: a randomised, double blind, placebo-controlled pilot study,” Therapeutic advances in respiratory disease, vol. 4, no. (5), pp. 271-8, 2010.

[22] Taniuchi S et al., “Administration of Bifidobacterium to infants with atopic dermatitis: changes in faecal microflora and clinical symptoms,” The Journal of Applied Research, pp. 5 (2): 387-396, 2005.

 

Aicacia Young/Karen Jones:

Alzheimer’s Society (2020) Facts for the media [online]. Available from: https://www.alzheimers.org.uk/about-us/news-and-media/facts-media (Accessed 12 March 2020).

Anon (2020) Alzheimer’s disease [online]. Available from: https://www.nhs.uk/conditions/alzheimers-disease/ (Accessed 12 March 2020).

Blatchford, P. et al. (2017) Consumption of kiwifruit capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals: a randomised controlled human trial. Journal of Nutritional Science. [Online] 6.

Bourassa, M. et al. (2016) Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neuroscience Letters. [Online] 6256-63.

Chelakkot, C. et al. (2018) Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental & Molecular Medicine. [Online] 50 (2), e450-e450.

Faure, M. et al. (2006) Specific Amino Acids Increase Mucin Synthesis and Microbiota in Dextran Sulfate Sodium–Treated Rats. The Journal of Nutrition. [Online] 136 (6), 1558-1564.

Friedland, R. et al. (2020) What Are the Molecular Mechanisms by Which Functional Bacterial Amyloids Influence Amyloid Beta Deposition and Neuroinflammation in Neurodegenerative Disorders?. International Journal of Molecular Sciences. [Online] 21 (5), 1652.

Holzer, P. & Farzi, A. (2014) Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology. [Online] 195-219.

Kaliannan, K. et al. (2015) A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports. [Online] 5 (1), .

Kaliannan, K. et al. (2015) A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports. [Online] 5 (1), .

Liu, H. et al. (2018) Butyrate: A Double-Edged Sword for Health?. Advances in Nutrition. [Online] 9 (1), 21-29.

Loffredo, L. et al. (2020) Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Medicine and Cellular Longevity. [Online] 20201-7.

Loffredo, L. et al. (2020) Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Medicine and Cellular Longevity. [Online] 20201-7.

Loffredo, L. et al. (2020) Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Medicine and Cellular Longevity. [Online] 20201-7.

Mancuso, C. & Santangelo, R. (2018) Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacological Research. [Online] 129329-336.

McFarlin, B. et al. (2017) Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World Journal of Gastrointestinal Pathophysiology. [Online] 8 (3), 117.

Poulose, S. et al. (2012) Anthocyanin-rich Açai (Euterpe oleracea Mart.) Fruit Pulp Fractions Attenuate Inflammatory Stress Signaling in Mouse Brain BV-2 Microglial Cells. Journal of Agricultural and Food Chemistry. [Online] 60 (4), 1084-1093.

Powell, N. et al. (2017) The mucosal immune system: master regulator of bidirectional gut–brain communications. Nature Reviews Gastroenterology & Hepatology. [Online] 14 (3), 143-159.

Rao, M. & Gershon, M. (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nature Reviews Gastroenterology & Hepatology. [Online] 13 (9), 517-528.

Reddy, V. et al. (2020) Polyphenols in Alzheimer’s Disease and in the Gut–Brain Axis. Microorganisms. [Online] 8 (2), 199.

Schwartz, M. & Deczkowska, A. (2016) Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends in Immunology. [Online] 37 (10), 668-679.

Serra, D. et al. (2020) Polyphenols in the management of brain disorders: Modulation of the microbiota-gut-brain axis. Advances in Food and Nutrition Research. [Online] 1-27.

Shen, H. et al. (2020) New mechanism of neuroinflammation in Alzheimer’s disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry. [Online] 100109884.

Shen, H. et al. (2020) New mechanism of neuroinflammation in Alzheimer’s disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry. [Online] 100109884.

Sylvia, K. & Demas, G. (2018) A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Hormones and Behavior. [Online] 9941-49.

Yang, J. et al. (2015) Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Frontiers in Physiology. [Online] 6.

Zhao, Y. et al. (2017) Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain. Frontiers in Immunology. [Online] 8.

 

Humphrey Baccus:

  1. Cani, P. D. et al. Metabolic Endotoxemia. 56, 1761–1772 (2007).
  2. Festi, D. et al. Gut microbiota and metabolic syndrome. World J. Gastroenterol. 20, 16079–94 (2014).
  3. Corfield, A. P. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 6, 78 (2018).
  4. Zhang, M. & Yang, X.-J. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J. Gastroenterol. 22, 8905–8909 (2016).
  5. Nakatani, Y. et al. Endotoxin clearance and its relation to hepatic and renal disturbances in rats with liver cirrhosis. Liver 21, 64–70 (2001).
  6. Geerlings, S., Kostopoulos, I., de Vos, W. & Belzer, C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 6, 75 (2018).
  7. Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
  8. Naofumi Yoshida et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. (2018). doi:10.1161/CIRCULATIONAHA.118.033714
  9. Vereecke, L. & Elewaut, D. Ruminococcus on the horizon in arthritic disease. Nat. Rev. Rheumatol. 13, (2017).
  10. Chua, H.-H. et al. Intestinal Dysbiosis Featuring Abundance of Ruminococcus gnavus Associates With Allergic Diseases in Infants. Gastroenterology 154, 154–167 (2018).
  11. Silverman, G. J. The microbiome in SLE pathogenesis. Nat. Rev. Rheumatol. 15, 72–74 (2019).
  12. Anh, F. F. Triggering Akkermansia with dietary polyphenols : A new weapon to combat the metabolic syndrome ? 7, 146–153 (2016).
  13. Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. doi:10.1016/j.jff.2017.03.045
  14. Shang, Q. et al. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. Artic. J. Funct. Foods (2017). doi:10.1016/j.jff.2016.11.002
  15. Sánchez-Tapia, M. et al. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. doi:10.1038/s41598-017-05096-4
  16. Sirisinha, S. The pleiotropic role of vitamin A in regulating mucosal immunity.
  17. Paula Boroni Moreira, A., Fiche Salles Texeira, T., Barbosa Ferreira, A., do Carmo Gouveia Peluzio, M. & de Cássia Gonçalves Alfenas, R. Review Article Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. (2020). doi:10.1017/S0007114512001213
  18. Chan, Y. S. et al. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19, 245–254 (2011).
  19. Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules 22, 1–11 (2017).
  20. Salem, M. Ben et al. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum. Nutr. 70, 441–453 (2015).
  21. Papalini et al. Stress matters: a double-blind, randomized controlled trial on the effects of a multispecies probiotic on neurocognition. bioRxiv 263673 (2018). doi:10.1101/263673
  22. Hickl, J. et al. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. (2018). doi:10.1371/journal.pone.0207574
  23. Krebs, S., Omer, T. N. & Omer, B. Wormwood (Artemisia absinthium) suppresses tumour necrosis factor alpha and accelerates healing in patients with Crohn’s disease – A controlled clinical trial. Phytomedicine 17, 305–309 (2010).

 

 

March 2020

WELCOME

Pale Rider: the Spanish Flu of 1918 and how it changed the world, by Laura Spinney (Public Affairs, Hachette Book Group, New York, 2017).

Mortality Attributable to Influenza in England and Wales Prior to, during and after the 2009 Pandemic. Helen K. Green. PLoS One 2013; 8(12): e79360.

Published online 2013 Dec 11. doi: 10.1371/journal.pone.0079360

NEWS

NAD Repletion Rescues Female Fertility during Reproductive Aging. Michael J. Bertoldo et al. Cell Reports, 2020; 30 (6): 1670. DOI: 10.1016/j.celrep.2020.01.058.

Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. burgdorferi. Feng Jie et al. Frontiers in Medicine 2020, Feb 20, Vol 7. https://www.frontiersin.org/article/10.3389/fmed.2020.00006.      

Also see: https://www.bayarealyme.org/blog/seven-herbal-medicines-are-capable-of-killing-lyme-disease-bacteria-according-to-new-lab-study.      

The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer. Pradipta Ghosh et al.

Life Science Alliance 2020 DOI: 10.26508/lsa.201900481.

L-( )-Ergothioneine Significantly Improves the Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model. Rachel D. Williamson et al. Hypertension 2020; 75 (2): 561. DOI: 10.1161/HYPERTENSIONAHA.119.13929.

The biology of ergothioneine, an antioxidant nutraceutical. Irina Borodina et al. Nutrition Research Reviews 2020; 1 DOI: 10.1017/S0954422419000301.

New nutraceutical combination reduces blood pressure and improves exercise capacity in hypertensive patients via a nitric oxide–dependent mechanism.

Albino Carrizzo et al. Journal of the American Heart Association. 2020, 9:e014923.

Originally published 20 Feb 2020. https://doi.org/10.1161/JAHA.119.014923.

MITOPHAGY – BEN BROWN

  1. van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics. 2017;207(3):843–871. doi:10.1534/genetics.117.300262
  2. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012;111:1198–1207.
  3. Palikaras K, Daskalaki I, Markaki M, Tavernarakis N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol Ther. 2017;178:157–174. doi:10.1016/j.pharmthera.2017.04.005
  4. Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer’s disease, and Parkinson’s disease. Nutr Neurosci. 2005;8(2):67-89.
  5. Brown BI. Chronic fatigue syndrome: a personalized integrative medicine approach. Altern Ther Health Med. 2014;20(1):29–40.
  6. Nicolson GL. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Altern Ther Health Med. 2014;20 Suppl 1:18–25.
  7. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–1022. doi:10.1038/s41556-018-0176-2
  8. Yoo SM, Jung YK. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells. 2018;41(1):18–26. doi:10.14348/molcells.2018.2277
  9. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17(4):491–506. doi:10.1016/j.cmet.2013.03.002
  10. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–564. doi:10.1515/hsz-2012-0119
  11. Yang X, Pan W, Xu G, Chen L. Mitophagy: A crucial modulator in the pathogenesis of chronic diseases. Clin Chim Acta. 2020;502:245–254. doi:10.1016/j.cca.2019.11.008
  12. van Niekerk G, du Toit A, Loos B, Engelbrecht AM. Nutrient excess and autophagic deficiency: explaining metabolic diseases in obesity. Metabolism. 2018;82:14–21. doi:10.1016/j.metabol.2017.12.007
  13. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17(4):491–506. doi:10.1016/j.cmet.2013.03.002
  14. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17(4):491–506. doi:10.1016/j.cmet.2013.03.002
  15. Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. doi:10.1371/journal.pmed.0040076
  16. Usman Aslam, Satoru Kobayashi, Qiangrong Liang, and Martin Gerdes. Time-dependent differential effects of fasting on cardiac autophagy and mitophagy. The FASEB Journal 2016 30:1_supplement, 1015.1-1015.1
  17. Jaiswal N, Maurya CK, Arha D, et al. Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress. Apoptosis. 2015;20(7):930–947. doi:10.1007/s10495-015-1128-y
  18. Seyssel K, Meugnier E, Lê KA, et al. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle. Mol Nutr Food Res. 2016;60(12):2691–2699. doi:10.1002/mnfr.201600407
  19. Sergi D, Naumovski N, Heilbronn LK, et al. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front Physiol. 2019;10:532. Published 2019 May 3. doi:10.3389/fphys.2019.00532
  20. Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab. 2010;299(6):E1096–E1105. doi:10.1152/ajpendo.00238.2010
  21. Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54(7):1926–1933. doi:10.2337/diabetes.54.7.1926
  22. Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci. 2019;20(10):2451. Published 2019 May 17. doi:10.3390/ijms20102451
  23. Armah CN, Traka MH, Dainty JR, et al. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. Am J Clin Nutr. 2013;98(3):712–722. doi:10.3945/ajcn.113.065235
  24. Taub PR, Ramirez-Sanchez I, Ciaraldi TP, et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin Transl Sci. 2012;5(1):43–47. doi:10.1111/j.1752-8062.2011.00357.x
  25. Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr. 2019;39:201–226. doi:10.1146/annurev-nutr-082018-124643
  26. Villanueva Paz M, Cotán D, Garrido-Maraver J, et al. Targeting autophagy and mitophagy for mitochondrial diseases treatment. Expert Opin Ther Targets. 2016;20(4):487–500. doi:10.1517/14728222.2016.1101068
  27. Cordero MD, De Miguel M, Moreno Fernández AM, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010;12(1):R17. doi:10.1186/ar2918
  28. Cordero MD, Alcocer-Gómez E, de Miguel M, et al. Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia?. Antioxid Redox Signal. 2013;19(12):1356–1361. doi:10.1089/ars.2013.5260
  29. Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192(1):7–16. doi:10.1083/jcb.201006159
  30. Sebori R, Kuno A, Hosoda R, Hayashi T, Horio Y. Resveratrol Decreases Oxidative Stress by Restoring Mitophagy and Improves the Pathophysiology of Dystrophin-Deficient mdx Mice. Oxid Med Cell Longev. 2018;2018:9179270. Published 2018 Oct 29. doi:10.1155/2018/9179270
  31. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF. Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv. 2016;34(5):813–826. doi:10.1016/j.biotechadv.2016.04.004
  32. Wang W, Wang M, Ruan Y, et al. Ginkgolic Acids Impair Mitochondrial Function by Decreasing Mitochondrial Biogenesis and Promoting FUNDC1-Dependent Mitophagy. J Agric Food Chem. 2019;67(36):10097–10106. doi:10.1021/acs.jafc.9b04178
  33. Liu P, Lin H, Xu Y, et al. Frataxin-Mediated PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol Nutr Food Res. 2018;62(16):e1800164. doi:10.1002/mnfr.201800164
  34. Qi Y, Qiu Q, Gu X, Tian Y, Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci Rep. 2016;6:24700. Published 2016 Apr 19. doi:10.1038/srep24700
  35. Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–888. doi:10.1038/nm.4132
  36. Ma W, Zhang R, Huang Z, et al. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Ann Transl Med. 2019;7(18):440. doi:10.21037/atm.2019.08.101

MUSHROOMS

  1. Rathee S., Rathee D., Rathee D., Kumar V., Rathee P. Mushrooms as therapeutic agents. Rev. Bras. Farmacogn. 2012;22:457–474. doi: 10.1590/S0102-695X2011005000195. [CrossRef] [Google Scholar]
  2. Abugri D., McElhenney W.H., Willian K.R. Fatty acid profiling in selected cultivated edible and wild medicinal mushrooms in the Southern United States. J. Exp. Food Chem. 2016;2:1–7. doi: 10.4172/2472-0542.1000108. [CrossRef] [Google Scholar]
  3. Mhanda F.N., Kadhila-Muandingi N.P., Ueitele I.S.E. Minerals and trace elements in domesticated Namibian Ganoderma species. Afr. J. Biotechnol. 2015;14:3216–3218. doi: 10.5897/AJB2015.14573. [CrossRef] [Google Scholar]
  4. De Sousa V.M.C., Dos Santos E.F., Sgarbieri V.C. The importance of prebiotics in functional foods and clinical practice. Food Nutr. Sci. 2011;2:4. doi: 10.4236/fns.2011.22019. [CrossRef] [Google Scholar]
  5. Bhakta M., Kumar P. Mushroom polysaccharides as a potential prebiotics. Int. J. Health Sci. Res. 2013;3:77–84. doi: 10.1016/j.bcdf.2015.11.001. [CrossRef] [Google Scholar]
  6. Cani P.D., Delzenne N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 2009;15:1546–1558. doi: 10.2174/138161209788168164. [PubMed] [CrossRef] [Google Scholar]
  7. Petrovska B. Protein fraction of edible Macedonian mushrooms. Eur. Food Sci. Technol. 2001;212:469–472. doi: 10.1007/s002170000285. [CrossRef] [Google Scholar]
  8. Batbayar S., Lee D.H., Kim H.W. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol. Ther. 2012;20:433–445. doi: 10.4062/biomolther.2012.20.5.433. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  9. Huan G., Cai W., Xu B. Vitamin D2, ergosterol, and vitamin B2content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. Int. J. Vitam. Nutr. Res. 2016;21:1–10. doi: 10.1024/0300-9831/a000294. [PubMed] [CrossRef] [Google Scholar]
  10. Robbins R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003;51:2866–2887. doi: 10.1021/jf026182t. [PubMed] [CrossRef] [Google Scholar]
  11. Islam T., Yu X., Xu B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushroom commonly consumed in China. LWT Food Sci. Technol. 2016;72:423–431. doi: 10.1016/j.lwt.2016.05.005. [CrossRef] [Google Scholar]
  12. Rai M., Tidke G., Wasser S.P. Therapeutic potential of mushrooms. Nat. Prod. Radiance. 2005;4:246–257. [Google Scholar]
  13. Nahata A. Ganoderma lucidum: A potent medicinal mushroom with numerous health benefits. Pharm. Anal. Acta. 2013;4:10. doi: 10.4172/2153-2435.1000e159. [CrossRef] [Google Scholar]
  14. Smina T.P., Nitha B., Devasagayam T.P., Janardhanan K.K. Ganoderma lucidumtotal triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Mutat. Res. 2017;813:45–51. doi: 10.1016/j.mrgentox.2016.11.010. [PubMed] [CrossRef] [Google Scholar]
  15. Zeng Q., Zhou F., Lei L., Chen J., Lu J., Zhou J., Cao K., Gao L., Xia F., Ding S., et al. Ganoderma lucidumpolysaccharides protect fibroblasts against UVB-induced photoaging. Mol. Med. Rep. 2016;15:111–116. doi: 10.3892/mmr.2016.6026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  16. Wu Y.S., Ho S.Y., Nan F.H. Ganoderma lucidumβ 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. BMC Complement. Altern. Med. 2016;16:500. doi: 10.1186/s12906-016-1476-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  17. Shuhaimi Y.S., Arbakariya M., Fatimah A., Khalilah A.B., Anas A.K., Yazid A.M. Effect of Ganoderma lucidumpolysaccharides on the growth of Bifidobacterium spp. as assessed using Real-time PCR. Int. Food Res. J. 2012;19:1199–1205. [Google Scholar]
  18. Li K., Zhuo C., Teng C., Yua S., Wang X., Hu Y., Ren G., Yu M., Qu J. Effects of Ganoderma lucidumpolysaccharides on chronic pancreatitis and intestinal microbiota in mice. Int. J. Biol. Macromol. 2016;93:904–912. doi: 10.1016/j.ijbiomac.2016.09.029. [PubMed] [CrossRef] [Google Scholar]
  19. Tang X., Cai W., Xu B. Comparison of the chemical profiles and antioxidant and antidiabetic activities of extracts from two Ganoderma species (Agaricomycetes) Int. J. Med. Mushrooms. 2016;18:609–620. doi: 10.1615/IntJMedMushrooms.v18.i7.60. [PubMed] [CrossRef] [Google Scholar]
  20. Wang X.L., Ding Z.Y., Liu G.Q. Improved production and antitumor properties of triterpene acids from submerged culture of Ganoderma lingzhi. Molecules. 2016;21:1395. doi: 10.3390/molecules21101395. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  21. Wu H., Tang S.Z., Huang Q. Hepatoprotective effects and mechanisms of action of triterpenoids from lingzhi or reishi medicinal mushroom Ganoderma lucidum(Agaricomycetes) on α-amanitin-induced liver injury in mice. Int. J. Med. Mushrooms. 2016;18:841–850. doi: 10.1615/IntJMedMushrooms.v18.i9.80. [PubMed] [CrossRef] [Google Scholar]
  22. Rajasekaran M., Kalaimagal C. In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. J. Pharm. Sci. Res. 2011;3:1427–1433. [Google Scholar]
  23. Spinosa R. The chaga storey. Mycophile. 2006;47:1–8. [Google Scholar]
  24. Hartwell J.L. Plants Used against Cancer.Quartermain Publishing; Lawrence, MA, USA: 1982. 694p [Google Scholar]
  25. Hong K.B., Noh D.O., Park Y., Suh H.J. Hepatoprotective activity of water extracts from chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes) against tert-butyl hydroperoxide induced oxidative liver injury in primary cultured rat hepatocytes. Int. J. Med. Mushrooms. 2015;17:1069–1076. doi: 10.1615/IntJMedMushrooms.v17.i11.70. [PubMed] [CrossRef] [Google Scholar]
  26. Kang J.H., Jang J.E., Mishra S.K., Lee H.J., Nho C.W., Shin D., Jin M., Kim M.K., Choi C., Oh S.H. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 2015;15:303–312. doi: 10.1016/j.jep.2015.07.030. [PubMed] [CrossRef] [Google Scholar]
  27. Lee H.S., Kim E.J., Kim S.H. Ethanol extract of Innotus obliquus (chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells. Nutr. Res. Pract. 2015;9:111–116. doi: 10.4162/nrp.2015.9.2.111. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  28. Hu Y., Teng C., Yu S., Wang X., Liang J., Bai X., Dong L., Song T., Yu M., Qu J. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express. 2017;7:39. doi: 10.1186/s13568-017-0341-1. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  29. Luo K.W., Yue G.G., Ko C.H., Lee J.K., Gao S., Li L.F., Li G., Fung K.P., Leung P.C., Lau C.B. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicoloraqueous extract on mouse mammary 4T1 carcinoma. Phytomedicine. 2014;21:1078–1087. doi: 10.1016/j.phymed.2014.04.020. [PubMed] [CrossRef] [Google Scholar]
  30. Kobayashi M., Kawashima H., Takemori K., Ito H., Murai A., Masuda S., Yamada K., Uemura D., Horio F. Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2012;427:299–304. doi: 10.1016/j.bbrc.2012.09.045. [PubMed] [CrossRef] [Google Scholar]
  31. Yu Z.T., Liu B., Mukherjee P., Newburg D.S. Trametes versicolorextract modifies human fecal microbiota composition in vitro. Plant Foods Hum. Nutr. 2013;68:107–112. doi: 10.1007/s11130-013-0342-4. [PubMed] [CrossRef] [Google Scholar]
  32. Pallav K., Dowd S.E., Villafuerte J., Yang X., Kabbani T., Hansen J., Dennis M., Leffler D.A., Newburg D.S., Kelly C.P. Effects of polysaccharopeptide from Trametes versicolorand amoxicillin on the gut microbiome of healthy volunteers. Gut Microbes. 2014;5:458–467. doi: 10.4161/gmic.29558. [PubMed] [CrossRef] [Google Scholar]
  33. Matijašević D., Pantić M., Rašković B., Pavlović V., Duvnjak D., Sknepnek A., Nikšić M. The antibacterial activity of Coriolus versicolormethanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella Enteritidis. Front. Microbiol. 2016;7:1226. doi: 10.3389/fmicb.2016.01226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  34. Alonso E.N., Ferronato M.J., Gandini N.A., Fermento M.E., Obiol D.J., Lopez Romero A., Arévalo J., Villegas M.E., Facchinetti M.M., Curino A.C. Antitumoral effects of D-fraction from Grifola frondosa(maitake) mushroom in breast cancer. Nutr. Cancer. 2017;69:29–43. doi: 10.1080/01635581.2017.1247891. [PubMed] [CrossRef] [Google Scholar]
  35. Lin C.H., Chang C.Y., Lee K.R. Cold-water extracts of Grifola frondosaand its purified active fraction inhibit hepatocellular carcinoma in vitro and in vivo. Exp. Biol. Med. 2016;241:1374–1385. doi: 10.1177/1535370216640149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  36. Harhaji L.J., Mijatović S., Maksimović-Ivanić D., Stojanović I., Momcilović M., Maksimović V., Tufegdzić S., Marjanović Z., Mostarica-Stojković M., Vucinić Z., et al. Anti-tumor effect of Coriolus versicolormethanol extract against mouse B16 melanoma cells: In vitro and in vivo study. Food Chem. Toxicol. 2008;46:1825–1833. doi: 10.1016/j.fct.2008.01.027. [PubMed] [CrossRef] [Google Scholar]
  37. Phillip A., Green E.S.J., Voigt R.M. The gastrointestinal microbiome alcohol effects on the composition of intestinal microbiota. Alcohol. Res. 2015;37:22, 223–236. 
    38. Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013;6:295–308. doi: 10.1177/1756283X13482996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  38. Conlon M.A., Bird A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7:17–44. doi: 10.3390/nu7010017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  39. Houghton D., Stewart C.J., Christopher P. Gut microbiota and lifestyle interventions in NAFLD. Int. J. Mol. Sci. 2016;17:447. doi: 10.3390/ijms17040447. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  40. Clarke S.F., Murphy E.F., Nilaweera K. The gut microbiota and its relationship to diet and obesity new insights. Gut Microbes. 2012;3:186–202. doi: 10.4161/gmic.20168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  41. Finelli C., Tarantino G. Non-alcoholic fatty liver disease, diet and gut microbiota. EXCLI J. 2014;13:461–490. [PMC free article] [PubMed] [Google ScholarRetracted
  42. Schuijt T.J., Lankelma J.M., Scicluna B.P., Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65:575–583. doi: 10.1136/gutjnl-2015-309728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  43. Vyas U., Ranganathan N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterol. Res. Pract. 2012:872716. doi: 10.1155/2012/872716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  44. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015;21:8787–8803. doi: 10.3748/wjg.v21.i29.8787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  45. Le Blanc J.G., Milani C., de Giori G.S. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. [PubMed] [CrossRef] [Google Scholar]
  46. Kang M.J., Kim H.G., Kim J.S., Oh D.G., Um Y.J., Seo C.S., Han J.W., Cho H.J., Kim G.H., Jeong T.C., et al. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol. 2013;9:1295–1308. doi: 10.1517/17425255.2013.807798. [PubMed] [CrossRef] [Google Scholar]
  47. Wu H.J., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14. doi: 10.4161/gmic.19320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  48. Okumura R., Takeda K. Maintenance of gut homeostasis by the mucosal immune system. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2016;92:423–435. doi: 10.2183/pjab.92.423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  49. Goto Y., Ivanov I.I. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk. Immunol. Cell Biol. 2013;91:204–214. doi: 10.1038/icb.2012.80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  50. Hutkins R.W., Krumbeck J.A., Bindels L.B., Cani P.D., Fahey G., Jr., Goh Y.J., Hamaker B., Martens E.C., Mills D.A., Rastal R.A., et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016;37:1–7. doi: 10.1016/j.copbio.2015.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  51. Singdevsachan S.K., Mishra P.A.J., Baliyarsingh B., Tayung K., Thatoi H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre. 2015;7:1–14. doi: 10.1016/j.bcdf.2015.11.001. [CrossRef] [Google Scholar]
  52. Varshney J., Ooi J.H., Jayarao B.M. White button mushrooms increase microbial diversity and accelerate the resolution of Citrobacterrodentium infection in mice. J. Nutr. 2013;143:526–532. doi: 10.3945/jn.112.171355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  53. Meneses M.E., Carrera M.D., Torres N. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidumin C57BL/6 Mice. PLoS ONE. 2016;11:e0159631. doi: 10.1371/journal.pone.0159631. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  54. Giannenasa I., Tsalie E.B., Chronisc E.F. Consumption of Agaricus bisporusmushroom affects the performance, intestinal microbiota composition and morphology, and antioxidant status of turkey poults. Anim. Feed Sci. Technol. 2011;165:218–229. doi: 10.1016/j.anifeedsci.2011.03.002. [CrossRef] [Google Scholar]
  55. Geurts L., Neyrinck A.M., Delzenne N.M. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes. 2014;5:3–17. doi: 10.3920/BM2012.0065. [PubMed] [CrossRef] [Google Scholar]
  56. Xu X., Zhang X. Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice. PLoS ONE. 2015;10:e0115037. doi: 10.1371/journal.pone.0115037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Saman P., Chaiongkarn A., Moonmangmee S., Sukcharoen J., Kuancha C., Fungsin B. Evaluation of prebiotic property in edible mushrooms. Biol. Chem. Res. 2016;3:75–85. [Google Scholar]
  58. Pandeya D.R., Souza R.D., Rahman M.M. Host-microbial interaction in the mammalian intestine and their metabolic role inside. Biomed. Res. 2011;2:1–8. [Google Scholar]
  59. Gerritsen J., Smidt H., Rijkers G.T., de Vos W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 2011;6:209–240. doi: 10.1007/s12263-011-0229-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  60. Khoruts A., Dicksved J., Jansson J.K., Sadowsky M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 2010;44:354–360. doi: 10.1097/MCG.0b013e3181c87e02. [PubMed] [CrossRef] [Google Scholar]
  61. Hetland G., Dag M., Eide M., Haugen M.H., Mirlashari M.R., Paulsen J.E. The Agaricus blazei-based mushroom extract, andosan, protects against intestinal tumorigenesis in the A/J Min/+ mouse. PLoS ONE. 2016;11:e0167754. doi: 10.1371/journal.pone.0167754. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  62. Huang H.Y., Korivi M., Chaing Y.Y., Chien T.Y., Tsai Y.C. Pleurotus tuber-regium polysaccharides attenuate hyperglycemia and oxidative stress in experimental diabetic rats. J. Evid. Based Complement. Altern. Med. 2012:856381. doi: 10.1155/2012/856381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  63. Chang C.J., Lin C.S., Lu C.C., Martel J., Ko Y.F., Ojcius D.M., Tseng S.F., Wu T.R., Chen Y.Y., Young J.D., et al. Ganoderma lucidumreduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 2015;6:7489. doi: 10.1038/ncomms8489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  64. Stamets P.E. Integrative Fungal Solutions for Protecting Bees and Overcoming Colony Collapse Disorder (CCD): Methods and Compositions. 20140220150 A1. U.S. Patent. 2014 Aug 7;
  65. Kim H., Han S., Lee C., Lee K., Hong D. Compositions Containing Polysaccharides from Phellinus linteusand Methods for Treating Diabetes Mellitus Using Same. 6,809,084 B1. U.S. Patent. 2004 Oct 26;
  66. Kuo H.C., Lu C.C., Shen C.H., Tung S.Y., Hsieh M.C., Lee K.C., Lee L.Y., Chen C.C., Teng C.C., Huang W.S., et al. Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. J. Transl. Med. 2016;14:78. doi: 10.1186/s12967-016-0831-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  67. Lindequist U., Niedermeyer T.H.J., Julich W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005;2:285–299. doi: 10.1093/ecam/neh107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  68. Xu X., Yang J., Ning Z. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct. 2015;6:2653–2663. doi: 10.1039/C5FO00689A. [PubMed] [CrossRef] [Google Scholar]
  69. Grienke U., Zoll M., Peintner U. European medicinal polypores—A modern view on traditional uses. J. Ethnopharmacol. 2014;154:564–583. doi: 10.1016/j.jep.2014.04.030. [PubMed] [CrossRef] [Google Scholar]
  70. Lemieszek M., Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol. 2012;16:285–289. doi: 10.5114/wo.2012.30055. [PMC free article] [PubMed] [CrossRef] [Google Scholar

CANDIDA

  1. CandidaBiofilms: Threats, Challenges, and Promising Strategies.

Mafalda Cavalheiro and Miguel Cacho Teixeira. Front Med (Lausanne) 2018; 5: 28.

Published online 2018 Feb 13. doi: 10.3389/fmed.2018.00028.

 

  1. “Dissolve Biofilms with Fibrinolytic Enzymes: One Nutritionist’s Novel Approach to Autism Spectrum Disorders”. http://www.advancedhealing.com/wp-content/uploads/dissolve-biofilm-with-fibrinolytic-enzymes-nattokinase-lumbrokinase-peta-cohen.pdf.

Also see http://totallifecenter.com.

 

  1. “Biofilm: what it is and how to treat it”, by Chris Kresser, March 6, 2018: https://kresserinstitute.com/biofilm-what-it-is-and-how-to-treat-it.

 

  1. Novel Treatment of Staphylococcus aureus Device-Related Infections Using Fibrinolytic Agents. Hogan S et al. Antimicrob Agents Chemother. 2018 Jan 25; 62(2). pii: e02008-17. doi: 10.1128/AAC.02008-17. Print 2018 Feb.

 

  1. N-acetylcysteine as powerful molecule to destroy bacterial biofilms. A systematic review. Dinicola S et al. Eur Rev Med Pharmacol Sci.2014 Oct;18(19):2942-8.

 

  1. Inhibitory activity of monoacylglycerols on biofilm formation in Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica. Ham Y, Kim TJ. Springerplus.2016 Sep 9;5(1):1526. doi: 10.1186/s40064-016-3182-5. eCollection 2016

 

  1. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. Mecikoglu M et al. J Bone Joint Surg Am.2006 Jun;88(6):1208-14.

 

Candida auris Forms High-Burden Biofilms in Skin Niche Conditions and on Porcine Skin. Mark V. Horton et al. mSphere 2020; 5 (1) DOI: 10.1128/mSphere.00910-19.

RESEARCH

Emotion Regulation and Immune Functioning During Grief. Richard B. Lopez et al. Psychosomatic Medicine 2020; 82 (1): 2 DOI: 10.1097/PSY.0000000000000755.

The landscape of viral associations in human cancers. Marc Zapatka et al.  Nature Genetics, 2020; DOI: 10.1038/s41588-019-0558-9.

Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Dominic G. Roy et al. Cell Metabolism, 2020; 31 (2): 250 DOI: 10.1016/j.cmet.2020.01.006.

Indole Alleviates Diet‐induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell PFKFB3. Linqiang Ma et al. Hepatology, 2020; DOI: 10.1002/hep.31115.

A cell atlas of human thymic development defines T cell repertoire formation. Jong-Eun Park et al. Science 2020; 367 (6480): eaay3224 DOI: 10.1126/science.aay3224.

Lipid Droplet-Derived Monounsaturated Fatty Acids Traffic via PLIN5 to Allosterically Activate SIRT1. Charles P. Najt et al. Molecular Cell 2020; 77 (4): 810 DOI: 10.1016/j.molcel.2019.12.003

Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus versicolor: a  rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Scuto M et al. Int J Mol Sci. 2019;21(1):E284. Dec 31. doi:10.3390/ijms21010284.

The hidden costs of dietary restriction: Implications for its evolutionary and mechanistic origins. Andrew McCracken et al.

Science Advances 21 Feb 2020: Vol. 6, no. 8, eaay3047. DOI: 10.1126/sciadv.aay3047

Gut microbiome composition and diversity are related to human personality traits. lKaterina V.-A.Johnson. Human Microbiome Journal, Vol 15, March 2020, 100069.

February 2020

NEWS

Dysregulation of Hypothalamic Gene Expression and the Oxytocinergic System by Soybean Oil Diets in Male MiceEndocrinology, 2020; DOI: 10.1210/endocr/bqz044

Tobacco exposure and somatic mutations in normal human bronchial epithelium.

Kenichi Yoshida, Kate Gowers et al. Nature 2019. DOI: 10.1038/s41586-020-1961-1

Clinical Evidence for Association of Acupuncture and Acupressure with Improved Cancer Pain: A Systematic Review and Meta-Analysis. He, Yihan, Xinfeng Guo, Brian H. May, Anthony Lin Zhang, Yihong Liu, Chuanjian Lu, Jun J. Mao, Charlie Changli Xue, and Haibo Zhang.  JAMA oncology 2019. DOI:10.1001/jamaoncol.2019.5233.

Defining pathological social withdrawal: proposed diagnostic criteria for hikikomori. Takahiro A. Kato, Shigenobu Kanba,  Alan R. Teo. World Psychiatry, 2020; 19 (1): 116. DOI: 10.1002/wps.20705.

Beta-caryophyllene enhances wound healing through multiple routes. Koyama S et al. PLoS ONE 2019, 14(12): e0216104. https://doi.org/10.1371/journal.pone.0216104

A ketone monoester drink reduces the glycemic response to an oral glucose challenge in individuals with obesity: a randomized trial. Étienne Myette-Côté et al. The American Journal of Clinical Nutrition 2019, Volume 110, Issue 6, December 2019, Pages 1491–1501, https://doi.org/10.1093/ajcn/nqz232.

Top of FormInsecticidal Endostemonines A-J produced by Endophytic Streptomyces from Stemona sessilifolia. Zhao H et al. J Agric Food Chem. 2020 Jan 29. DOI: 10.1021/acs.jafc.9b06755. 

BEN BROWN

  1. Petta S, Valenti L, Bugianesi E, Targher G, Bellentani S, Bonino F; Special Interest Group on Personalised Hepatology of the Italian Association for the Study of the Liver (AISF); Special Interest Group on Personalised Hepatology of Italian Association for Study of Liver AISF. A “systems medicine” approach to the study of non-alcoholic fatty liver disease. Dig Liver Dis. 2016 Mar;48(3):333-42.
  2. Takahashi Y, Sugimoto K, Inui H, Fukusato T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2015 Apr 7;21(13):3777-85.
  3. Lorbek G, Urlep Ž, Rozman D. Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics. 2016 Jul;17(11):1273-1288.
  4. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016 Jul;13(7):412-25.
  5. Xie C, Halegoua-DeMarzio D. Role of Probiotics in Non-alcoholic Fatty Liver Disease: Does Gut Microbiota Matter? Nutrients. 2019 Nov 19;11(11).
  6. Cho MS, Kim SY, Suk KT, Kim BY. Modulation of gut microbiome in non-alcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. J Microbiol. 2018 Dec;56(12):855-867.
  7. Xiao MW, Lin SX, Shen ZH, Luo WW, Wang XY. Systematic Review with Meta-Analysis: The Effects of Probiotics in Nonalcoholic Fatty Liver Disease. Gastroenterol Res Pract. 2019 Dec 11;2019:1484598.
  8. Letexier D, Diraison F, Beylot M. Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am J Clin Nutr. 2003 Mar;77(3):559-64.
  9. Lambert JE, Parnell JA, Eksteen B, Raman M, Bomhof MR, Rioux KP, Madsen KL, Reimer RA. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterol. 2015 Dec 3;15:169.
  10. Javadi L, Khoshbaten M, Safaiyan A, Ghavami M, Abbasi MM, Gargari BP. Pro- and prebiotic effects on oxidative stress and inflammatory markers in non-alcoholic fatty liver disease. Asia Pac J Clin Nutr. 2018;27(5):1031-1039.
  11. Behrouz V, Jazayeri S, Aryaeian N, Zahedi MJ, Hosseini F. Effects of Probiotic and Prebiotic Supplementation on Leptin, Adiponectin, and Glycemic Parameters in  Non-alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Middle East J Dig Dis. 2017 Jul;9(3):150-157.
  12. Elvira-Torales LI, Periago MJ, González-Barrio R, Hidalgo N, Navarro-González  I, Gómez-Gallego C, Masuero D, Soini E, Vrhovsek U, García-Alonso FJ. Spinach consumption ameliorates the gut microbiota and dislipaemia in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct. 2019 Apr 17;10(4):2148-2160.
  13. Li W, Zhang K, Yang H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. J Agric Food Chem. 2018 Aug 1;66(30):8015-8025.
  14. Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R,  González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Protective effect of  quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 2017 Jan;102:188-202.
  15. Maeda T, Miki S, Morihara N, Kagawa Y. Aged garlic extract ameliorates fatty liver and insulin resistance and improves the gut microbiota profile in a mouse model of insulin resistance. Exp Ther Med. 2019 Jul;18(1):857-866.
  16. García-Alonso FJ, González-Barrio R, Martín-Pozuelo G, Hidalgo N, Navarro-González I, Masuero D, Soini E, Vrhovsek U, Periago MJ. A study of the prebiotic-like effects of tomato juice consumption in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct. 2017 Oct 18;8(10):3542-3552.
  17. Schweinlin A, Ulbrich S, Stauß S, Teutsch M, Walle H, Basrai M, Bischoff SC. [Comparison of a commercially available, formula-based nutritional therapy enriched with oats fiber with a non-formula isocaloric therapy to treat non-alcoholic fatty liver disease (NAFLD) – a randomized, controlled intervention trial]. Z Gastroenterol. 2018 Oct;56(10):1247-1256.
  18. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012 Feb;57(2):545-53.
  19. Wong VW, Won GL, Chim AM, Chu WC, Yeung DK, Li KC, Chan HL. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann
  20. Hepatol. 2013 Mar-Apr;12(2):256-62. Javadi L, Ghavami M, Khoshbaten M, Safaiyan A, Barzegari A, Gargari BP. The efect of probiotic and/or prebiotic on liver function tests in patients with nonalcoholic fatty liver disease: a double blind randomized clinical trial. Iran Red Crescent Med J. 2017;4:131–138.
  21. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013 Feb;57(2):601-9.
  22. Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One. 2010 Mar 8;5(3):e9570.
  23. Yuan J, Chen C, Cui J, et al. Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae. Cell Metab. 2019 Oct 1;30(4):675-688.e7.
  24. Cordell B, Kanodia A. Auto-brewery as an emerging syndrome: three representative case studies. J Clin Med Case Rep. 2016; 2(2):5.
  25. Malik F, Wickremesinghe P, Saverimuttu J. Case report and literature review of auto-brewery syndrome: probably an underdiagnosed medical condition. BMJ Open Gastroenterol. 2019 Aug 5;6(1):e000325.
  26. Saverimuttu J, Malik F, Arulthasan M, Wickremesinghe P. A Case of Auto-brewery Syndrome Treated with Micafungin. Cureus. 2019 Oct 14;11(10):e5904.
  27. El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel). 2018 Jan 16;7(1).
  28. Amanullah I, Khan YH, Anwar I, Gulzar A, Mallhi TH, Raja AA. Effect of vitamin E in non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 2019 Nov;95(1129):601-611.
  29. Kashyap ML, Ganji S, Nakra NK, Kamanna VS. Niacin for treatment of nonalcoholic fatty liver disease (NAFLD): novel use for an old drug? J Clin Lipidol. 2019 Oct 14. pii: S1933-2874(19)30290-9.
  30. Ganji SH, Kashyap ML, Kamanna VS. Niacin inhibits fat accumulation, oxidative  stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism. 2015 Sep;64(9):982-90.
  31. Linder K, Willmann C, Kantartzis K, Machann J, Schick F, Graf M, Kümmerle S, Häring HU, Fritsche A, Stefan N, Wagner R. Dietary Niacin Intake Predicts the Decrease of Liver Fat Content During a Lifestyle Intervention. Sci Rep. 2019 Feb 4;9(1):1303.
  32. Hu M, Chu WC, Yamashita S, Yeung DK, Shi L, Wang D, Masuda D, Yang Y, Tomlinson B. Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients. J Lipid Res. 2012 Apr;53(4):802-9.
  33. Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med. 2018 Dec;64:135-146.
  34. de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin Nutr. 2018 Feb;37(1):37-55.
  35. Wang JZ, Cao HX, Chen JN, Pan Q. PNPLA3 rs738409 underlies treatment response  in nonalcoholic fatty liver disease. World J Clin Cases. 2018 Aug 16;6(8):167-175.
  36. Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R. Milk thistle(Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018 Nov;32(11):2202-2213.
  37. Zhong S, Fan Y, Yan Q, Fan X, Wu B, Han Y, Zhang Y, Chen Y, Zhang H, Niu J. The therapeutic effect of silymarin in the treatment of nonalcoholic fatty disease: A meta-analysis (PRISMA) of randomized control trials. Medicine (Baltimore). 2017 Dec;96(49):e9061.
  38. Federico A, Trappoliere M, Tuccillo C, de Sio I, Di Leva A, Del Vecchio Blanco C, Loguercio C. A new silybin-vitamin E-phospholipid complex improves insulin resistance and liver damage in patients with non-alcoholic fatty liver disease: preliminary observations. Gut. 2006 Jun;55(6):901-2.
  39. Loguercio C, Andreone P, Brisc C, Brisc MC, Bugianesi E, Chiaramonte M, Cursaro C, Danila M, de Sio I, Floreani A, Freni MA, Grieco A, Groppo M, Lazzari  R, Lobello S, Lorefice E, Margotti M, Miele L, Milani S, Okolicsanyi L, Palasciano G, Portincasa P, Saltarelli P, Smedile A, Somalvico F, Spadaro A, Sporea I, Sorrentino P, Vecchione R, Tuccillo C, Del Vecchio Blanco C, Federico A. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol  Med. 2012 May 1;52(9):1658-65.

LEARNING ZONE

STEVEN SANDBERG-LEWIS

  1. Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B. 2015 Mar; 5(2): 99–105.
  2. Kumar D, Tandon, RK. Use of ursodeoxycholic acid in liver diseases. J Gastroenterol Hepatol. 2001 Jan;16(1):3-14.
  3. Hofmann AF et al. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients. J Pediatr Gastroenterol Nutr. 2008, Nov;47(5):598-606.
  4. Matsubara T, Ki F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol, 2013 Apr 10; 368(1-2): 17–29.
  5. Matsubara T, Li F, Gonzalez FJ, Matsubara T1, Li F, Gonzalez FJ. Mol Cell Endocrinol. 2013 Apr 10;368(1-2):17-29.
  6. Esposito G et al, Rifaximin Improves Clostridium difficile Toxin A-Induced Toxicity in Caco-2 Cells by the PXR-Dependent TLR4/MyD88/NF-κB Pathway. Front Pharmacol. 2016; 7: 120.
  7. Ponziani FR et al, Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017 Jul 7; 23(25): 4491–4499.
  8. Zhou HP, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids 2014;86:62–8.
  9. Kuhre RE et al, Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab. 2018 May; 11: 84–95.
  10. Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B. 2015 Mar; 5(2): 99–105.

 

Nutrition for doctors
Cuerda et al – A clinical nutrition education in medical schools: results of an ESPEN survey – Clin Nutr 2017, 36:915-6.
 Cuerda et al – Nutrition education in medical schools (NEMS). An ESPEN position paper – Clinical Nutrition 2019, 38: 969-974.

JOINTS

Human osteoarthritic synovial fluid increases excitability of mouse dorsal root ganglion sensory neurons: an in-vitro translational model to study arthritic pain. Chakrabarti, S et al. Rheumatology; 13 August 2019; DOI: 10.1093/rheumatology/kez331

https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/kez331/5549580.

Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. G. Shaw, A. Lee-Barthel, M. L. Ross, B. Wang, K. Baar.  American Journal of Clinical Nutrition, 2016; DOI: 10.3945/ajcn.116.138594

Stress Relaxation and Targeted Nutrition to Treat Patellar Tendinopathy.

Baar K. Int J Sport Nutr Exerc Metab. 2019, Jul 1;29(4):453–457. DOI: 10.1123/ijsnem.2018-0231.

Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Scher JU, Sczesnak A, Longman RS, et al. Elife. 2013;2:e01202.
The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Zhang X, Zhang D, Jia H, et al. Nat Med. 2015;21(8):895-905.

The therapeutic effect of probiotics on rheumatoid arthritis: a systematic review and meta-analysis of randomized control trials.

Mohammed AT et al. Clin Rheumatol. 2017 Dec;36(12):2697-2707. DOI: 10.1007/s10067-017-3814-3. Epub 2017 Sep 15.

Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Rosenbaum JT, Davey MP. Arthritis Rheum. 2011;63(11):3195-8.

RESEARCH

Cerebrospinal fluid influx drives acute ischemic tissue swelling. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, Peng W, et al. Science 2020, Jan 30; DOI: 10.1126/science.aax7171.

Associations of Fish Oil Supplement Use with Testicular Function in Young Men.

Jensen TK et al. JAMA Netw Open. 2020 Jan 3;3(1):e1919462. DOI: 10.1001/jamanetworkopen.2019.19462.

Measurement of chemical emission rates from cigarette butts into air. Gong et al. Indoor Air 2020, DOI: 10.1111/ina.12648.

Effects of the microalgae Chlamydomonas on gastrointestinal health. Francis J. Fields, Franck Lejzerowicz, Dave Schroeder, Soo M. Ngoi, Miller Tran, Daniel McDonald, Lingjing Jiang, John T. Chang, Rob Knight, Stephen Mayfield. Journal of Functional Foods  2020; 65: 103738. DOI: 10.1016/j.jff.2019.103738.

Hypothesis: Bacterial induced inflammation disrupts the orderly progression of the stem cell hierarchy and has a role in the pathogenesis of breast cancer. A.K. Marwaha, J.A. Morris, R.J. Rigby. Medical Hypotheses, 2020; 136: 109530 DOI: 10.1016/j.mehy.2019.109530.

Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. Beza Jobira et al. The Journal of Clinical Endocrinology & Metabolism 2020. DOI: 10.1210/clinem/dgz263.

Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiencyHuman Molecular Genetics 2019; DOI: 10.1093/hmg/ddz303.

January 2020

NEWS

Potential of Manuka Honey as a Natural Polyelectrolyte to Develop Biomimetic Nanostructured Meshes With Antimicrobial PropertiesFrontiers in Bioengineering and Biotechnology, 2019; 7 DOI: 10.3389/fbioe.2019.00344

Researchers identify novel biomarkers to accurately measure dietary intake of key flavanols: studies were published in Nature Scientific Reports and are freely available on their website here:

Could a gene-environment interaction between NAPRT1 risk allele and pre-natal niacin deficiency explain 4 medical mysteries of schizophrenia research?  Fuller-Thomson, E., Mehta, R. Letter to the editor.  Schizophrenia Research 2019, available online 12 December. https://doi.org/10.1016/j.schres.2019.11.049.

Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience 2019; DOI: 10.1007/s11357-019-00137-4

Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metabolism, 2019; DOI: 10.1016/j.cmet.2019.11.004.

Validation of a sensitive UHPLC-MS/MS method for cytochrome P450 probe substrates caffeine, tolbutamide, dextromethorphan, and alprazolam in human serum reveals drug contamination of serum used for research. Journal of Pharmaceutical and Biomedical Analysis, 2019; 112983 DOI: 10.1016/j.jpba.2019.112983.

NAFLD – BEN BROWN

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ; American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterologyh. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012  Jun;142(7):1592-609.
  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73-84.
  3. Samji NS, Verma R, Satapathy SK. Magnitude of Nonalcoholic Fatty Liver Disease: Western Perspective. J Clin Exp Hepatol. 2019 Jul-Aug;9(4):497-505.
  4. Andronescu CI, Purcarea MR, Babes PA. Nonalcoholic fatty liver disease: epidemiology, pathogenesis and therapeutic implications. J Med Life. 2018 Jan-Mar;11(1):20-23.
  5. Glen J, Floros L, Day C, Pryke R; Guideline Development Group. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ. 2016 Sep 7;354:i4428.
  6. Jennison E, Patel J, Scorletti E, Byrne CD. Diagnosis and management of non-alcoholic fatty liver disease. Postgrad Med J. 2019 Jun;95(1124):314-322.
  7. Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. BMJ. 2014 Jul 29;349:g4596.
  8. Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology. 2016 Jun;150(8):1769-77.
  9. Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol. 2018 Dec;8(4):390-402.
  10. Hodson L, Karpe F. Hyperinsulinemia: does it tip the balance toward intrahepatic fat accumulation? Endocr Connect. 2019 Sep 1. pii: EC-19-0350.R1. doi: 10.1530/EC-19-0350. [Epub ahead of print]
  11. Ore A, Akinloye OA. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease. Medicina (Kaunas).  2019 Jan 24;55(2).
  12. Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, Schuppan D, Grønbæk H. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019 Mar;16(3):145-159.
  13. Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol.  2019 Jan 8;9:1428.
  14. Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 2019 Nov;42(11):935-946.
  15. Grabherr F, Grander C, Effenberger M, Adolph TE, Tilg H. Gut Dysfunction and Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne). 2019 Sep 6;10:611.
  16. Zelber-Sagi S, Ratziu V, Oren R. Nutrition and physical activity in NAFLD: an  overview of the epidemiological evidence. World J Gastroenterol. 2011 Aug 7;17(29):3377-89.
  17. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr. 2018 May 18;18(2):89-101.
  18. Armstrong LE, Guo GL. Understanding Environmental Contaminants’ Direct Effects on Non-alcoholic Fatty Liver Disease Progression. Curr Environ Health Rep. 2019 Sep;6(3):95-104.
  19. Freidoony L, Kong ID. Practical approaches to the nutritional management of nonalcoholic fatty liver disease. Integr Med Res. 2014 Dec;3(4):192-197.
  20. Fan JG, Cao HX. Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013 Dec;28 Suppl 4:81-7.
  21. Dongiovanni P, Lanti C, Riso P, Valenti L. Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem. 2016 Mar;29:1-11.
  22. Ilan Y. Future of Treatment for Nonalcoholic Steatohepatitis: Can the Use of Safe, Evidence-Based, Clinically Proven Supplements Provide the Answer to the Unmet Need? Dig Dis Sci. 2018 Jul;63(7):1726-1736.
  23. Valtueña S, Pellegrini N, Ardigò D, Del Rio D, Numeroso F, Scazzina F, Monti L, Zavaroni I, Brighenti F. Dietary glycemic index and liver steatosis. Am J Clin Nutr. 2006 Jul;84(1):136-42
  24. Ma J, Fox CS, Jacques PF, Speliotes EK, Hoffmann U, Smith CE, Saltzman E, McKeown NM. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J Hepatol. 2015 Aug;63(2):462-9.
  25. Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008 Jun;48(6):983-92
  26. Jang EC, Jun DW, Lee SM, Cho YK, Ahn SB. Comparison of efficacy of low-carbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: A randomized controlled study. Hepatol Res. 2018 Feb;48(3):E22-E29.
  27. Ahn J, Jun DW, Lee HY, Moon JH. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: Review and meta-analyses. Clin Nutr. 2019 Oct;38(5):2023-2030.
  28. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011 May;93(5):1048-52.
  29. Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S, O’Dea K, Desmond PV, Johnson NA, Wilson AM. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013 Jul;59(1):138-43.
  30. Papamiltiadous ES, Roberts SK, Nicoll AJ, Ryan MC, Itsiopoulos C, Salim A, Tierney AC. A randomised controlled trial of a Mediterranean Dietary Intervention for Adults with Non Alcoholic Fatty Liver Disease (MEDINA): study protocol. BMC Gastroenterol. 2016 Feb 2;16:14.
  31. Gelli C, Tarocchi M, Abenavoli L, Di Renzo L, Galli A, De Lorenzo A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol. 2017 May 7;23(17):3150-3162.
  32. Katsagoni CN, Papatheodoridis GV, Ioannidou P, Deutsch M, Alexopoulou A, Papadopoulos N, Papageorgiou MV, Fragopoulou E, Kontogianni MD. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: a randomised controlled clinical trial. Br J Nutr. 2018 Jul;120(2):164-175.
  33. Biolato M, Manca F, Marrone G, Cefalo C, Racco S, Miggiano GA, Valenza V, Gasbarrini A, Miele L, Grieco A. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease. World J Gastroenterol. 2019 Jan 28;25(4):509-520.
  34. Misciagna G, Del Pilar Díaz M, Caramia DV, Bonfiglio C, Franco I, Noviello MR, Chiloiro M, Abbrescia DI, Mirizzi A, Tanzi M, Caruso MG, Correale M, Reddavide R, Inguaggiato R, Cisternino AM, Osella AR. Effect of a Low Glycemic Index Mediterranean Diet on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled  Clinici Trial. J Nutr Health Aging. 2017;21(4):404-412.
  35. Pérez-Guisado J, Muñoz-Serrano A. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. J Med Food. 2011 Jul-Aug;14(7-8):677-80.
  36. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F. Bifidobacterium longum with fructooligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci 2012; 57: 545-553 [PMID: 21901256 DOI: 10.1007/ s10620-011-1887-4
  37. Abenavoli L, Greco M, Nazionale I, Peta V, Milic N, Accattato F, Foti D, Gulletta E, Luzza F. Effects of Mediterranean diet supplemented with silybin-vitamin E-phospholipid complex in overweight patients with non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2015;9:519–527
  38. Abenavoli L, Greco M, Milic N, Accattato F, Foti D, Gulletta E, Luzza F. Effect of Mediterranean Diet and Antioxidant Formulation in Non-Alcoholic Fatty Liver Disease: A Randomized Study. Nutrients. 2017 Aug 12;9(8).
  39. Koopman KE, Caan MW, Nederveen AJ, Pels A, Ackermans MT, Fliers E, la Fleur SE, Serlie MJ. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology. 2014 Aug;60(2):545-53.
  40. Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X,  Fleischer JG, Navlakha S, Panda S, Taub PR. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2019 Dec 2. pii: S1550-4131(19)30611-4.
  41. Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017 Oct;67(4):829-846

 

Boys with NAFLD:
Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys: A Randomized Clinical Trial. JAMA. 2019;321(3):256–265. doi: https://doi.org/10.1001/jama.2018.20579.

IBS review – Dr ASHTON HARPER

[1]    P. J. Kennedy, “Irritable bowel syndrome: A microbiome-gut-brain axis disorder?,” World J. Gastroenterol., vol. 20, no. 39, p. 14105, 2014.
[2]    A. Khanbhai and D. S. Sura, “Irritable bowel syndrome for primary care physicians,” Br. J. Med. Pract., vol. 6, no. 1, pp. 1–4, 2013.
[3]    M. T. Hillilä, N. J. Frkkilä, and M. A. Färkkil̈, “Societal costs for irritable bowel syndrome a population based study,” Scand. J. Gastroenterol., vol. 45, no. 5, pp. 582–591, 2010.
[4]    J. R. Marchesi and J. Ravel, “The vocabulary of microbiome research: a proposal,” Microbiome, vol. 3, no. 1, p. 31, 2015.
[5]    R. Sender, S. Fuchs, and R. Milo, “Revised Estimates for the Number of Human and Bacteria Cells in the Body,” PLoS Biol., vol. 14, no. 8, pp. 1–14, 2016.
[6]    E. M. M. Quigley, “Gut bacteria in health and disease.,” Gastroenterol. Hepatol. (N. Y)., vol. 9, no. 9, pp. 560–9, 2013.
[7]    N. P. Hyland, E. M. M. Quigley, and E. Brint, “Microbiota-host interactions in irritable bowel syndrome: Epithelial barrier, immune regulation and brain-gut interactions,” World J. Gastroenterol., vol. 20, no. 27, pp. 8859–8866, 2014.
[8]    D. Saulnier et al., “Gastrointestinal Microbiome Signatures Of Pediatric Patients With Irritable Bowel Syndrome,” Gastroenterology, vol. 141, no. 5, pp. 1782–1791, 2011.
[9]    C. Chassard et al., “Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome,” Aliment. Pharmacol. Ther., vol. 35, no. 7, pp. 828–838, 2012.
[10]    J. Jalanka-Tuovinen et al., “Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms,” PLoS One, vol. 6, no. 7, 2011.
[11]    M. Pigrau et al., “The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: Implications for irritable bowel syndrome,” Neurogastroenterol. Motil., vol. 28, no. 4, pp. 463–486, 2016.
[12]    O. Koren, “Host remodeling of the gut microbiome and metabolic changes during pregnancy,” Cell, vol. 150, no. 3, pp. 470–480, 2012.
[13]    P. Shastri, J. McCarville, M. Kalmokoff, S. P. J. Brooks, and J. M. Green-Johnson, “Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet,” Biol. Sex Differ., vol. 6, no. 1, pp. 1–12, 2015.
[14]    B. P. Chumpitazi and R. J. Shulman, “Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome,” Mol. Cell. Pediatr., vol. 3, no. 1, p. 11, 2016.
[15]    M. Gazouli et al., “Lessons learned-resolving the enigma of genetic factors in IBS,” Nat. Rev. Gastroenterol. Hepatol., vol. 13, no. 2, pp. 77–87, 2016.
[16]    T. M. Kerr, “Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice,” Mol. Autism, vol. 4, no. 35, pp. 1–11, 2013.
[17]    A. I. Petra, S. Panagiotidou, E. Hatziagelaki, J. M. Stewart, P. Conti, and T. C. Theoharides, “Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation,” Clin. Ther., vol. 37, no. 5, pp. 984–995, 2015.
[18]    S. M. O’Mahony, G. Clarke, Y. E. Borre, T. G. Dinan, and J. F. Cryan, “Serotonin, Tryptophan Metabolism and the Brain-Gut- Microbiome Axis,” Behav. Brain Res., vol. 277, pp. 1–17, 2014.
[19]    R. Valladares et al., “Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats,” FASEB J., vol. 27, no. 4, pp. 1711–1720, 2013.
[20]    G. Clarke, P. Fitzgerald, J. F. Cryan, E. M. Cassidy, E. M. Quigley, and T. G. Dinan, “Tryptophan degradation in irritable bowel syndrome: Evidence of indoleamine 2,3-dioxygenase activation in a male cohort,” BMC Gastroenterol., vol. 9, pp. 1–7, 2009.
[21]    M. Thabane and J. K. Marshall, “Post-infectious irritable bowel syndrome,” World J. Gastroenterol., vol. 15, no. 29, pp. 3591–3596, 2009.
[22]    M. Pimentel et al., “Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects,” PLoS One, vol. 10, no. 5, pp. 1–12, 2015.
[23]    I. Aziz, H. Törnblom, and M. Simrén, “Small intestinal bacterial overgrowth as a cause for irritable bowel syndrome,” Curr. Opin. Gastroenterol., vol. 33, no. 3, p. 1, 2017.
[24]    S. M. O’Mahony et al., “Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses,” Biol. Psychiatry, vol. 65, no. 3, pp. 263–267, 2009.
[25]    P. R. Maxwell, E. Rink, D. Kumar, and M. A. Mendall, “Antibiotics increase functional abdominal symptoms,” Am. J. Gastroenterol., vol. 97, no. 1, pp. 104–108, 2002.
[26]    E. F. Verdú et al., “Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice.,” Gut, vol. 55, no. 2, pp. 182–90, 2006.
[27]    P. Luczynski et al., “Microbiota regulates visceral pain in the mouse,” Elife, vol. 6, pp. 1–21, 2017.
[28]    L. Crouzet et al., “The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota,” Neurogastroenterol. Motil., vol. 25, no. 4, pp. 1–11, 2013.
[29]    Q. Zhou, “Intestinal Membrane Permeability and Hypersensitivity In the Irritable Bowel Syndrome,” Pain, vol. 146, no. 614, pp. 41–46, 2009.
[30]    J. Zeng, Y. Q. Li, X. L. Zuo, Y. B. Zhen, J. Yang, and C. H. Liu, “Clinical trial: Effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome,” Aliment. Pharmacol. Ther., vol. 28, no. 8, pp. 994–1002, 2008.
[31]    L. O’Mahony et al., “Lactobacillus and Bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles,” Gastroenterology, vol. 128, no. 3, pp. 541–551, 2005.
[32]    M. Anitha, “Gut microbial products regulate murine gastrointestinal motility via Toll-like Receptor 4 signaling,” Gastroenterology, vol. 143, no. 4, pp. 1006–1016, 2012.
[33]    E. K. Brint, J. MacSharry, A. Fanning, F. Shanahan, and E. M. M. Quigley, “Differential Expression of Toll-Like Receptors in Patients With Irritable Bowel Syndrome,” Am. J. Gastroenterol., vol. 106, no. 2, pp. 329–336, 2011.
[34]    I. Posserud, P.-O. Stotzer, E. S. Bjornsson, H. Abrahamsson, and M. Simren, “Small intestinal bacterial overgrowth in patients with irritable bowel syndrome,” Gut, vol. 56, no. 6, pp. 802–808, 2007.
[35]    E. F. Verdú et al., “Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction,” Gastroenterology, vol. 127, no. 3, pp. 826–837, 2004.
[36]    M. Fadgyas-Stanculete, A.-M. Buga, A. Popa-Wagner, and D. L. Dumitrascu, “The relationship between irritable bowel syndrome and psychiatric disorders: From molecular changes to clinical manifestations,” J. Mol. Psychiatry, vol. 2, no. 1, pp. 1–7, 2014.
[37]    L. Zhou and J. A. Foster, “Psychobiotics and the gut – brain axis : in the pursuit of happiness,” Neuropsychiatr. Dis. Treat., vol. 11, pp. 715–723, 2015.
[38]    A. Sarkar, S. M. Lehto, S. Harty, T. G. Dinan, J. F. Cryan, and P. W. J. Burnet, “Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals,” Trends Neurosci., vol. 39, no. 11, pp. 763–781, 2016.
[39]    N. Sudo et al., “Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice,” J Physiol, vol. 5581, pp. 263–275, 2004.
[40]    L. J. et al. Tillisch Kirsten, “Consumption of Fermented Milk Product with Probiotics Modulates Brain Activity,” Gastroenterology, vol. 144, no. 7, pp. 1–15, 2014.
[41]    A. Ricci et al., “Scientific Opinion on the update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA†,” EFSA J., vol. 15, no. 3, 2017.
[42]    A. C. Ford, L. A. Harris, B. E. Lacy, E. M. M. Quigley, and P. Moayyedi, “Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome,” Aliment. Pharmacol. Ther., vol. 48, no. 10, pp. 1044–1060, 2018.
[43]    Y. A. McKenzie, J. Thompson, P. Gulia, and M. C. E. Lomer, “British Dietetic Association systematic review of systematic reviews and evidence-based practice guidelines for the use of probiotics in the management of irritable bowel syndrome in adults (2016 update),” J. Hum. Nutr. Diet., vol. 29, no. 5, pp. 576–592, 2016.
[44]    FDA, “Guidance for Industry Irritable Bowel Syndrome — Clinical Evaluation of Products for Treatment Guidance for Industry Irritable Bowel Syndrome — Clinical Evaluation of Products for Treatment,” 2010.
[45]    S. M. Ishaque, S. M. Khosruzzaman, D. S. Ahmed, and M. P. Sah, “A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-Kult®) in the management of diarrhea-predominant irritable bowel syndrome,” BMC Gastroenterol., vol. 18, no. 1, pp. 1–12, 2018.
[46]    A. Lyra et al., “Irritable bowel syndrome symptom severity improves equally with probiotic and placebo,” World J. Gastroenterol., vol. 22, no. 48, pp. 10631–10642, 2016.
[47]    P. J. Whorwell et al., “Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome,” Am. J. Gastroenterol., vol. 101, no. 7, pp. 1581–1590, 2006.
[48]    P. Enck, K. Zimmermann, G. Menke, S. Müller-lissner, U. Martens, and S. Klosterhalfen, “A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome: A randomized controlled trial with primary care physicians,” Neurogastroenterol. Motil., vol. 20, no. 10, pp. 1103–1109, 2008.
[49]    D. Guyonnet et al., “Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: A multicentre, randomized, double-blind, controlled trial,” Aliment. Pharmacol. Ther., vol. 26, no. 3, pp. 475–486, 2007.
[50]    P. Ducrotté, P. Sawant, and V. Jayanthi, “Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome,” World J. Gastroenterol., vol. 18, no. 30, pp. 4012–4018, 2012.
[51]    G. Sisson, S. Ayis, R. A. Sherwood, and I. Bjarnason, “Randomised clinical trial: A liquid multi-strain probiotic vs. Placebo in the irritable bowel syndrome – A 12 week double-blind study,” Aliment. Pharmacol. Ther., vol. 40, no. 1, pp. 51–62, 2014.
[52]    G. Pineton de Chambrun et al., “A randomized clinical trial of Saccharomyces cerevisiae versus placebo in the irritable bowel syndrome,” Dig. Liver Dis., vol. 47, no. 2, pp. 119–124, 2015.
[53]    L. M. Roberts, D. McCahon, R. Holder, S. Wilson, and F. D. R. Hobbs, “A randomised controlled trial of a probiotic ‘functional food’ in the management of irritable bowel syndrome.,” BMC Gastroenterol., vol. 13, no. 1, p. 45, 2013.
[54]    S. Guglielmetti, D. Mora, M. Gschwender, and K. Popp, “Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – A double-blind, placebo-controlled study,” Aliment. Pharmacol. Ther., vol. 33, no. 10, pp. 1123–1132, 2011.
[55]    B. Amirimani et al., “Probiotic vs. Placebo in Irritable Bowel Syndrome:A Randomized Controlled Trial.,” Middle East J. Dig. Dis., vol. 5, no. 2, pp. 98–102, 2013.
[56]    E. Jafari, “Therapeutic Effects, Tolerability and Safety of a Multi-strain Probiotic in Iranian Adults with Irritable Bowel Syndrome and Bloating Elham,” Arch. Iran. Med., vol. 17, no. 7, pp. 466–470, 2014.
[57]    K. Hod et al., “A double-blind, placebo-controlled study to assess the effect of a probiotic mixture on symptoms and inflammatory markers in women with diarrhea-predominant IBS,” Neurogastroenterol. Motil., vol. 29, no. 7, pp. 1–10, 2017.
[58]    C. W. Macpherson, P. Shastri, O. Mathieu, T. A. Tompkins, and P. Burgui, “Genome-Wide Immune Modulation of TLR3- Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination,” PLoS One, pp. 1–18, 2017.
[59]    A. C. Ouwehand, “A review of dose-responses of probiotics in human studies,” Benef. Microbes, vol. 8, no. 2, pp. 143–151, 2017.
[60]    Y. Zhang et al., “Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis,” BMC Gastroenterol., vol. 16, no. 1, p. 62, 2016.

Water Science – NIKKI GRATRIX

References

  1. http://www1.lsbu.ac.uk/water/water_anomalies.html
  2. TEDx Talk by Gerald Pollack for more info: https://www.youtube.com/watch?v=p9UC0chfXcg
  3. https://www.ncbi.nlm.nih.gov/pubmed/?term=pulsed+electromagnetic+therapy
  4. https://link.springer.com/article/10.1134/S0006350910040081
  5. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-051X.1998.tb02447.x
  6. https://www.researchgate.net/profile/Behnam_Mahdavi/publication/234001536_The_Effect_of_Magnetic_Water_on_Growth_and_Quality_Improvement_of_Poultry/links/00b49534bdc7f0d53c000000.pdf
  7. https://www.tandfonline.com/doi/abs/10.1081/JBC-100100303
  8. https://www.sciencedirect.com/science/article/pii/S0378377409000900
  9. https://www.fractalwater.com/research/magnetic-water-technology-research/
  10. https://www.pnas.org/content/113/30/8424
  11. https://www.ncbi.nlm.nih.gov/pubmed/21446714
  12. http://www.ust.caltech.edu/press/index.html
  13. https://www.mdpi.com/2073-4441/2/3/566
  14. http://www.i-sis.org.uk/Quantum_Coherent_Water_Life.php
  15. https://en.wikipedia.org/wiki/Jacques_Benveniste
  16. https://www.ncbi.nlm.nih.gov/pubmed/26678732?report=abstract
  17. https://arxiv.org/abs/1501.01620
  18. https://www.sott.net/article/221727-Nobel-Prize-Winner-Claims-DNA-Teleports
  19. https://www.infoceuticals.co/en/posts/nikolai-p-kravkov-informational-influence-of-pharmacological-agents-on-biological-tissues
  20. http://www.highdilution.org/index.php/ijhdr
  21. https://www.ncbi.nlm.nih.gov/pubmed/26890179
  22. https://www.cdc.gov/nchs/nhis/nhis_2012_data_release.htm
  23. https://nhmrc.gov.au/about-us/publications/evidence-effectiveness-homeopathy-treating-health-conditions
  24. https://www.ncbi.nlm.nih.gov/pubmed/21205644
  25. https://www.ncbi.nlm.nih.gov/pubmed/20603119
  26. https://academicjournals.org/journal/AJMR/article-abstract/275481D30221
  27. https://journals.athmsi.org/index.php/ajtcam/article/view/2567
  28. https://www.ncbi.nlm.nih.gov/pubmed/29298098
  29. http://www.unconv-science.org/en/e2/surinov/
  30. http://www.masaru-emoto.net/english/water-crystal.html
  31. https://www.ncbi.nlm.nih.gov/pubmed/17560346
  32. https://www.ncbi.nlm.nih.gov/pubmed/16822162
  33. https://lynnemctaggart.com/korotkov1/
  34. https://www.ncbi.nlm.nih.gov/pubmed/11207756
  35. http://theafricainstitute.uwo.ca/people/affiliated_faculty/gregor_reid.html

 

RESEARCH

* The upper-airway microbiota and loss of asthma control among asthmatic children. Nature Communications 2019, 10, 5714. doi: 10.1038/s41467-019-13698-x.

* Rectal Microbiome Composition Correlates with Humoral Immunity to HIV-1 in Vaccinated Rhesus Macaques. Sonny R. Elizaldi et al. mSphere 2019; 4 (6) DOI: 10.1128/mSphere.00824-19.

* Cognitive performance in relation to hydration status and water intake among older adults, NHANES 2011–2014. Bethancourt, H.J., Kenney, W.L., Almeida, D.M. et al. Eur J Nutr (2019) doi:10.1007/s00394-019-02152-9.

* Mitochondrial DNA stress signalling protects the nuclear genome. Nature Metabolism, 2019; 1 (12): 1209 DOI: 10.1038/s42255-019-0150-8.

* High glycemic index and glycemic load diets as risk factors for insomnia: analyses from the Women’s Health Initiative. American Journal of Clinical Nutrition 2019,  DOI: 10.1093/ajcn/nqz275.

* Health Benefits of Air Pollution Reduction. Annals of the American Thoracic Society, 2019; 16 (12): 1478 DOI: 10.1513/AnnalsATS.201907-538CME

* Relative D3 vitamin deficiency and consequent cognitive impairment in an animal model of Alzheimer’s disease: Potential involvement of collapsin response mediator protein-2. Neuropharmacology. 2019 Dec 12:107910. doi: 10.1016/j.neuropharm.2019.107910.

* Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Nov 30:158580. doi: 10.1016/j.bbalip.2019.158580.

* Biotin Supplementation Ameliorates Murine Colitis by Preventing NF-κB Activation.

Cell Mol Gastroenterol Hepatol. 2019 Nov 28. pii: S2352-345X(19)30166-3. DOI: 10.1016/j.jcmgh.2019.11.011. Free full text.

* BPA: have flawed analytical techniques compromised risk assessments? The Lancet Diabetes & Endocrinology, 2019; DOI: 10.1016/S2213-8587(19)30381-X.

* Enriched Marine Oil Supplements Increase Peripheral Blood Specialized Pro-Resolving Mediators Concentrations and Reprogram Host Immune Responses: A Randomized Double-Blind Placebo-Controlled Study. Circulation Research 2019, 12 Dec, https://doi.org/10.1161/CIRCRESAHA.119.315506. Open access.

* Sexual dimorphism in immune development and in response to nutritional intervention in neonatal piglets. Frontiers in Immunology 2019: 10.3389/fimmu.2019.02705.  

December 2019

NEWS

Association of the Functional Medicine Model of Care with Patient-Reported Health-Related Quality-of-Life Outcomes. Beidelschies M, Alejandro-Rodriguez M, Ji X, Lapin B, Hanaway P, Rothberg MB. JAMA Netw Open 2019, 2(10):e1914017. doi:https://doi.org/10.1001/jamanetworkopen.2019.14017.

Discrepancies in the Registries of Diet vs Drug Trials. Ludwig DS, Ebbeling CB, Heymsfield SB. JAMA Netw Open 2019;2(11):e1915360. doi:https://doi.org/10.1001/jamanetworkopen.2019.15360.

Attenuation of capsaicin-induced ongoing pain and secondary hyperalgesia during exposure to an immersive virtual reality environment. Sam W. Hughes et al. PAIN Reports 2019; 1 DOI: 10.1097/PR9.0000000000000790.

Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Zeljko Pedisic et al. British Journal of Sports Medicine, 2019; bjsports-2018-100493 DOI: 10.1136/bjsports-2018-100493

Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics. Claire Robertson et al. Archives of Disease in Childhood – Fetal and Neonatal Edition, 2019; fetalneonatal-2019-317346 DOI: 10.1136/archdischild-2019-317346.

Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Nina E. Fultz et al. Science,  01 Nov 2019, 366, Issue 6465, 628-631, doi: 10.1126/science.aax5440.
The Glymphatic System: A Beginner’s Guide. Jessen NA et al. Neurochem Res 2015, Dec;40(12):2583-99. doi: 10.1007/s11064-015-1581-6.

Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. Jamie N. Justice et al. EBioMedicine 2019, doi: 10.1016/j.ebiom.2018.12.052.

Quercetin, Inflammation and Immunity. Li Y et al. Nutrients 2016, Mar 15;8(3):167,  doi: 10.3390/nu8030167.

Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease.

Hickson, LaTonya J. et al. EBioMedicine 2019,47, 446–456.

IHCAN chat – Marta Anhelush

  1. Teitella M, Richardson B. DNA methylation in the immune system. Clinical Immunology. 2003;109:2–5.
  2. Pacis A et al. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 2015, Dec;25(12):1801-11.
  3. Partearroyo T et al. Vitamin B(12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats. Nutrients. 2013;5(12):4836–4848.
  4. Tserel L et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Scientific Reports 5, Article number: 13107.
  5. Gallagher JC. Vitamin D and Aging. Endocrinology and metabolism clinics of North America. 2013;42(2):319-332.

FUNCTIONAL MEDICINE – BEN BROWN

  1. David Boothe W, Tarbox JA, Tarbox MB. Atopic Dermatitis: Pathophysiology. Adv  Exp Med Biol. 2017;1027:21-37.
  2. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014 Aug 1;4(8).
  3. Holmes AD, Spoendlin J, Chien AL, Baldwin H, Chang ALS. Evidence-based update  on rosacea comorbidities and their common physiologic pathways. J Am Acad Dermatol. 2018 Jan;78(1):156-166.
  4. Kim JE, Kim JS, Cho DH, Park HJ. Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci. 2016 Jul 30;17(8).
  5. Bland J. Functional Medicine: An Operating System for Integrative Medicine. Integr Med (Encinitas). 2015 Oct;14(5):18-20.
  6. Eyerich K, Eyerich S. Immune response patterns in non-communicable inflammatory skin diseases. J Eur Acad Dermatol Venereol. 2018 May;32(5):692-703.
  7. Ely PH. The bowel bypass syndrome: a response to bacterial peptidoglycans. J Am Acad Dermatol. 1980;2:473-487.
  8. Ely PH. Is psoriasis a bowel disease? Successful treatment with bile acids and bioflavonoids suggests it is. Clin Dermatol. 2018 May – Jun;36(3):376-389.
  9. Singer S, Koenekoop J, Meddings J, Powell J, Desroches A, Seidman EG.

Pancreatic Enzyme Supplementation in Patients with Atopic Dermatitis and Food Allergies: An Open-Label Pilot Study. Paediatr Drugs. 2019 Feb;21(1):41-45.

  1. Nguyen TA, Leonard SA, Eichenfield LF. An Update on Pediatric Atopic Dermatitis and Food Allergies. J Pediatr. 2015 Sep;167(3):752-6.
  2. Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacother. 2007 Jan;61(1):50-60.
  3. Majamaa H, Isolauri E. Evaluation of the gut mucosal barrier: evidence for increased antigen transfer in children with atopic eczema. J Allergy Clin Immunol. 1996 Apr;97(4):985-90.
  4. Rosenfeldt V, Benfeldt E, Valerius NH, Paerregaard A, Michaelsen KF. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr. 2004 Nov;145(5):612-6.
  5. Mack DR, Flick JA, Durie PR, Rosenstein BJ, Ellis LE, Perman JA. Correlation of intestinal lactulose permeability with exocrine pancreatic dysfunction. J Pediatr. 1992 May;120(5):696-701.
  6. Bowe WP, Logan AC. Acne vulgaris, probiotics and the gut-brain-skin axis -back to the future? Gut Pathog. 2011 Jan 31;3(1):1.
  7. Bowe W, Patel NB, Logan AC. Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine. Benef Microbes. 2014 Jun 1;5(2):185-99.
  8. Kim J, Ko Y, Park YK, et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010 Sep;26(9):902-9.
  9. Jung GW, Tse JE, Guiha I,et al. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to  moderate acne. J Cutan Med Surg. 2013 Mar-Apr;17(2):114-22.
  10. Fabbrocini G, Bertona M, Picazo Ó, et al. Supplementation with Lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes. 2016 Nov 30;7(5):625-630.
  11. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012 Jan 28;379(9813):361-72.
  12. Kurokawa I, Danby FW, Ju Q, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009 Oct;18(10):821-32.
  13. Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014 May;28(5):527-32.

Research briefs

Gerrit Müller, Charlotte Lübow, Günther Weindl. Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cellsAutophagy, 2019; 1 DOI: 10.1080/15548627.2019.1686728

The Influence of Ketogenic Diets on Psoriasiform-Like Skin Inflammation. Felix Locker et al. The Influence of Ketogenic Diets on Psoriasiform-Like Skin InflammationJ Investigative Dermatology 2019, doi: 10.1016/j.jid.2019.07.718.

Association of Vitamin A Intake With Cutaneous Squamous Cell Carcinoma Risk in the United States. Kim J, Park MK, Li W, Qureshi AA, Cho E. JAMA Dermatol 2019, 155 (11): 1260–68. doi: https://doi.org/10.1001/jamadermatol.2019.1937.

Real-World Prevalence of Prurigo Nodularis and Burden of Associated Diseases.

Huang AH et al. J Invest Dermatol 2019, Aug 15. pii: S0022-202X(19)32690-9. doi: 10.1016/j.jid.2019.07.697. [Epub ahead of print]

CANDIDA

  1. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen 

Kaitlin Forsberg et al. Medical Mycology 2019, Volume 57, Issue 1, January, Pages 1–12, https://doi.org/10.1093/mmy/myy054.

  1. http://www.bbc.com/earth/story/20141114-the-biggest-organism-in-the-world.
  2. Perfect, John R. The Antifungal Pipeline: A Reality Check. Nature Reviews Drug Discovery 2017, 16, May, 603: https://doi.org/10.1038/nrd.2017.46.
  3. Fisher, Matthew C., et al. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 6390, May, 739. doi:10.1126/science.aap7999.
  4. Natural history of Candidaspecies and yeasts in the oral cavities of infants

C.Russell, K.M.Lay. Archives of Oral Biology 1973, 18, 8, August, 957-962: https://doi.org/10.1016/0003-9969(73)90176-3.

  1. Markey L et al. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 2018, Nov 2;9(6):497–509: https://doi.org/10.1080/19490976.2018.1465158.
  2. Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol 2015 Oct 15;69(1):71–92: https://doi.org/10.1146/annurev-micro-091014-104330.
  3. White TC et al. Resistance Mechanisms in Clinical Isolates of Candida albicans. Antimicrob Agents Chemother 2002, Jun 1;46(6):1704: http://aac.asm.org/content/46/6/1704.abstract.

Inflammation and gastrointestinal Candida colonization. Kumamoto CA. Curr Opin Microbiol. 2011;14(4):386–391. doi:10.1016/j.mib.2011.07.015.

Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans. Gunsalus KTW et al. mSphere 2015. DOI: 10.1128/mSphere.00020-15.

Dietary Supplementation With Medium-Chain Triglycerides Reduces Candida Gastrointestinal Colonization in Preterm Infants. Arsenault AB et al. The Pediatric Infectious Disease Journal 2019;38(2): https://journals.lww.com/pidj/Fulltext/2019/02000/Dietary_Supplementation_With_Medium_Chain.17.aspx.

IN PRACTICE – Alex Manos

  1. Guilford et al. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness. Toxins (Basel). 2014 Feb; 6(2): 608–23.
  2. Kong, Changsu et al. “Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: an in vitro approach.” SpringerPlus vol. 3 346. 8 Jul. 2014, doi:10.1186/2193-1801-3-346.

 

Other resources:

Winnie-Pui-Pui Liew and Sabran Mohd-Redzwan (2018) Mycotoxin: Its Impact on Gut Health and Microbiota, Front. Cell. Infect. Microbiol., 26

Brewer et al., Detection of Mycotoxins in Patients with Chronic Fatigue Syndrome, Toxins (Basel). 2013 Apr; 5(4): 605–617.
Zain (2011) Impact of mycotoxins on humans and animals, Journal of Saudi Chemical Society Volume 15, Issue 2, Pages 129-144.

Toxic: Heal Your Body from Mold Toxicity, Lyme Disease, Multiple Chemical Sensitivities, and Chronic Environmental Illness. Neil Nathan, MD. (Victory Belt Publishing, 2018.) 

AGEING

NMN transporter study
Grozio, A., Mills, KF, Yoshino J. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab 2019, 1, 47–57, doi:10.1038/s42255-018-0009-4

RESEARCH

Vitamin D-VDR signaling inhibits Wnt/beta-catenin-mediated melanoma progression and promotes anti-tumor immunity. Sathya Muralidhar et al. Cancer Research 2019; canres.3927.2018, doi: 10.1158/0008-5472.CAN-18-3927.

Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. Dellinger, R.W., Santos, S.R., Morris M et al.  npj Aging Mech Dis 2017, 3, 17, doi:10.1038/s41514-017-0016-9.  

Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. Dellinger, R.W., Santos, S.R., Morris, M. et al.  npj Aging Mech Dis 2017, 3, 17, doi:10.1038/s41514-017-0016-9.

Principal Results of the VITamin D and OmegA-3 TriaL (VITAL) and Updated Meta-analyses of Relevant Vitamin D Trials. Manson JE, Bassuk SS, Buring JE; VITAL Research Group. J Steroid Biochem Mol Biol 2019, Nov 13:105522, doi: 10.1016/j.jsbmb.2019.105522.  

Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Parag Kundu et al. Science Translational Medicine  2019; 11 (518): eaau4760, doi: 10.1126/scitranslmed.aau4760.

Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Christina D. Camell et al. Cell Metabolism, 2019; DOI: 10.1016/j.cmet.2019.10.006.

Society for Endocrinology annual conference, 2019, P184:

Vitamin B12 Deficiency Leads To Fatty Acid Metabolism Dysregulation and Increased pro-inflammatory cytokine production in Human Adipocytes and in Maternal Subcutaneous and Omental Adipose Tissue. Jinous Samavat et al. https://www.endocrinology.org.  

November 2019

NEWS

Exploiting the Zonulin Mouse Model to Establish the Role of Primary Impaired Gut Barrier Function on Microbiota Composition and Immune Profiles. Miranda-Ribera A, Ennamorati M, Serena G, et al. Front Immunol. 2019;10:2233. doi:10.3389/fimmu.2019.02233. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761304/#B24.

Inequalities in Exposure to Nitrogen Dioxide in Parks and Playgrounds in Greater London, Charlotte Sheridan et al. International Journal of Environmental Research and Public Health. DOI: 10.3390/ijerph16173194. https://www.mdpi.com/1660-4601/16/17/3194. Also see interactive map online at https://storymaps.arcgis.com/stories/963af101f5f044cb8e998d624cef1325.

El-Salhy M, Haltebakk JG, Gilja OH, et al. Effects of faecal microbiota transplantation in patients with irritable bowel syndrome (IBS): a randomised, double-blind placebo-controlled study. Presented at UEG Week October 21, 2019.

New releases

Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells. Zeevalk GD et al.
Neurochem Res 2010 ,Oct;35(10):1575-87. doi: 10.1007/s11064-010-0217-0. Epub 2010 Jun 10.

Polyphenols From Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. Memophenol-Bensalem, J et al.  J Gerontol A Biol Sci Med Sci. 2019, Jun 18;74(7):996-1007. doi: 10.1093/gerona/gly166.
Memophenol – Activ’Inside (2019). CTS-0162-A1_Clinical study 2_one shot_what are clinical results on students_V04.
Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy. Silveri, M et al. NMR in Biomedicine 2008, 21(10), pp.1066-1075.

Improved Attentional Performance Following Citicoline Administration in Healthy Adult Women. McGlade E et al. Food and Nutrition Sciences 2012, 03(06), pp.769-77.

 BEN BROWN – Arsenic

  1. Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ Int. 2018 Mar;112:183-197.
  2. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013 Mar;121(3):295-302.
  3. Moon KA, Oberoi S, Barchowsky A, Chen Y, Guallar E, Nachman KE, Rahman M, Sohel N, D’Ippoliti D, Wade TJ, James KA, Farzan SF, Karagas MR, Ahsan H, Navas-Acien A. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int J Epidemiol. 2017 Dec 1;46(6):1924-1939.
  4. Leonardi G, Vahter M, Clemens F, Goessler W, Gurzau E, Hemminki K, Hough R, Koppova K, Kumar R, Rudnai P, Surdu S, Fletcher T. Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: a case-control study. Environ Health Perspect. 2012 May;120(5):721-6.
  5. Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. A population-based case-control study of urinary arsenic species and squamous cell  carcinoma in New Hampshire, USA. Environ Health Perspect. 2013 Oct;121(10):1154-60.
  6. European Food Safety Authority, 2014. Dietary exposure to inorganic arsenic in the European population. EFSA Journal 2014;12(3):3597, 68 pp. doi:10.2903/j.efsa.2014.3597
  7. Ander EL, Watts MJ, Smedley PL, Hamilton EM, Close R, Crabbe H, Fletcher T, Rimell A, Studden M, Leonardi G. Variability in the chemistry of private drinking water supplies and the impact of domestic treatment systems on water quality. Environ Geochem Health. 2016 Dec;38(6):1313-1332.
  8. Abrahams, P. W., & Thornton, I. (1994). The contamination of agricultural land in the metalliferous province of southwest England: Implications to livestock. Agriculture, Ecosystems and Environment, 48(2), 125–137.
  9. Antonelli R, Shao K, Thomas DJ, Sams R 2nd, Cowden J. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ Res. 2014 Jul;132:156-67.
  10. Hughes MF, Edwards BC, Herbin-Davis KM, Saunders J, Styblo M, Thomas DJ. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicol Appl Pharmacol. 2010 Dec 15;249(3):217-23.
  11. Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018 Aug 21;38:401-429.
  12. Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018 Aug 21;38:401-429.
  13. Sharma A, Flora SJS. Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol. 2018 Jan;45:11-20.
  14. Signes-Pastor AJ, Vioque J, Navarrete-Muñoz EM, Carey M, García-Villarino M, Fernández-Somoano A, Tardón A, Santa-Marina L, Irizar A, Casas M, Guxens M, Llop  S, Soler-Blasco R, García-de-la-Hera M, Karagas MR, Meharg AA. Inorganic arsenic  exposure and neuropsychological development of children of 4-5 years of age living in Spain. Environ Res. 2019 Jul;174:135-142.
  15. Frediani JK, Naioti EA, Vos MB, Figueroa J, Marsit CJ, Welsh JA. Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005-2014. Environ Health. 2018 Jan 15;17(1):6.
  16. Molin M, Ulven SM, Dahl L, Lundebye AK, Holck M, Alexander J, Meltzer HM, Ydersbond TA. Arsenic in seafood is associated with increased thyroid-stimulating hormone (TSH) in healthy volunteers – A randomized controlled trial. J Trace Elem Med Biol. 2017 Dec;44:1-7.
  17. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013 Mar;121(3):295-302.
  18. Crinnion W. Arsenic: The Underrecognized Common Disease-inducing Toxin. Integr Med (Encinitas). 2017 Apr;16(2):8-13.
  19. Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci Total Environ. 2017 Feb 1;579:1228-1239.
  20. Hasanato RM, Almomen AM. Unusual presentation of arsenic poisoning in a case of celiac disease. Ann Saudi Med. 2015 Mar-Apr;35(2):165-7.
  21. Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A. Poultry Consumption and Arsenic Exposure in the U.S. Population. Environ Health Perspect. 2017 Mar;125(3):370-377.
  22. Lundebye AK, Lock EJ, Rasinger JD, Nøstbakken OJ, Hannisdal R, Karlsbakk E, Wennevik V, Madhun AS, Madsen L, Graff IE, Ørnsrud R. Lower levels of Persistent  Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environ Res. 2017 May;155:49-59.
  23. Wilson D, Hooper C, Shi X. Arsenic and lead in juice: apple, citrus, and apple-base. J Environ Health. 2012 Dec;75(5):14-20
  24. Wilson D. Arsenic Content in American Wine. J Environ Health. 2015 Oct;78(3):16-22.
  25. Majumdar J, Mukhopadhyay S, Chandrakar A, Sengupta S, Ghosh B. A Reversible Case of Chronic Arsenicosis due to Homeopathy Medicine. J Assoc Physicians India. 2019 Apr;67(4):94-95.
  26. Mwale T, Rahman MM, Mondal D. Risk and Benefit of Different Cooking Methods on Essential Elements and Arsenic in Rice. Int J Environ Res Public Health. 2018 May 23;15(6).
  27. Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018 Aug  21;38:401-429
  28. Brouwer OF, Onkenhout W, Edelbroek PM, de Kom JF, de Wolff FA, Peters AC. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin Neurol Neurosurg. 1992;94(4):307-10.
  29. Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, et al. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 2007;86:1202–9.
  30. Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V, et al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am J Clin Nutr 2006;84:1093–101.
  31. Bozack AK, Hall MN, Liu X, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutr. 2019 Feb 1;109(2):380-391.
  32. Zwolak I. The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific Literature. Biol Trace Elem Res. 2019 Mar 15. doi: 10.1007/s12011-019-01691-w. [Epub ahead of print]
  33. Monroy Torres R, Espinosa Pérez A, Ramírez Gómez X, Carrizales Yáñez L, Linares Segovia B, Mejía Saavedra J. [Effect of a four-week vitamin and mineral supplementation on the nutritional status and urinary excretion of arsenic inadolescents]. Nutr Hosp. 2018 Jun 22;35(4):894-902.
  34. Rhaman M, SKider M, Maidul Islam A, et al. Spirulina as food supplement is effective in arsenicosis. Journal of Pakistan Association of Dermatologists 2006; 16: 86-92.
  35. Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018 Aug 21;38:401-429
  36. Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, Reid G. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio. 2014 Oct 7;5(5):e01580-14.

PCOS and NUTRIGENOMICS – GEORGIA MARRION

  1. Boyle J, Teede HJ. Polycystic ovary syndrome – an update. Aust Fam Physician 2012;41(10):752-756. [Abstract]
  2. Ha L, Shi Y, Zhao J, et al. Association between polycystic ovarian syndrome and the susceptibility genes polymorphisms in Hui Chinese women. PLoS One 2015;10(5):e0126505. [Full Text]
  3. El-Shal AS, Zidan HE, Rashad NM, et al. Association between genes encoding components of the luteinizing hormone – choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. Int Union Biochem Mol Biol 2015;68(1):23-36. [Abstract]
  4. Livadas S, Diamanti-Kandarakis E. Polycystic ovary syndrome: definitions, phenoytypes and diagnostic approach. Front Horm Res 2013;40:1-21. [Abstract]
  5. Sanchez de Melo AS, Dias SV, Cavalli RDC, et al. Pathogenesis of polycystic ovary syndrome: multifactorial assessment from the foetal stage to menopause. Soc Repr Fertil 2015;150:R11-R24.[Abstract]
  6. Pau CT, Mosbruger T, Saxena R, et al. Phenotype and tissue expression as a function of genetic risk of polycystic ovary syndrome. PLoS One 2017;12(1):e0168870.[Abstract]
  7. Casarini L, Riccetti L, de Pascali F, et al. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. Int J Mol Sci 2017;18(5).[Abstract]
  8. Jones RE, Lopez KH. Human reproductive biology, 3rd edn. Elsevier, Sydney. 2006.[Source]
  9. Mehrabian F, Afghahi M. Can sex-hormone binding globulin be considered as a predictor of response to pharmacological treatment in women with polycystic ovary syndrome? Int J Prev Med 2013;4(10):1169-1174.[Full Text]
  10. McAllister JM, Legro RS, Modi BP, et al. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 2015;26(3):118-124.[Full Text]
  11. Briden L. Period repair manual. Lara Briden, 2015.[Abstract]
  12. Macut D, Pfeifer M, Yildiz BO, et al. Polycystic ovary syndrome: novel insights into causes and therapy. Front Horm Res. Basel, Karger 2013;40:1-21.[Abstract]
  13. Allahbadia GN, Merchant R. Polycystic ovary syndrome and impact on health. Middle East Fertil Society J 2011;16(1):19-37.[Abstract]
  14. Welt CK, Duran JM. The genetics of polycystic ovary syndrome. Semin Reprod Med 2014;32(3):177-182.[Abstract]
  15. Almawi WY, Hubail B, Arekat D, et al. Luteinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome. J Assist Reprod Genet 2015;32:607-614.[Abstract]
  16. Clark NM, Podolski AJ, Brooks ED, et al. Prevalence of polycystic ovary syndrome phenotypes using updated criteria for polycystic ovarian morphology. Reprod Sci 2014;21(8):1034-1043.[Abstract]
  17. Barbieri RL, Makris A, Randall RW, et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab 1986;62:904-910.[Abstract]
  18. Nestler JE, Jakubowicz DJ, de Vargas AF, et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998;83:2001-2005.[Abstract]
  19. Kumar A, Woods KS, Bartolucci AA, et al. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2005;62:644-649.[Abstract]
  20. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008;14:367-378.[Abstract]
  21. Papalou O, Diamanti-Kandarakis E. The role of stress in PCOS. Expert review of endocrinology and metabolism 2017;12(1):87-95.  [Abstract]
  22. Kahsar-Miller MD, Nixon C, Boots LR, et al. Prevalence of polycystic ovary syndrome (PCOS) in first degree relatives of patients with PCOS. Fertil Steril 2001;75:53-58.[Abstract]
  23. Colilla S, Cox NJ, Ehrmann DA. Heritability of insulin secretion and insulin action in women with polycystic ovary syndrome and their first degree relatives. J Clin Endocrinol Metab 2001;86:2027- 2031.  [Abstract]
  24. Legro RS, Bentley-Lewis R, Driscoll D, et al. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002;87:2128-2133.[Full Text]
  25. Legro RS, Driscoll D, Strauss JF, et al. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A. 1998;95:14956-14960.[Full Text]
  26. Yildiz BO, Goodarzi MO, Guo X, et al. Heritability of dehydroepiandrosterone sulfate in women with polycystic ovary syndrome and their sisters. Fertil Steril 2006;86:1688-1693.[Abstract]
  27. Vink JM, Sadrzadeh S, Lambalk CB, et al. Heritability of polycystic ovary syndrome in a Dutch twinfamily study. J Clin Endocrinol Metab 2006;91:2100-2104.[Abstract]
  28. Jones MR, Brower MA, Xu N, et al. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet 2015;11(8):e1005455.[Abstract]
  29. Kumar TJ. ‘Been hit twice’: a novel bi-allelic heterozygous mutation in LHCGR. J Assist Reprod Genet 2014;31:783-786. [Abstract]
  30. Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res 2009;71:75-82.[Abstract]
  31. Thathapudi S, Kodati V, Erukkambattu J, et al. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism with polycystic ovarian syndrome. Genet Test Mol Bio 2015;19(3):128-132.[Abstract]
  32. The US National Library of Medicine. Viewed 14 July 2018, [Abstract]
  33. Thangavelu M, Godla UR, Paul SFD, et al. Single nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. J Genetics 2017;96(1):87-96.[Abstract]
  34. Dunaif A. Perspectives in polycystic ovary syndrome: from hair to eternity. J Clin Endocrinol Metab 2016;101(3):759-768.[Abstract]

Thymus
Fahy, GM, Brooke, RT, Watson, JP, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019; 00:e13028. https://doi.org/10.1111/acel.13028.
DNA methylation age of human tissues and cell types. Horvath S. Genome Biol. 2013;14(10):R115.

Breast cancer
Vitamin D pathway related polymorphisms and vitamin D receptor expression in breast cancer. Francis I. Int J Vitam Nutr Res. 2019 Oct 18:1-9. doi: 10.1024/0300-9831/a000615.
Tumor Autonomous Effects of Vitamin D Deficiency Promote Breast Cancer Metastasis. Williams JD et al. Endocrinology. 2016 Apr;157(4):1341-7. doi: 10.1210/en.2015-2036. Epub 2016 Mar 2.

ANTIOXIDANTS

A randomized placebo-controlled trial to investigate the effect of lactolycopene on semen quality in healthy males. Elizabeth A. Williams, Madeleine Parker, Aisling Robinson, Sophie Pitt, Allan A. Pacey. European Journal of Nutrition, 2019,  DOI: 10.1007/s00394-019-02091-5.

Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z. Aging (Albany NY). 2012 Apr 11. [Epub ahead of print]

Rate of Change of Circulating 25-Hydroxyvitamin D Following Sublingual and Capsular Vitamin D Preparations. Williams, Claire E., Elizabeth A. Williams, and Bernard M. Corfe. European Journal of Clinical Nutrition, September 23, 2019. https://doi.org/10.1038/s41430-019-0503-0.

Antioxidants: Scientific Literature Landscape Analysis. Oxid Med Cell Longev. 2019 Jan 8;2019:8278454. doi: 10.1155/2019/8278454. eCollection 2019. Yeung AWK et al.
Evaluation of antioxidant treatments for the modulation of macrophage function in the context of retinal degeneration. Elbaz-Hayoun S et al. Mol Vis. 2019 Sep 5;25:479-488. eCollection 2019.

Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration T. Rezaie et al.

Investigative Ophthalmology & Visual Science, 2012; DOI: 10.1167/iovs.12-10793.

RESEARCH
Creatine uptake regulates CD8 T cell antitumour immunity. Stefano Di Biase, Xiaoya Ma, Xi Wang, Jiaji Yu, Yu-Chen Wang, Drake J. Smith, Yang Zhou, Zhe Li, Yu Jeong Kim, Nicole Clarke, Angela To, Lili Yang. The Journal of Experimental Medicine 2019; jem.20182044 DOI: 10.1084/jem.20182044.

Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Miguel Rebollo-Hernanz, Qiaozhi Zhang, Yolanda Aguilera, Maria A. Martín-Cabrejas, Elvira Gonzalez de Mejia.  Food and Chemical Toxicology, 2019; 132: 110672 DOI: 10.1016/j.fct.2019.110672

Intra-articular Corticosteroid Injections in the Hip and Knee: Perhaps Not as Safe as We Thought? Andrew J. Kompel, Frank W. Roemer, Akira M. Murakami, Luis E. Diaz, Michel D. Crema, Ali Guermazi. Radiology, 2019; 190341 DOI: 10.1148/radiol.2019190341.

Ming-Feng Hsueh, Patrik Önnerfjord, Michael P. Bolognesi, Mark E. Easley, Virginia B. Kraus. Analysis of “old” proteins unmasks dynamic gradient of cartilage turnover in human limbsScience Advances, 2019; 5 (10): eaax3203 DOI: 10.1126/sciadv.aax3203.

Cartilage regeneration – SIMON MARTIN

Prof Keith Baar: personal communication, and quotes from a Just Fly Sports podcast, July 3 2019, complete transcript at https://www.just-fly-sports.com/podcast-156-keith-barr-transcripts. Recommend following him on Twitter: @MuscleScience. All his papers are listed on his UC Davis website at http://fmblab.com – except the seminal first one on tendon repair! That is:
Rehabilitation and nutrition protocols for optimising return to play from traditional ACL reconstruction in elite rugby union players: A case study. Gregory Shaw, Ben Serpell & Keith Baar. Journal of Sports Sciences 2019, 37:15, 1794-1803, DOI: 10.1080/02640414.2019.1594571.
Also worth listening to is the Institute of Performance Nutrition’s podcast with Dr Laurent Bannock interviewing Prof Baar: http://wedoscience.com/episode-110-collagen-peptides-with-prof-keith-baar

Dr Kaayla Daniel: http://drkaayladaniel.com. She reports on Dr Prudden’s research here: http://drkaayladaniel.com/wise-words-from-dr-john-f-prudden.
She has fully explained the history and science behind bone broth in contributions to Nourishing Broth: An Old-Fashioned Remedy for the Modern World (the follow-up book to Nourishing Traditions), co-authored with Sally Fallon Morell of the Weston A. Price Foundation.

Advertorial – page 16:

Aminzadeh et al. (2016) Frequency of Candidiasis and Colonization of Candida albicans in Relation to Oral Contraceptive Pills. Iranian Red Crescent medical journal, 18(10), e38909.

Blasi et al. (1992) Early differential molecular response of a macrophage cell line to yeast and hyphal forms of Candida albicans. Infection and immunity, 60(3), 832–837.

Chauvel et al. (2012) A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PloS one, 7(9), e45912.

Cheng et al. (2006) Cellular and Molecular Biology of Candida albicans Estrogen Response. Eukaryotic Cell, 5 (1) 180-191.

Edman et al. (1986) Zinc status in women with recurrent vulvovaginal candidiasis. American Journal of Obstetrics & Gynecology, 155(5), 1082 – 1085

Finkel and Mitchell (2011) Genetic control of Candida albicans biofilm development. Nature reviews. Microbiology, 9(2), 109–118.

Ghannoum et al. (2015) The Role of Echinocandins in Candida Biofilm–Related Vascular Catheter Infections: In Vitro and In Vivo Model Systems. Clinical Infectious Diseases, 61(6), S618–S621.

Gunsalus et al. (2015) Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans. mSphere 1(1):e00020-15.

Hall et al. (2010) CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida

albicans. PLoS Pathog, 6(11): e1001193.

Horowitz et al. (1984) Sugar chromatography studies in recurrent Candida vulvovaginitis. Journal of Reproductive Medicine, 29(7) 441-443.

Kim et al. (2016) Oral manifestations in vitamin B12 deficiency patients with or without history of gastrectomy. BMC oral health, 16(1), 60.

Krasowska et al. (2009) The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Research, 9(8), 1312–1321.

Manohar et al. (2001) Anti-fungal activities of Origanum oil against Candida albicans. Molecular and Cellular Biochemistry, 228,111-117.

Marangoni et al. (2017) In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS ONE, 12(11): e0188567.

Martinez et al. (2009) Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Letters in applied microbiology, 48. 269-74.

Mathé and Van Dijck, (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Current genetics, 59(4), 251–264.

Matsubara et al. (2016). Probiotics as Antifungals in Mucosal Candidiasis. Clinical Infectious Diseases, 62. 1143–53.

Meri et al. (2004) The Hyphal and Yeast Forms of Candida albicans Bind the Complement Regulator C4b-Binding Protein. Infection and immunity, 72. 6633-41.

Murzyn et al, (2010) The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiol Letter, 310, 17–23.

Nobile and Johnson (2015) Candida albicans Biofilms and Human Disease. Annual review of microbiology69, 71–92.

Paillaud et al. (2004) Oral candidiasis and nutritional deficiencies in elderly hospitalised patients. British Journal of Nutrition, 92(5), 861-867.

Peters et al. (2014) Candida vaginitis: when opportunism knocks, the host responds. PLoS pathogens, 10(4), e1003965.

Pfaller et al. (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48: 1366–1377.

Pietrzak et al. (2018) Prevalence and Possible Role of Candida Species in Patients with Psoriasis: A Systematic Review and Meta-Analysis. Mediators of Inflammation, vol. 2018, Article ID 9602362, 7 pages.

Santana et al. (2013) Dietary carbohydrates modulate Candida albicans biofilm development on the denture surface. PloS one, 8(5), e64645.

Shuford et al. (2005) Effects of fresh garlic extract on Candida albicans biofilms. Antimicrobial agents and chemotherapy, 49(1), 473.

Takahashi et al. (2012) Inhibition of Candida Mycelia Growth By a Medium Chain Fatty Acids, Capric Acid in Vitro and Its Therapeutic Efficacy in Murine Oral Candidiasis]. Medical Mycology Journal, 53(4), 255-61.

Tournu and Van Dijck (2012) Candida Biofilms and the Host: Models and New Concepts for Eradication, International Journal of Microbiology, vol. 2012, Article ID 845352, 16 pages.

Tsui et al. (2016) Pathogenesis of Candida albicans Biofilm. Pathogens and Disease, 74. ftw018.

Tsutsumi-Arai et al. (2019) Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. PLoS ONE 14(5): e0217496.

Turner and Butler (2014) The Candida pathogenic species complex. Cold Spring Harbor perspectives in medicine, 4(9), a019778.

Uppuluri et al. (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS pathogens, 6(3), e1000828.

Vargas et al. (1993) Modulating effect of dietary carbohydrate supplementation on Candida albicans colonization and invasion in a neutropenic mouse model. Infection and immunity, 61, 619-26.

Williams and Lewis (2011) Pathogenesis and treatment of oral candidosis. Journal of oral microbiology, 3, 10.3402/jom.v3i0.5771.

Williams et al. (2013) Interactions of Candida albicans with host epithelial surfaces. Journal of oral microbiology, 5, 10.3402/jom.v5i0.22434.

October 2019

WELCOME -Simon Martin

  1. Ashkan Afshin, Patrick John Sur, Kairsten A. Fay, Leslie Cornaby, Giannina Ferrara, Joseph S Salama, Erin C Mullany, Kalkidan Hassen Abate, Cristiana Abbafati, Zegeye Abebe, Mohsen Afarideh, Anju Aggarwal, Sutapa Agrawal, Tomi Akinyemiju, Fares Alahdab, Umar Bacha, Victoria F Bachman, Hamid Badali, Alaa Badawi, Isabela M Bensenor, Eduardo Bernabe, Sibhatu Kassa K Biadgilign, Stan H Biryukov, Leah E Cahill, Juan J Carrero, Kelly M. Cercy, Lalit Dandona, Rakhi Dandona, Anh Kim Dang, Meaza Girma Degefa, Maysaa El Sayed Zaki, Alireza Esteghamati, Sadaf Esteghamati, Jessica Fanzo, Carla Sofia e Sá Farinha, Maryam S Farvid, Farshad Farzadfar, Valery L. Feigin, Joao C Fernandes, Luisa Sorio Flor, Nataliya A. Foigt, Mohammad H Forouzanfar, Morsaleh Ganji, Johanna M. Geleijnse, Richard F Gillum, Alessandra C Goulart, Giuseppe Grosso, Idris Guessous, Samer Hamidi, Graeme J. Hankey, Sivadasanpillai Harikrishnan, Hamid Yimam Hassen, Simon I. Hay, Chi Linh Hoang, Masako Horino, Farhad Islami, Maria D. Jackson, Spencer L. James, Lars Johansson, Jost B. Jonas, Amir Kasaeian, Yousef Saleh Khader, Ibrahim A. Khalil, Young-Ho Khang, Ruth W Kimokoti, Yoshihiro Kokubo, G Anil Kumar, Tea Lallukka, Alan D Lopez, Stefan Lorkowski, Paulo A. Lotufo, Rafael Lozano, Reza Malekzadeh, Winfried März, Toni Meier, Yohannes A Melaku, Walter Mendoza, Gert B.M. Mensink, Renata Micha, Ted R Miller, Mojde Mirarefin, Viswanathan Mohan, Ali H Mokdad, Dariush Mozaffarian, Gabriele Nagel, Mohsen Naghavi, Cuong Tat Nguyen, Molly R Nixon, Kanyin L Ong, David M. Pereira, Hossein Poustchi, Mostafa Qorbani, Rajesh Kumar Rai, Christian Razo-García, Colin D Rehm, Juan A Rivera, Sonia Rodríguez-Ramírez, Gholamreza Roshandel, Gregory A Roth, Juan Sanabria, Tania G Sánchez-Pimienta, Benn Sartorius, Josef Schmidhuber, Aletta Elisabeth Schutte, Sadaf G. Sepanlou, Min-Jeong Shin, Reed J.D. Sorensen, Marco Springmann, Lucjan Szponar, Andrew L Thorne-Lyman, Amanda G Thrift, Mathilde Touvier, Bach Xuan Tran, Stefanos Tyrovolas, Kingsley Nnanna Ukwaja, Irfan Ullah, Olalekan A Uthman, Masoud Vaezghasemi, Tommi Juhani Vasankari, Stein Emil Vollset, Theo Vos, Giang Thu Vu, Linh Gia Vu, Elisabete Weiderpass, Andrea Werdecker, Tissa Wijeratne, Walter C Willett, Jason H Wu, Gelin Xu, Naohiro Yonemoto, Chuanhua Yu, Christopher J L Murray. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017The Lancet, 2019; 393 (10184): 1958 DOI: 10.1016/S0140-6736(19)30041-8

NEWS

Probiotics Reduce Health Care Cost and Societal Impact of Flu-Like Respiratory Tract Infections in the USA: An Economic Modeling Study. Irene Lenoir-Wijnkoop et al. Frontiers in Pharmacology, 2019; 10 DOI: 10.3389/fphar.2019.00980.

Circulating Micronutrient Biomarkers Are Associated With 3 Measures of Frailty: Evidence From the Irish Longitudinal Study on Ageing. Aisling M. O’Halloran, et al. JAMDA 2019, Sept: in press. DOI: https://doi.org/10.1016/j.jamda.2019.06.011

Prolonging healthy aging: Longevity vitamins and proteins. Bruce N. Ames.

Proceedings of the National Academy of Sciences Oct 2018, 115 (43) 10836-10844; DOI: 10.1073/pnas.1809045115.

Emma Derbyshire. Could we be overlooking a potential choline crisis in the United Kingdom? BMJ Nutrition, Prevention & Health, 2019; bmjnph-2019-000037 DOI: 10.1136/bmjnph-2019-000037

Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Slaven Stekovic et al. Cell Metabolism 2019; DOI: 10.1016/j.cmet.2019.07.016

BEN BROWN – glutathione

  1. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12.
  2. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004 Mar;134(3):489-92.
  3. Deponte M. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures? Antioxid Redox Signal. 2017 Nov 20;27(15):1130-1161
  4. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999 Nov;27(9-10):916-21.
  5. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004 Mar;134(3):489-92.
  6. Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a Marker for Human Disease. Adv Clin Chem. 2018;87:141-159.
  7. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007 Aug;7(4):355-9.
  8. Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018;115:288–97.
  9. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014 Feb;141(2):150-9.
  10. Lang CA, Mills BJ, Mastropaolo W, Liu MC. Blood glutathione decreases in chronic diseases. J Lab Clin Med. 2000 May;135(5):402-5.
  11. van ‘t Erve TJ, Wagner BA, Ryckman KK, Raife TJ, Buettner GR. The concentration of glutathione in human erythrocytes is a heritable trait. Free Radic Biol Med. 2013 Dec;65:742-749.
  12. Richie JP Jr, Abraham P, Leutzinger Y. Long-term stability of blood glutathione and cysteine in humans. Clin Chem. 1996 Jul;42(7):1100-5.
  13. Sedda V, De Chiara B, Parolini M, et al. Plasma glutathione levels are independently associated with γ-glutamyltransferase activity in subjects with cardiovascular risk factors. Free. Radic. Res. 2008;42(2):135–141.
  14. Koenig G, Seneff S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis Markers. 2015;2015:818570.
  15. Lee DH, Jacobs DR Jr. Is serum gamma-glutamyltransferase a marker of exposure to various environmental pollutants? Free Radic Res. 2009 Jun;43(6):533-7.
  16. Bulusu S, Sharma M. What does serum γ-glutamyltransferase tell us as a cardiometabolic risk marker? Ann Clin Biochem. 2016 May;53(Pt 3):312-32.
  17. Bradley R, Fitzpatrick AL, Jenny NS, Lee DH, Jacobs DR Jr. Associations between total serum GGT activity and metabolic risk: MESA. Biomark Med. 2013 Oct;7(5):709-21.
  18. Bulusu S, Sharma M. What does serum γ-glutamyltransferase tell us as a cardiometabolic risk marker? Ann Clin Biochem. 2016 May;53(Pt 3):312-32.
  19. Lee DH, Steffes MW, Jacobs DR Jr. Can persistent organic pollutants explain the association between serum gamma-glutamyltransferase and type 2 diabetes? Diabetologia. 2008 Mar;51(3):402-7.
  20. Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients. 2019 Sep 3;11(9).

 

IBS

Colonic spirochetosis is associated with colonic eosinophilia and irritable bowel syndrome in a general population in Sweden. Walker MM et al. Hum Pathol. 2015 Feb;46(2):277-83. doi: 10.1016/j.humpath.2014.10.026. Epub 2014 Nov 15.

 

Hazel A Everitt, Sabine Landau, Gilly O’Reilly, Alice Sibelli, Stephanie Hughes, Sula Windgassen, Rachel Holland, Paul Little, Paul McCrone, Felicity L Bishop, Kim Goldsmith, Nicholas Coleman, Robert Logan, Trudie Chalder, Rona Moss-Morris. Cognitive behavioural therapy for irritable bowel syndrome: 24-month follow-up of participants in the ACTIB randomised trialThe Lancet Gastroenterology & Hepatology, 2019; DOI: 10.1016/S2468-1253(19)30243-2

Congenital sucrase-isomaltase deficiency: https://ghr.nlm.nih.gov/condition/congenital-sucrase-isomaltase-deficiency.

Sucrase-Isomaltase Deficiency as a Potential Masquerader in Irritable Bowel Syndrome.

Kim, S.B., Calmet, F.H., Garrido, J. et al. Dig Dis Sci (2019). https://doi.org/10.1007/s10620-019-05780-7.

Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome. Henström M, Diekmann L, Bonfiglio F, et al. Gut 2018, 67: 263-270. http://dx.doi.org/10.1136/gutjnl-2016-312456.

Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Shuai Wang et al. Microbiome 2019; 7 (1) DOI: 10.1186/s40168-019-0740-4

CBD – Dr Elisabeth Philipps

  1. https://www.bbc.co.uk/programmes/p054ghbk.
  2. https://www.rugbyworld.com/news/blogs/playing-pain-investigation-painkiller-use-rugby-77805.
  3. https://www.bbc.co.uk/sport/39349956.
  4. Jay L Goldstein (2015) Gastrointestinal injury associated with NSAID use: a case study and review of risk factors and preventative strategies

Drug Healthc Patient Saf 7: 31–41. 

  1. https://www.irishtimes.com/sport/rugby/brian-o-driscoll-s-painkiller-comments-open-up-a-can-of-worms-for-rugby-1.3723037.
  2. https://www.bbc.co.uk/sport/39333763.
  3. https://www.bbc.co.uk/news/health-26070749.
  4. https://www.independent.co.uk/sport/football/premier-league/fletcher-can-take-heart-from-moody-recovery-6276542.html.
    9. https://www.independent.ie/life/health-wellbeing/health-features/champion-kickboxer-caradh-odonovan-on-her-painful-battle-with-crohns-disease-35508854.html
  5. Pharmaceuticals (Basel). 2010 Apr; 3(4): 1084–1092. 

Non Steroidal Anti-Inflammatory Drugs and Inflammatory Bowel Disease

Amir Klein and  Rami Eliakin.
11. Elisabeth Philipps (2019). Pain Management nutrihub webinar https://nutrihub.org/cpd-webinars.

  1. Perry G. Fine (2013) The Endocannabinoid System, Cannabinoids, and Pain Rambam Maimonides Med J 4(4): e0022.
  2. Pertwee RG. Cannabinoid receptors and pain. Prog Neurobiol. 2001 Apr; 63(5):569-611.
  3. Kozono S, Matsuyama T, Biwasa KK, et al. Involvement of the endocannabinoid system in periodontal healing. Biochem Biophys Res Commun 2010;394: 928–33.
  4. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. Campbell FA, Tramèr MR, Carroll D, Reynolds DJ, Moore RA, McQuay HJ. BMJ. 2001 Jul 7; 323(7303):13-6.
  5. Cannabinoids in pancreatic cancer: correlation with survival and pain.

Michalski CW, Oti FE, Erkan M, Sauliunaite D, Bergmann F, Pacher P, Batkai S, Müller MW, Giese NA, Friess H, Kleeff J. Int J Cancer. 2008 Feb 15; 122(4):742-50.

  1. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. J Pain Symptom Manage. 2010 Feb; 39(2):167-79.
  2. Perry G. Fine, The Endocannabinoid System, Cannabinoids, and Pain Rambam Maimonides Med J 2013, 4(4): e0022. 
  3. Klein K, et al. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the “missing heritability” problem. Frontiers in Genetics. 2013; 4:12.
  4. Zanger U, et al. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Analytical and Bioanalytical Chemistry. 2008; 392(6):1093-108.
  5. Yamaori S, et al. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life Sciences. 2011; 88(15-16):730-6.
  6. Yamaori S, et al. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metabolism and Disposition. 2011; 39(11):2049-56.
  7. Geffrey AL, et al. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015; 56(8):1246-51.
  8. Grayson L, et al. An interaction between warfarin and cannabidiol, a case report. Epilepsy & Behavior Case Reports. 2018; 9:10-11.
  9. Project CBD Releases Educational Primer on Cannabinoid-Drug Interactions. | Project CBD, 14 Jan. 2019, www.projectcbd.org/how-to/cbd-drug-interactions.
  10. Gertsch J, Pertwee RG, Di Marzo V. Phytocannabinoids beyond the Cannabis plant – do they exist? Br J Pharmacol. 2010 Jun; 160(3):523-9.

For example, the terpene beta-caryophyllene, commonly found in plants including hemp, black pepper, cinnamon, clove, and other spices, selectively binds to the CB2 receptor at nanomolar concentrations and acts as a full agonist, effectively reducing neuropathic pain in a CB2 receptor-dependent manner.

  1. Zimmer A, Racz I, Klauke AL, Markert A, Gertsch J. Betacaryophyllene, a phytocannabinoid acting on CB2 receptors. IACM 5th Conference on cannabinoids in medicine; Cologne, Germany. 2009: http://tinyurl.com/nlfozjg.
  2. Shannon S, Lewis N, Lee H, Hughes S. Cannabidiol in anxiety and sleep: A large case series. Perm J, 2019;23:18-041. DOI: https://doi.org/10.7812/TPP/18-041.
  3. J Clinical Pharmacy and Therapeutics 2014, 39, 564–566 doi: 10.1111/jcpt.12179. Case Report.
  4. Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ. Endocannabinoid signalling: has it got rhythm? Br J Pharmacol. 2010;160(3):530–43.
  5. 31. Roth T. Effects of excessive daytime sleepiness and fatigue on overall health and cognitive function. J Clin Psychiatry 2015;76(9):e1145.
  6. Murillo-Rodriguez E, Sarro-Ramirez A, Sanchez D, Mijangos- Moreno S, Tejeda-Padron A, Poot-Ake A, et al. Potential effects of cannabidiol as a wake-promoting agent. Curr Neuropharmacol. 2014;12(3):269–72
  7. Russo EB, Guy GW, Robson PJ. Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers. 2007;4(8):1729–43
  8. Nicholson AN, Turner C, Stone BM, Robson PJ. Effect of Delta-9- tetrahydrocannabinol and cannabidiol on nocturnal sleep and early- morning behavior in young adults. J Clin Psychopharmacol. 2004;24(3):305–13.
  9. https://www.wada-ama.org/en/content/what-is-prohibited/prohibited-in-competition/cannabinoids.
    36. https://www.ukad.org.uk/athlete-advisory-note-cannabidiol-cbd.

 

RESEARCH

Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. Ravinder Nagpal, Bryan J. Neth, Shaohua Wang, Suzanne Craft, Hariom Yadav. EBioMedicine 2019, DOI: 10.1016/j.ebiom.2019.08.032

Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Pryor R et al. Cell. 2019 Sep 5;178(6):1299-1312.e29. doi: 10.1016/j.cell.2019.08.003. Epub 2019 Aug 29.

Lima, YC et al. Whey protein sweetened with Stevia rebaudiana Bertoni (Bert.) increases mitochondrial biogenesis markers in the skeletal muscle of resistance-trained rats. Nutrition & Metabolism 2019, 16, 65. Open Access: https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-019-0391-2#Sec19.

Temporal changes in postprandial blood transcriptomes reveal subject-specific pattern of expression of innate immunity genes after a high-fat meal. Danielle G Lemay et al. The Journal of Nutritional Biochemistry, 2019; 72: 108209 DOI: 10.1016/j.jnutbio.2019.06.007.

Blindness Caused by a Junk Food Diet. Rhys Harrison, Vicki Warburton, Andrew Lux, Denize Atan. Annals of Internal Medicine, 2019; DOI: 10.7326/L19-0361.

IN PRACTICE – Andy Jancewicz

  1. Dayna M. Yorks, DO, et al, November 2017, Effects of Group Fitness Classes on Stress and Quality of Life of Medical Students. J American Osteopathic Association: Vol 117, No. 11.
  2. Brown B, Brain on Fire: dietary patterns for Alzheimer’s and cognitive decline.

IHCAN, October 2017, p12-15.

  1. Jancewicz A, 2001, Tai Chi Chuan’s role in maintaining independence in ageing people with chronic disease- literature review. J Bodywork and Movement Therapies, January 2001, p70-77.
  2. Blair SN, Garcia ME, 1996 Get up and move: A call to action for older men and women. J American Geriatrics Society 44: 599-600.
  3. Bland J, Personalised Lifestyle Medicine: the future – as Jeff Bland sees it.

IHCAN, May 2019, p18-19.

  1. Ashish Sharma MD et al, Letters to the Editor. Exercise for Mental Health

Prim Care Companion, J Clin Psychiatry 2006;8(2).

September 2019

The economic case for prevention of population vitamin D deficiency: a modelling study using data from England and Wales. Aguiar et’ al.  European Journal of Clinical Nutrition 2019, Aug 20. https://doi.org/10.1038/s41430-019-0486-x

Aguiar, M., Andronis, L., Pallan, M., Högler, W., and Frew, E. (2019). The economic case

Birnbaum, AK, Karanam, A, Marino, SE, et al. Food effect on pharmacokinetics of cannabidiol oral capsules in adult patients with refractory epilepsy. Epilepsia. 2019; 60: 1586– 1592. https://doi.org/10.1111/epi.16093.

Characteristics and patient pathways of Lyme disease patients: a retrospective analysis of hospital episode data in England and Wales (1998-2015) 
Tulloch et alBMC Public Health 2019 
DOI: 10.1186/s12889-019-7245-8

https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7245-8

Green R, Lanphear B, Hornung R, et al. Association Between Maternal Fluoride Exposure During Pregnancy and IQ Scores in Offspring in Canada. JAMA Pediatr. Published online August 19, 2019. doi:10.1001/jamapediatrics.2019.1729

Ashley J. Malin, Corina Lesseur, Stefanie A. Busgang, Paul Curtin, Robert O. Wright, Alison P. Sanders. Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016Environment International, 2019; 105012 DOI: 10.1016/j.envint.2019.105012

Mariosa D, Carreras-Torres R, Martin RM, Johansson M, Brennan P
What can Mendelian randomization tell us about causes of cancer?
Int J Epidemiol, 48(3):816–21. Published 25 July 2019;
https://doi.org/10.1093/ije/dyz151.

Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Ann C. Skulas-Ray et al. Ciculation 2019, 19 Aug. https://doi.org/10.1161/CIR.0000000000000709.

Prevalence and Severity of Sesame Allergy in the United States. Warren CM, Chadha AS, Sicherer SH, Jiang J, Gupta RS. JAMA Netw Open. Published online August 02, 20192(8):e199144. doi:10.1001/jamanetworkopen.2019.9144.

Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Dequina A. Nicholas et al. Cell Metabolism,

2019, online Aug 1. https://doi.org/10.1016/j.cmet.2019.07.004.

Amir Minerbi, Emmanuel Gonzalez, Nicholas J.B. Brereton, Abraham Anjarkouchian, Ken Dewar, Mary-Ann Fitzcharles, Stéphanie Chevalier, Yoram Shir. Altered microbiome composition in individuals with fibromyalgiaPAIN, 2019; 1 DOI: 10.1097/j.pain.0000000000001640.

NEWS extra

Whole genome sequencing revealed new molecular characteristics in multidrug resistant staphylococci recovered from high frequency touched surfaces in London.

Rory Cave et al. Scientific Reports 2019, vol 9, Article number: 9637. https://www.nature.com/articles/s41598-019-45886-6#Sec12.

Maija P T Ylilauri, Sari Voutilainen, Eija Lönnroos, Heli E K Virtanen, Tomi-Pekka Tuomainen, Jukka T Salonen, Jyrki K Virtanen, Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart Disease Risk Factor Study, The American Journal of Clinical Nutrition, , nqz148, https://doi.org/10.1093/ajcn/nqz148.

Effect of Montmorency tart cherry juice on cognitive performance in older adults: a randomized controlled trial. Chai SC et al.  Food Funct. 2019 Jul 17;10(7):4423-4431. doi: 10.1039/c9fo00913b.

NEW RELEASES – vitamin D

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912737/

Worm N. Heilkraft D: How the sun vitamin protects against heart attack, cancer and other lifestyle diseases. systemed Verlag, Lünen. 2010, p12.

LansdowAnaglin, Rebecca ES, et al. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. The British journal of psychiatry, 2013, 202. Jg., Nr. 2, S. 100-107.

Provost SC. Vitamin D3 enhances mood in healthy subjects during winter. Psychopharmacology (Berl). 1998 Feb;135(4):319-23.

In a study, substitution with vitamin D three times significantly shortened sputum conversion in patients with open lung tuberculosis. Lancet (2011; doi: 10.1016/S0140-6736(10)61889-2)

Reins RV and McDermott  AM: Vitamin D: Implications for Ocular Disease and Therapeutic Potential. Exp Eye Res. 2015 May; 134: 101–110.

BEN BROWN – Fibromyalgia

  1. Borchers AT, Gershwin ME. Fibromyalgia: A Critical and Comprehensive Review. Clin Rev Allergy Immunol. 2015 Oct;49(2):100-51.
  2. Queiroz LP. Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep. 2013 Aug;17(8):356.
  3. Wolfe F, Walitt B, Perrot S, Rasker JJ, Häuser W. Fibromyalgia diagnosis and biased assessment: Sex, prevalence and bias. PLoS One. 2018 Sep 13;13(9):e0203755.
  4. Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU. Fibromyalgia diagnosis:  a review of the past, present and future. Expert Rev Neurother. 2015 Jun;15(6):667-79.
  5. Choy E, Perrot S, Leon T, Kaplan J, Petersel D, Ginovker A, Kramer E. A patient survey of the impact of fibromyalgia and the journey to diagnosis. BMC Health Serv Res. 2010 Apr 26;10:102.
  6. Higgs JB. Fibromyalgia in Primary Care. Prim Care. 2018 Jun;45(2):325-341.
  7. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RL, Mease PJ, Russell AS, Russell IJ, Walitt B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. 2016 Dec;46(3):319-329.
  8. Zachrisson O, Regland B, Jahreskog M, Kron M, Gottfries CG. A rating scale for fibromyalgia and chronic fatigue syndrome (the FibroFatigue scale). J Psychosom Res. 2002 Jun;52(6):501-9.
  9. Theoharides TC, Tsilioni I, Arbetman L, Panagiotidou S, Stewart JM, Gleason RM, Russell IJ. Fibromyalgia syndrome in need of effective treatments. J Pharmacol Exp Ther. 2015 Nov;355(2):255-63.
  10. Coskun Benlidayi I. Role of inflammation in the pathogenesis and treatment of  fibromyalgia. Rheumatol Int. 2019 May;39(5):781-791.
  11. Meeus M, Nijs J, Hermans L, Goubert D, Calders P. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets? Expert Opin Ther Targets. 2013 Sep;17(9):1081-9.
  12. Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014 Apr 16;311(15):1547-55.
  13. Clauw DJ, Arnold LM, McCarberg BH; FibroCollaborative. The science of fibromyalgia. Mayo Clin Proc. 2011 Sep;86(9):907-11.
  14. Schmidt-Wilcke T, Clauw DJ. Fibromyalgia: from pathophysiology to therapy. Nat Rev Rheumatol. 2011 Jul 19;7(9):518-27.
  15. Häuser W, Ablin J, Fitzcharles MA, Littlejohn G, Luciano JV, Usui C, Walitt B. Fibromyalgia. Nat Rev Dis Primers. 2015 Aug 13;1:15022.
  16. Rahman A, Underwood M, Carnes D. Fibromyalgia. BMJ. 2014 Feb 24;348:g1224.
  17. Sluka KA, Clauw DJ. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience. 2016 Dec 3;338:114-129.
  18. Theoharides TC, Tsilioni I, Arbetman L, Panagiotidou S, Stewart JM, Gleason RM, Russell IJ. Fibromyalgia syndrome in need of effective treatments. J Pharmacol Exp Ther. 2015 Nov;355(2):255-63.
  19. Macfarlane GJ, Kronisch C, Dean LE, Atzeni F, Häuser W, Fluß E, Choy E, Kosek  E, Amris K, Branco J, Dincer F, Leino-Arjas P, Longley K, McCarthy GM, Makri S, Perrot S, Sarzi-Puttini P, Taylor A, Jones GT. EULAR revised recommendations for the management of fibromyalgia. Ann Rheum Dis. 2017 Feb;76(2):318-328.
  20. Logan, AC. Dietary Modifications and Fibromyalgia. Complementary Health Practice Review, vol. 8, no. 3, Oct. 2003, pp. 234–245
  21. Bjørklund G, Dadar M, Chirumbolo S, Aaseth J. Fibromyalgia and nutrition: Therapeutic possibilities? Biomed Pharmacother. 2018 Jul;103:531-538.
  22. Totsch SK, Waite ME, Sorge RE. Dietary influence on pain via the immune system. Prog Mol Biol Transl Sci. 2015;131:435-69.
  23. Bell RF, Borzan J, Kalso E, Simonnet G. Food, pain, and drugs: does it matter what pain patients eat? Pain. 2012 Oct;153(10):1993-6.
  24. Silva AR, Bernardo A, Costa J, Cardoso A, Santos P, de Mesquita MF, Vaz Patto  J, Moreira P, Silva ML, Padrão P. Dietary interventions in fibromyalgia: a systematic review. Ann Med. 2019;51(sup1):2-14.
  25. Høstmark AT, Lystad E, Vellar OD, Hovi K, Berg JE. Reduced plasma fibrinogen, serum peroxides, lipids, and apolipoproteins after a 3-week vegetarian diet. Plant Foods Hum Nutr. 1993 Jan;43(1):55-61.
  26. Kaartinen K, Lammi K, Hypen M, Nenonen M, Hanninen O, Rauma AL. Vegan diet alleviates fibromyalgia symptoms. Scand J Rheumatol. 2000;29(5):308-13.
  27. Hänninen, Kaartinen K, Rauma AL, Nenonen M, Törrönen R, Häkkinen AS, Adlercreutz H, Laakso J. Antioxidants in vegan diet and rheumatic disorders. Toxicology. 2000 Nov 30;155(1-3):45-53.
  28. Azad KA, Alam MN, Haq SA, Nahar S, Chowdhury MA, Ali SM, Ullah AK. Vegetarian  diet in the treatment of fibromyalgia. Bangladesh Med Res Counc Bull. 2000 Aug;26(2):41-7.
  29. Donaldson MS, Speight N, Loomis S. Fibromyalgia syndrome improved using a mostly raw vegetarian diet: an observational study. BMC Complement Altern Med. 2001;1:7.
  30. Michalsen A, Riegert M, Lüdtke R, Bäcker M, Langhorst J, Schwickert M, Dobos GJ. Mediterranean diet or extended fasting’s influence on changing the intestinal microflora, immunoglobulin A secretion and clinical outcome in patients with rheumatoid arthritis and fibromyalgia: an observational study. BMC Complement Altern Med. 2005 Dec 22;5:22.
  31. Correa-Rodríguez M, Mansouri-Yachou JE, Tapia-Haro RM, Molina F, Rus A, Rueda-Medina B, Aguilar-Ferrandiz ME. Mediterranean Diet, Body Composition, and Activity Associated with Bone Health in Women with Fibromyalgia Syndrome. Nurs Res. 2019 Apr 1. doi: 10.1097/NNR.0000000000000361. [Epub ahead of print]
  32. Costa de Miranda R, Paiva ES, Suter Correia Cadena SM, Brandt AP, Vilela RM. Polyphenol-Rich Foods Alleviate Pain and Ameliorate Quality of Life in Fibromyalgic Women. Int J Vitam Nutr Res. 2017 Mar;87(1-2):66-74.
  33. Rus A, Molina F, Ramos MM, Martínez-Ramírez MJ, Del Moral ML. Extra Virgin Olive Oil Improves Oxidative Stress, Functional Capacity, and Health-Related Psychological Status in Patients With Fibromyalgia: A Preliminary Study. Biol Res Nurs. 2017 Jan;19(1):106-115.
  34. Arranz LI, Rafecas M, Alegre C. Effects of obesity on function and quality of  life in chronic pain conditions. Curr Rheumatol Rep. 2014 Jan;16(1):390.
  35. Timmerman GM, Calfa NA, Stuifbergen AK. Correlates of body mass index in women with fibromyalgia. Orthop Nurs. 2013 Mar-Apr;32(2):113-9.
  36. Aparicio VA, Ortega FB, Carbonell-Baeza A, Camiletti D, Ruiz JR, Delgado-Fernández M. Relationship of weight status with mental and physical health in female fibromyalgia patients. Obes Facts. 2011;4(6):443-8.
  37. Shapiro JR, Anderson DA, Danoff-Burg S. A pilot study of the effects of behavioral weight loss treatment on fibromyalgia symptoms. Journal of psychosomatic research. 2005;59(5):275-82.
  38. Senna MK, Sallam RA, Ashour HS, Elarman M. Effect of weight reduction on the quality of life in obese patients with fibromyalgia syndrome: a randomized controlled trial. Clinical rheumatology. 2012;31(11):1591-7.
  39. Rodrigo L, Blanco I, Bobes J, de Serres FJ. Remarkable prevalence of coeliac disease in patients with irritable bowel syndrome plus fibromyalgia in comparison with those with isolated irritable bowel syndrome: a case-finding study. Arthritis Res Ther. 2013;15(6):R201.
  40. Rodrigo L, Blanco I, Bobes J, de Serres FJ. Clinical impact of a gluten-free diet on health-related quality of life in seven fibromyalgia syndrome patients with associated celiac disease. BMC Gastroenterol. 2013 Nov 9;13:157.
  41. Leone JE, Gray KA, Massie JE, Rossi JM. Celiac disease symptoms in a female collegiate tennis player: a case report. J Athl Train. 2005 Oct-Dec;40(4):365-9.
  42. Taubman B, Mamula P, Sherry DD. Prevalence of asymptomatic celiac disease in children with fibromyalgia: a pilot study. Pediatr Rheumatol Online J. 2011 Jun 13;9:11.
  43. Prada A, Isasi C, Campos J, Otón T, Polo J, García B, Mulero J. Coeliac disease and chronic pain: report of three cases diagnosed in a rheumatology unit, with remission of pain after gluten-free diet [Abstract 115] Rheumatology. 2010;15:i75–i76.
  44. Tovoli F, Giampaolo L, Caio G, Monti M, Piscaglia M, Frisoni M, Bolondi L, Volta U. Fibromyalgia and coeliac disease: a media hype or an emerging clinical problem? Clin Exp Rheumatol. 2013 Nov-Dec;31(6 Suppl 79):S50-2.
  45. Isasi C, Colmenero I, Casco F, Tejerina E, Fernandez N, Serrano-Vela JI, Castro MJ, Villa LF. Fibromyalgia and non-celiac gluten sensitivity: a description with remission of fibromyalgia. Rheumatol Int. 2014 Nov;34(11):1607-12.
  46. Rodrigo L, Blanco I, Bobes J, de Serres FJ. Effect of one year of a gluten-free diet on the clinical evolution of irritable bowel syndrome plus fibromyalgia in patients with associated lymphocytic enteritis: a case-control study. Arthritis Res Ther. 2014 Aug 27;16(4):421.
  47. Slim M, Calandre EP, Garcia-Leiva JM, Rico-Villademoros F, Molina-Barea R, Rodriguez-Lopez CM, Morillas-Arques P. The Effects of a Gluten-free Diet Versus a Hypocaloric Diet Among Patients With Fibromyalgia Experiencing Gluten Sensitivity-like Symptoms: A Pilot, Open-Label Randomized Clinical Trial. J Clin  Gastroenterol. 2017 Jul;51(6):500-507.
  48. Marum AP, Moreira C, Saraiva F, Tomas-Carus P, Sousa-Guerreiro C. A low fermentable oligo-di-mono saccharides and polyols (FODMAP) diet reduced pain and  improved daily life in fibromyalgia patients. Scand J Pain. 2016 Oct;13:166-172
  49. Marum AP, Moreira C, Tomas-Carus P, Saraiva F, Guerreiro CS. A low fermentable oligo-di-mono-saccharides and polyols (FODMAP) diet is a balanced therapy for fibromyalgia with nutritional and symptomatic benefits. Nutr Hosp. 2017 Jun 5;34(3):667-674.
  50. Zanfirescu A, Cristea AN, Nitulescu GM, Velescu BS, Gradinaru D. Chronic Monosodium Glutamate Administration Induced Hyperalgesia in Mice. Nutrients. 2017 Dec 21;10(1).
  51. Smith JD, Terpening CM, Schmidt SO, Gums JG. Relief of fibromyalgia symptoms following discontinuation of dietary excitotoxins. Ann Pharmacother. 2001 Jun;35(6):702-6.
  52. Ciappuccini R, Ansemant T, Maillefert JF, Tavernier C, Ornetti P. Aspartame-induced fibromyalgia, an unusual but curable cause of chronic pain. Clin Exp Rheumatol. 2010 Nov-Dec;28(6 Suppl 63):S131-3.
  53. Holton KF, Taren DL, Thomson CA, Bennett RM, Jones KD. The effect of dietary glutamate on fibromyalgia and irritable bowel symptoms. Clin Exp Rheumatol. 2012 Nov-Dec;30(6 Suppl 74):10-7.
  54. Vellisca MY, Latorre JI. Monosodium glutamate and aspartame in perceived pain in fibromyalgia. Rheumatol Int. 2014 Jul;34(7):1011-3.
  55. Arranz LI, Canela MÁ, Rafecas M. Dietary aspects in fibromyalgia patients: results of a survey on food awareness, allergies, and nutritional supplementation. Rheumatol Int. 2012 Sep;32(9):2615-21.
  56. Haugen M, Kjeldsen-Kragh J, Nordvåg BY, Førre O. Diet and disease symptoms in rheumatic diseases–results of a questionnaire based survey. Clin Rheumatol. 1991 Dec;10(4):401-7.
  57. Puccio FA, Rojas R, Mosquera I, Hernandez A, Mosquera R, Jaua L, Lizarrale M, Cifarrelli D, Reyes R. Food allergy is an important diseases associated to fibromyalgia. Clin Transl Allergy. 2013 Jul 25;3(Suppl 3):P120. doi: 10.1186/2045-7022-3-S3-P120. PubMed Central PMCID: PMC3723944.
  58. Beasley M, Freidin MB, Basu N, Williams FMK, Macfarlane GJ. What is the effect of alcohol consumption on the risk of chronic widespread pain? A Mendelian randomisation study using UK Biobank. Pain. 2019 Feb;160(2):501-507.
  59. Lattanzio SM. Fibromyalgia Syndrome: A Metabolic Approach Grounded in Biochemistry for the Remission of Symptoms. Front Med (Lausanne). 2017 Nov 13;4:198.
  60. Lattanzio SM, Imbesi F. Fibromyalgia Syndrome: A Case Report on Controlled Remission of Symptoms by a Dietary Strategy. Front Med (Lausanne). 2018 Apr 30;5:94.

INFLAMMATION and AUTOPHAGY

Tusco R, Jacomin A-C, Jain A, Penman BS, Larsen KB, Johansen T, et al. Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses. Nature Communications 2017, Nov 2;8(1):1264. https://doi.org/10.1038/s41467-017-01287-9.

Santos RL, Raffatellu M, Bevins CL, et al. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009;17(11):498–506. doi:10.1016/j.tim.2009.08.008.

Zha L, Garrett S, Sun J. Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases. 2019;7(1):28. Published 2019 Mar 10. doi:10.3390/diseases7010028.

Padhmanand Sudhakar, Anne-Claire Jacomin, Isabelle Hautefort, Siva Samavedam, Koorosh Fatemian, Eszter Ari, Leila Gul, Amanda Demeter, Emily Jones, Tamas Korcsmaros & Ioannis P. Nezis (2019) Targeted interplay between bacterial pathogens and host autophagy, Autophagy, 15:9, 1620-1633, DOI: 10.1080/15548627.2019.1590519.

SUPERFOODS
Mortreux M et al. A moderate daily dose of resveratrol mitigates muscle deconditioning in a Martian gravity analog. Frontiers in Physiology 2019, 10(899). https://doi.org/10.3389/fphys.2019.00899.

Carla Di Mattia, Natalia Battista, Giampiero Sacchetti, Mauro Serafini. Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and InvertebratesFrontiers in Nutrition, 2019; 6 DOI: 10.3389/fnut.2019.00106

ANNE PEMBERTON: Sulphate
Ackerman Z. Oron-Herman M. Pappo O. et al (2010) Hepatic effects of rosiglitazone in rats with the metabolic syndrome. Basic Clin. Pharmacol. Toxicol,107, 663–668.

Bennett JM, Reeves G, Billman GE, et al (2018)Inflammation–Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases  [Internet]. Vol. 5, Frontiers in Medicine  p. 316. Available from: https://www.frontiersin.org/article/10.3389/fmed.2018.00316

Davidson RM, Seneff S. (2012)The initial common pathway of inflammation, disease, and sudden death. Entropy 14, 1399–1442. 


Dufault.R. Lukiw WJ. Crider R. et al (2012). A macroepigenetic approach to identify factors responsible for the autism epidemic in the United States. Clin. Epigenet. 4, 6.

Fujita Y, Fujino Y, Onodera M, et al. (2011)A fatal case of acute hydrogen sulfide poisoning caused by hydrogen sulfide: hydroxocobalamin therapy for acute hydrogen sulfide poisoning. J Anal Toxicol;35(2):119-123.


Geier DA, Kern JK, Garver CR, et al (2009) A prospective study of transsulphuration biomarkers in autistic disorders. Neurochem. Res.34, 386–393. 


Hartzell S & Seneff S (2012) Impaired Sulphate Metabolism and Epigenetics: Is there a link in Autism? Entropy 14, 1953-1977; doi:10.3390/e14101953.

Nair, R. & Maseeh, A. (2012). Vitamin D: The “sunshine” vitamin. Journal of pharmacology & pharmacotherapeutics3(2), 118–126. doi:10.4103/0976-500X.95506

Jain R. Singh A. Mittal M. & Talukdar,B. (2015). Vitamin B12 Deficiency in Children: A Treatable Cause of Neurodevelopmental Delay. Journal of Child Neurology30(5), 641–643. https://doi.org/10.1177/0883073813516194

James S. Melnyk S. (2010) A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet.153B, 1209–1220. 


James S. Melnyk S. Jernigan S. (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B 141B, 947–956. 


Kane E (2017) Life on the membrane. Conference presentation at the Neurolipid conference 18.11.2017 Las Vegas.

Lauritano EC, Gabrielli M, Scarpellini E, et al.(2008)Small intestinal bacterial overgrowth recurrence 
after antibiotic therapy. Am J Gastroenterol. 103(8):2031-2035.
Lee S, Park JM, Jeong M, et al.(2016) Korean red ginseng ameliorated experimental pancreatitis through the inhibition of hydrogen sulfide in mice. Pancreatology;16(3):326-336.

Ben Lynch (2017): Pathway planner v5. www.drbenlynch.com

Mahboubi M. (2015). Rosa damascena as holy ancient herb with novel applications. Journal of traditional and complementary medicine6(1), 10–16. doi:10.1016/j.jtcme.2015.09.005.

Nair R, & Maseeh A. (2012). Vitamin D: The “sunshine” vitamin. Journal of pharmacology & pharmacotherapeutics3(2), 118–126. doi:10.4103/0976-500X.95506

Neumann M, Leimkühler S. (2008) Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli. FEBS J.

275(22):5678-5689.

Pasca, S.P.; Nemes, B.; Vlase, L.; Gagyi, C.E.; Dronca, E.; Miu, A.C.; Dronca, M. High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci. 2006, 78, 2244–2448. 


Sabol, Jenny & Wei, Wei & Lopez-Hoyos, Marcos & Seo, Youjin & Andaya, Armann & A. Leary, Julie. (2014). Heparan Sulphate Differences in Rheumatoid Arthritis versus Healthy Sera. Matrix Biology. 40. 10.1016/j.matbio.2014.08.016.

Said JM. (2011) “The Role of Proteoglycans in Contributing to Placental Thrombosis and Fetal Growth Restriction,” Journal of Pregnancy, vol. 2011, Article ID 928381, 4 pages,. https://doi.org/10.1155/2011/928381.

Schultz, S.T.; Klonoff-Cohen, H.S.; Wingard, et al (2008) Acetaminophen (paracetamol) use, measles-mumps-rubella vaccination, and autistic disorder: The results of a parent survey. Autism 12, 293–307. 


Samsel & Seneff (2013) Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases†

Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6(4):159-184.

Seneff, S., Davidson, R. M., Lauritzen, A., Samsel, A., & Wainwright, G. (2015). A novel hypothesis for atherosclerosis as a cholesterol sulphate deficiency syndrome. Theoretical biology & medical modelling12, 9. doi:10.1186/s12976-015-0006-1

Seneff S, Lauritzen A, Davidson R, Lentz-Marino L. (2012) Is endothelial nitric oxide synthase a moonlighting protein whose day job is cholesterol sulphate synthesis? Implications for cholesterol transport, diabetes and cardiovascular disease. Entropy 14(12):2492-2530.

Seneff S, Mascitelli L. Davidson, R. (2012) Might cholesterol sulphate deficiency contribute to the 
development of autistic spectrum disorder? Med. Hypotheses 8, 213–217. 


Seneff S, Causton NJ, Nigh GL, et al. (2017) Can glyphosate’s disruption of the gut microbiome and induction of sulphate deficiency explain the epidemic in gout and associated diseases in the industrialized world? J Biol Phys Chem. 17(2):53-76.

Sturgeon C. & Fasano A. (2016). Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue barriers4(4), e1251384. doi:10.1080/21688370.2016.1251384

Theoharides TC, Zhang B (2011) Neuroinflammation, blood-brain barrier, seizures and autism. J. Neuroinflam. 8, 168. 


Waring RH. (2010) Report on Absorption of magnesium  sulphate (Epsom salts) across the skin. Epsom Salt Council Web site. http://www.epsomsaltcouncil.org/wp- content/uploads/2015/10/report_on_absorption_of_magnesium_sulphate.pdf. Accessed September 2, 2018. 


Greg Nigh
SIBO as an adaptation: a proposed role for hydrogen sulfide: https://ndnr.com/gastrointestinal/sibo-as-an-adaptation-a-proposed-role-for-hydrogen-sulfide.  Posted January 8, 2019.

RESEARCH 

Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes.

Erick Riquelme et al. Cell 2019, August 8, Volume 178, Issue 4.
DOI: https://doi.org/10.1016/j.cell.2019.07.008.

Fellows Maxwell K, Wahls T, Browne RW, Rubenstein L, Bisht B, Chenard CA, et al. (2019) Lipid profile is associated with decreased fatigue in individuals with progressive multiple sclerosis following a diet-based intervention: Results from a pilot study. PLoS ONE 14(6): e0218075. https://doi.org/10.1371/journal.pone.0218075

August 2019

WELCOME 

Van Ende, Wijnants, and Van Dijck, “Sugar Sensing and Signaling in Candida Albicans and Candida Glabrata.” Front. Microbiol 2019., 30 January. https://doi.org/10.3389/fmicb.2019.00099.

NEWS

 Millstone E and Dawson E. EFSA’s toxicological assessment of aspartame: was it even-handedly trying to identify possible unreliable positives and unreliable negatives?

Archives of Public Health 2019, 77:34. https://doi.org/10.1186/s13690-019-0355-z. Open Access.

Arturo Casadevall, Dimitrios P. Kontoyiannis, Vincent Robert. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and BirdsmBio, 2019; 10 (4) DOI: 10.1128/mBio.01397-19

Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack.

Chad J. Johnson et al. mBio 2018, August. DOI: 10.1128/mBio.01403-18.

Panagioti Maria et al. Prevalence, severity, and nature of preventable patient harm across medical care settings: systematic review and meta-analysis. BMJ 2019; 366 :l4185.

New drugs: where did we go wrong and what can we do better? The BMJDOI: 10.1136/bmj.l4340.

Angela Genoni et al. Long-term Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrationsEuropean Journal of Nutrition, 2019; DOI: 10.1007/s00394-019-02036-y.

Charline Quiclet et al. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible miceMetabolism, 2019; 97: 9 DOI: 10.1016/j.metabol.2019.05.005.

BEN BROWN – SIBO

Does Irritable Bowel Syndrome Exist? Identifiable and Treatable Causes of Associated Symptoms Suggest It May Not”. Gastrointest. Disord. 20191(3), 314-340; https://doi.org/10.3390/gidisord1030027.

Abstract: https://www.mdpi.com/2624-5647/1/3/27

HTML Version: https://www.mdpi.com/2624-5647/1/3/27/htm

PDF Version: https://www.mdpi.com/2624-5647/1/3/27/pdf.

  1. Ghoshal UC, Srivastava D, Ghoshal U, Misra A. Breath tests in the diagnosis of small intestinal bacterial overgrowth in patients with irritable bowel syndrome in comparison with quantitative upper gut aspirate culture. Eur J Gastroenterol Hepatol. 2014 Jul;26(7):753-60.
  2. Quigley EMM. The Spectrum of Small Intestinal Bacterial Overgrowth (SIBO). Curr Gastroenterol Rep. 2019 Jan 15;21(1):3.
  3. Aziz I, Törnblom H, Simrén M. Small intestinal bacterial overgrowth as a cause for irritable bowel syndrome: guilty or not guilty? Curr Opin Gastroenterol. 2017 May;33(3):196-202.
  4. Rezaie A, Buresi M, Lembo A, Lin H, McCallum R, Rao S, Schmulson M, Valdovinos M, Zakko S, Pimentel M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am J Gastroenterol. 2017 May;112(5):775-784.
  5. Tuck CJ, Yao CK, Philpott HL, Barrett JS. Questioning the Utility of Breath Testing in Clinical Practice. Am J Gastroenterol. 2017 Dec;112(12):1886.
  6. Usai-Satta P, Giannetti C, Oppia F, Cabras F. The North American Consensus on Breath Testing: The Controversial Diagnostic Role of Lactulose in SIBO. Am J Gastroenterol. 2018 Mar;113(3):440.
  7. Paterson W, Camilleri M, Simren M, Boeckxstaens G, Vanner SJ. Breath Testing Consensus Guidelines for SIBO: RES IPSA LOCQUITOR. Am J Gastroenterol. 2017 Dec;112(12):1888-1889.
  8. Sellin JH. A Breath of Fresh Air. Clin Gastroenterol Hepatol. 2016 Feb;14(2):209-11.
  9. Gasbarrini A, Corazza GR, Gasbarrini G, et al. Methodology and indications of H2 breath testing in gastrointestinal diseases: the Rome consensus Conference. Aliment Pharmacol Ther 2009; 29(Suppl 1):1–49.
  10. Ghoshal UC, Shukla R, Ghoshal U. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome: A Bridge between Functional Organic Dichotomy. Gut Liver. 2017 Mar 15;11(2):196-208.
  11. Sundin O, Mendoza-Ladd A, Morales E, Fagan BM, Zeng M, Diaz-Arevalo D, et al. Does glucose-based hydrogen and methane breath test detect bacterial overgrowth in the jejunum? Neurogastroenterol Motil. 2018;30:e13350
  12. Yu D, Cheeseman F, Vanner S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut 2011; 60:334–340.
  13. Erdogan A, Rao SS, Gulley D, et al. Small intestinal bacterial overgrowth: duodenal aspiration vs glucose breath test. Neurogastroenterol Motil 2015; 27:481–489.
  14. Shah SC, Day LW, Somsouk M, Sewell JL. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2013;38(8):925-934.
  15. Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011; 364:22–32.
  16. Chedid V, Dhalla S, Clarke JO, et al. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob Adv Health Med. 2014 May;3(3):16-24
  17. Brown K, Scott-Hoy B, Jennings L. Efficacy of a Quebracho, Conker Tree, and M. balsamea Willd blended extract in patients with irritable bowel syndrome with constipation. J Gasterenterol Hepatol Res. 2015;4:1762–1767.
  18. Ghoshal UC, Srivastava D, Misra A, Ghoshal U. A proof-of-concept study showing antibiotics to be more effective in irritable bowel syndrome with than without small-intestinal bacterial overgrowth: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol. 2016 Mar;28(3):281-9.
  19. Long SK, Di Palma JA. Does Carbohydrate Challenge Testing Predict Clinical Response in Small Intestinal Bacterial Overgrowth? South Med J. 2016
  20. Acosta A, Camilleri M, Shin A, Linker Nord S, O’Neill J, Gray AV, Lueke AJ, Donato LJ, Burton DD, Szarka LA, Zinsmeister AR, Golden PL, Fodor A. Effects of Rifaximin on Transit, Permeability, Fecal Microbiome, and Organic Acid Excretion in Irritable Bowel Syndrome. Clin Transl Gastroenterol. 2016 May 26;7:e173.
  21. Ghoshal UC, Gwee KA. Post-infectious IBS, tropical sprue and small intestinal bacterial overgrowth: the missing link. Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):435-441. doi: 10.1038/nrgastro.2017.37.
  22. Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, Cho JM, Battaglioli EJ, Bhattarai Y, Thompson KJ, Kalari KK, Behera G, Berry JC, Peters SA, Patel R, Schuetz AN, Faith JJ, Camilleri M, Sonnenburg JL, Farrugia G, Swann JR, Grover M, Knights D, Kashyap PC. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 2019 May 1;10(1):2012.
  23. Staley C, Kaiser T, Khoruts A. Clinician Guide to Microbiome Testing. Dig Dis 2018 Dec;63(12):3167-3177.

 

 KEELEY BERRY – JOINTS AND BONES

  1. Current understanding of the molecular actions of vitamin D. Jones, G, Strugnell, SA and DeLuca, HF. 4, s.l. : Physiological reviews., 1998, Vol. 78, pp. 1193-231.
  2. Role of vitamin D beyond the skeletal function: A review of the molecular and clinical studies. Umar, Meenakshi, Sastry, Konduru, S and Chouchane, Aouatef I. 6, s.l. : International Journal of Molecular Sciences, 2018, Vol. 19.
  3. Effect of Vitamin D on the recurrance rate of rheumatoid arthritis. Yang, Junxia, et al. 5, s.l. : Experimental and Therapeutic Medicine, 2015, Vol. 10, pp. 1812-1816.
  4. Osteoarthritis pathogenesis – a complex process that involves the entire joint. Man, GS and Mologhianu, G. 1, s.l. : Journal of Medicine and Life, 2014, Vol. 7, pp. 37-41.
  5. Investigation of wear particles generated in human knee joints using atomic force microscopy. Wang, M, Peng, Z and Vasiliev, K. s.l. : Tribology Letters, 2013, Vol. 51, pp. 161-170.
  6. Mechanisms of osteoarthritis (OA) pain. O’Neill, Terence W and Felson, David T. 5, s.l. : Current Osteoporosis Reports., 2018, Vol. 16, pp. 611-616.
  7. What is the evidence for a role for diet and nutrition in oesteoarthritis? Thomas, Sally, et al. 4, s.l. : Rheumatology, May 2018, Vol. 57, pp. 61-74.
  8. Role of vitamin D in osteoarthritis: molecular, cellular and clinical perspectives. Mabey, T and Honsawek, S. 38918, s.l. : International Journal of Endocrinology, 2015, Vol. 2015.
  9. 1,25(OH)2D deficiency induces temporomandibular joint osteoarthritis via secretion of senscence-associated inflammatory cytokines. Shen, M, et al. 2, s.l. : Bone, 2013, Vol. 55.
  10. World Health Organisation. Priority diseases and reason for inclusion. 2013.
  11. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle powder: a systematic review and meta-analysis of randomised controlled trials. Beaudart, C, et al. 11, s.l. : The Journal of Clinical Endocrinology and Metabolism., 2014, Vol. 99.
  12. Association between serum levels of 25-hydroxyvitamin D and osteoarthritis: a systematic review. Cao, Y, et al. 7, s.l. : Rheumatology (Oxford), 2013, Vol. 52.
  13. Reversing bacteria-induced vitamin D receptor dysfunction is key to autoimmune disease. Waterhouse, JC, Perez, TH and Albert, PJ. s.l. : Annals of the New York Academy of Sciences., 2009, Vol. 1173, pp. 757-65.
  14. Vitamin D and Immune Function. Prietl, Barbara, et al. 7, s.l. : Nutrients, 2013, Vol. 5, pp. 2502-2521.
  15. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Chen, Di, et al. 16044, s.l. : Bone Research, 2017, Vol. 5.
  16. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Tachmazidou, Ioanna, et al. s.l. : Nature Genetics., 2019, Vol. 51, pp. 230-236.
  17. Roles of B cells in rheumatoid arthritis. Silverman, Gregg J and Carson, Dennis A. 4, s.l. : Biomed Central, 2003, Vol. 5.
  18. Vitamin D deficiency is associated with an increased autoimmune response in healthy individuals and in patients with systemic lupus erythematosus. Ritterhouse, Lauren L, et al. 9, s.l. : Annals of the Rheumatic Diseases., 2011, Vol. 70, pp. 1569-1574.
  19. University of Rochester Medical Centre Rochester, NY. New bone chewing role for B cells in rheumatoid arthritis. [Online] April 14, 2016. [Cited: July 12, 2019.] https://www.urmc.rochester.edu/news/story/4549/new-bone-chewing-role-for-b-cells-in-rheumatoid-arthritis.aspx.

Extra stories:

Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nature Genetics, 5: 230–6 (2019). https://www.nature.com/articles/s41588-018-0327-1.

Ma Hao, Li Xiang, Sun Dianjianyi, Zhou Tao, LeySylvia H, Gustat Jeanette et al. Association of habitual glucosamine use with risk of cardiovascular disease: prospective study in UK Biobank BMJ 2019; 365 :l1628. https://www.bmj.com/content/365/bmj.l1628.

DIGESTIVE HEALTH

Eran Blacher et al. Potential roles of gut microbiome and metabolites in modulating ALS in miceNature, 2019 DOI: 10.1038/s41586-019-1443-5.

 de la Rubia JE et al. Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotroph Lateral Scler Frontotemporal Degener. 2019 Feb;20(1-2):115-122. Epub 2019 Jan 22.  

Diana Matheoud et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− miceNature 2019, July 17. DOI: 10.1038/s41586-019-1405-y.

J Psychiatry Neurosci 2019, Jul 1;44(4):269-276. Randomized controlled trial of a gluten-free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): a pilot feasibility study. Kelly DL et al.

Veronika L Tchesnokova et al. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women, Clinical Infectious Diseases 2019, July 4, ciz547, https://doi.org/10.1093/cid/ciz547.

Claire Buchta Rosean et al. Pre-existing commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumour cell dissemination in hormone receptor-positive breast cancerCancer Research 2019, July, canres.3464.2018 DOI: 10.1158/0008-5472.CAN-18-3464.

Nat Med. 2019 Jul;25(7):1164-1174. doi: 10.1038/s41591-019-0461-z. Epub 2019 Jun 24. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Abdel-Gadir A et al.

(Also see Curr Opin Immunol. 2019 Jul 11;60:141-147. doi: 10.1016/j.coi.2019.06.001. Regulation of oral immune tolerance by the microbiome in food allergy. Stephen-Victor E, Chatila TA.)

RESEARCH

Karin Müller et al. ‘Poly(ADP ribose) links the DNA damage response and biomineralization.’ Cell Reports (2019). DOI: 10.1016/j.celrep.2019.05.038.

Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Kunio Kawanishi, Chirag Dhar, Raymond Do, Nissi Varki, Philip L. S. M.Gordts, Ajit Varki

Proceedings of the National Academy of Sciences Jul 2019, 201902902, DOI:10.1073/pnas.1902902116.

Santosh Dhakal et al. Amish (Rural) vs. non-Amish (Urban) Infant Faecal Microbiotas Are Highly Diverse and Their Transplantation Lead to Differences in Mucosal Immune Maturation in a Humanized Germfree Piglet ModelFrontiers in Immunology, 2019; 10 DOI: 10.3389/fimmu.2019.01509.

Clara Depommier et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory studyNature Medicine, 2019; DOI: 10.1038/s41591-019-0495-2.

Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. Kequan Zhou.  J Funct Foods 2017, Jun; 33: 194–201. Published online 2017 Mar 29. doi: 10.1016/j.jff.2017.03.045.

Neuron, Kim and Kwon et al.: “Transneuronal Propagation of Pathologic a-Synuclein from the Gut to the Brain Models Parkinson’s Disease” https://www.cell.com/neuron/fulltext/S0896-6273(19)30488-X.

Rían W. Manville, Geoffrey W. Abbott. Cilantro leaf harbors a potent potassium channel–activating anticonvulsantThe FASEB Journal, 2019; fj.201900485R DOI: 10.1096/fj.201900485R.

Obón-Santacana, Romaguera et al. Dietary Inflammatory Index, Dietary Non-Enzymatic Antioxidant Capacity, and Colorectal and Breast Cancer Risk (MCC-Spain Study)Nutrients, 2019; 11 (6): 1406 DOI: 10.3390/nu11061406

July 2019

NEWS

Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Brandon L. Jutras et al. PNAS 2019,  first published June 17: https://doi.org/10.1073/pnas.1904170116.

Pre-existing commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer

Claire Buchta Rosean, Raegan R Bostic, Joshua C. M. Ferey, Tzu-Yu Feng, Francesca NAzar, Kenneth S Tung, Mikhail G Dozmorov, Ekaterina Smirnova, Paula D. Bos and Melanie R Rutkowski

Cancer Res, May 7, 2019 DOI: 10.1158/0008-5472.CAN-18-3464.

Schwabl P et al (2018), Assessment of microplastic concentrations in human stool – Preliminary results of a prospective study, Presented at UEG Week 2018 Vienna, October 24, 2018. 
Liang Lu, Zhiqin Wan, Ting Luo, Zhengwei Fu, Yuanxiang Jin. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice,

Science of The Total Environment, Volumes 631–632, 2018, Pages 449-458, https://doi.org/10.1016/j.scitotenv.2018.03.051.

Role of vitamin D supplementation for primary prevention of cancer: Meta-analysis of randomized controlled trials. Varun Samji, Tarek Haykal, Yazan Zayed, Inderdeep Gakhal, Vijay Veerapaneni, Michelle Obeid, Babikir Kheiri, Sunil Badami, Ghassan Bachuwa, and Rizwan Danish. Journal of Clinical Oncology 2019 37:15_suppl, 1534-1534.

M Kyla Shea, Stephen B Kritchevsky, Richard F Loeser, Sarah L Booth. Vitamin K Status and Mobility Limitation and Disability in Older Adults: The Health, Aging, and Body Composition StudyThe Journals of Gerontology: Series A, 2019; DOI: 10.1093/gerona/glz108.

Perceptions of Constipation Among the General Public and People With Constipation Differ Strikingly From Those of General and Specialist Doctors and the Rome IV Criteria. Dimidi, Eirini PhD1; Cox, Camilla MSc1; Grant, Robert MSc2; Scott, S. Mark PhD3; Whelan, Kevin PhD. American Journal of Gastroenterology, June 4, 2019,

doi: 10.14309/ajg.0000000000000267.

Heini Natri, Angela R. Garcia, Kenneth H. Buetow, Benjamin C. Trumble, Melissa A. Wilson. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human DiseasesTrends in Genetics, 2019; 35 (7): 478 DOI: 10.1016/j.tig.2019.04.008.

BEN BROWN

Terry Wahls quote: The Seventy Percent Solution, Terry L. Wahls, MD. J Gen Intern Med 26(10):1215–6. DOI: 10.1007/s11606-010-1631-3.

References: 

  1. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018 Apr 21;391(10130):1622-1636.
  2. Ascherio A, Munger KL. Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention-An Update. Semin Neurol. 2016 Apr;36(2):103-14.
  3. Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis:  from pathogenic mechanisms to treatment. Brain. 2017 Mar 1;140(3):527-546.
  4. Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019 Jan;26(1):27-40.
  5. Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007 Oct;6(10):903-12.
  6. Galetta KM, Bhattacharyya S. Multiple Sclerosis and Autoimmune Neurology of the Central Nervous System. Med Clin North Am. 2019 Mar;103(2):325-336.
  7. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018 Jan 11;378(2):169-180.
  8. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015 Apr;14(4):406-19.
  9. Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012 Nov 5;8(11):647-56.
  10. van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis–time for an individualised approach. Metab Brain Dis. 2012 Sep;27(3):239-53. doi: 10.1007/s11011-012-9290-1.
  11. LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol. 2018 Nov 27;9:973.
  12. Kidd PM. Multiple sclerosis, an autoimmune inflammatory disease: prospects for its integrative management. Altern Med Rev. 2001 Dec;6(6):540-66.
  13. Reese D, Shivapour ET, Wahls TL, Dudley-Javoroski SD, Shields R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a  secondary progressive multiple sclerosis patient leads to marked gains in function: a case report. Cases J. 2009 Aug 10;2:7601
  14. Wahls TL. The seventy percent solution. J Gen Intern Med. 2011 Oct;26(10):1215-6
  15. Bisht B, Darling WG, White EC, White KA, Shivapour ET, Zimmerman MB, Wahls TL. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: a prospective longitudinal pilot study. Degener Neurol Neuromuscul Dis. 2017 Jun 26;7:79-93.
  16. Irish AK, Erickson CM, Wahls TL, Snetselaar LG, Darling WG. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment  of relapsing-remitting multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis. 2017 Jan 4;7:1-18.
  17. Reese D, Shivapour ET, Wahls TL, Dudley-Javoroski SD, Shields R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a  secondary progressive multiple sclerosis patient leads to marked gains in function: a case report. Cases J. 2009 Aug 10;2:7601
  18. Bisht B, Darling WG, Grossmann RE, Shivapour ET, Lutgendorf SK, Snetselaar LG, Hall MJ, Zimmerman MB, Wahls TL. A multimodal intervention for patients with secondary progressive multiple sclerosis: feasibility and effect on fatigue. J Altern Complement Med. 2014 May;20(5):347-55.
  19. Bisht B, Darling WG, White EC, White KA, Shivapour ET, Zimmerman MB, Wahls TL. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: a prospective longitudinal pilot study. Degener Neurol Neuromuscul Dis. 2017 Jun 26;7:79-93.
  20. Irish AK, Erickson CM, Wahls TL, Snetselaar LG, Darling WG. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment  of relapsing-remitting multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis. 2017 Jan 4;7:1-18.
  21. Lee JE, Bisht B, Hall MJ, Rubenstein LM, Louison R, Klein DT, Wahls TL. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J Am Coll Nutr. 2017 Mar-Apr;36(3):150-168.
  22. Wahls TL, Chenard CA, Snetselaar LG. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients. 2019 Feb 7;11(2).
  23. Swank R.L. Treatment of multiple sclerosis with low-fat diet: Result of seven years’ experience. Ann. Intern. Med. 1956;45:812–824
  24. Swank RL, Dugan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet. 1990 Jul 7;336(8706):37-9.
  25. Gaby A. Multiple sclerosis. Glob Adv Health Med. 2013 Jan;2(1):50-6.
  26. Yadav V, Marracci G, Kim E, Spain R, Cameron M, Overs S, Riddehough A, Li DK,  McDougall J, Lovera J, Murchison C, Bourdette D. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord. 2016  Sep;9:80-90.
  27. Fitzgerald KC, Vizthum D, Henry-Barron B, Schweitzer A, Cassard SD, Kossoff E, Hartman AL, Kapogiannis D, Sullivan P, Baer DJ, Mattson MP, Appel LJ, Mowry EM. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord. 2018 Jul;23:33-39.
  28. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018 Jun 5;27(6):1222-1235.e6.
  29. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, Suarez J, Michalsen A, Cross AH, Morgan TE, Wei M, Paul F, Bock M, Longo VD. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016 Jun 7;15(10):2136-2146.
  30. Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs. 2014 Apr;28(4):291-9.
  31. Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients. 2018 Aug 3;10(8).
  32. Jafarirad S, Siassi F, Harirchian MH, Amani R, Bitarafan S, Saboor-Yaraghi A. The effect of vitamin A supplementation on biochemical parameters in multiple sclerosis patients. Iran Red Crescent Med J. 2013;15:194–8. 85.
  33. Jafarirad S, Siassi F, Harirchian MH, Sahraian MA, Eshraghian MR, Shokri F, et al. The effect of vitamin A supplementation on stimulated T-cell proliferation with myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. J Neurosci Rural Pract. 2012;3:294–8.
  34. Bitarafan S, Harirchian MH, Sahraian MA, Keramatipour M, Beladi Moghadam N, Togha M, Nafissi S, Siassi F, Eshraghian MR, Mohammadzadeh Honarvar N, Ansar H, Talebi S, Saboor-Yarghi AA. Impact of vitamin A supplementation on RAR gene expression in multiple sclerosis patients. J Mol Neurosci. 2013 Oct;51(2):478-84.
  35. Mohammadzadeh Honarvar N, Harirchian MH, Abdolahi M, Abedi E, Bitarafan S, Koohdani F, Siassi F, Sahraian MA, Chahardoli R, Zareei M, Salehi E, Geranmehr M, Saboor-Yaraghi AA. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients. J Mol Neurosci.  2016 Jul;59(3):360-5.
  36. Bitarafan S, Mohammadpour Z, Jafarirad S, Harirchian MH, Yekaninejad MS, Saboor-Yaraghi AA. The effect of retinyl-palmitate on the level of pro and anti-inflammatory cytokines in multiple sclerosis patients: A randomized double blind clinical trial. Clin Neurol Neurosurg. 2019 Feb;177:101-105.
  37. Bitarafan S, Saboor-Yaraghi A, Sahraian MA, Nafissi S, Togha M, Beladi Moghadam N, Roostaei T, Siassi F, Eshraghian MR, Ghanaati H, Jafarirad S, Rafiei  B, Harirchian MH. Impact of Vitamin A Supplementation on Disease Progression in Patients with Multiple Sclerosis. Arch Iran Med. 2015 Jul;18(7):435-40.
  38. Bitarafan S, Saboor-Yaraghi A, Sahraian MA, Soltani D, Nafissi S, Togha M, Beladi Moghadam N, Roostaei T, Mohammadzadeh Honarvar N, Harirchian MH. Effect of Vitamin A Supplementation on fatigue and depression in Multiple Sclerosis patients: A Double-Blind Placebo-Controlled Clinical Trial. Iran J Allergy Asthma Immunol. 2016 Feb;15(1):13-9.
  39. Breuer J, Loser K, Mykicki N, Wiendl H, Schwab N. Does the environment influence multiple sclerosis pathogenesis via UVB light and/or induction of vitamin D? J Neuroimmunol. 2019 Apr 15;329:1-8.
  40. Martinelli V, Dalla Costa G, Colombo B, Dalla Libera D, Rubinacci A, Filippi M, Furlan R, Comi G. Vitamin D levels and risk of multiple sclerosis in patients  with clinically isolated syndromes. Mult Scler. 2014 Feb;20(2):147-55.
  41. Derakhshandi H, Etemadifar M, Feizi A, Abtahi SH, Minagar A, Abtahi MA, Abtahi ZA, Dehghani A, Sajjadi S, Tabrizi N. Preventive effect of vitamin D3 supplementation on conversion of optic neuritis to clinically definite multiple sclerosis: a double blind, randomized, placebo-controlled pilot clinical trial. Acta Neurol Belg. 2013 Sep;113(3):257-63.
  42. Berezowska M, Coe S, Dawes H. Effectiveness of Vitamin D Supplementation in the Management of Multiple Sclerosis: A Systematic Review. Int J Mol Sci. 2019 Mar 14;20(6).
  43. Bhargava P, Steele SU, Waubant E, Revirajan NR, Marcus J, Dembele M, Cassard SD, Hollis BW, Crainiceanu C, Mowry EM. Multiple sclerosis patients have a diminished serologic response to vitamin D supplementation compared to healthy controls. Mult Scler. 2016 May;22(6):753-60.
  44. Häusler D, Weber MS. Vitamin D Supplementation in Central Nervous System Demyelinating Disease-Enough Is Enough. Int J Mol Sci. 2019 Jan 8;20(1).
  45. Fragoso YD, Adoni T, Damasceno A, de Albuquerque Damasceno CA, Ferreira ML, Finkelzstejn A, Gomes S, Goncalves MV, Grzesiuk AK, Lins S, Mendes MF, de Oliveira FT, Parolin MF, Rocha CF, Tauil CB. Unfavorable outcomes during treatment of multiple sclerosis with high doses of vitamin D. J Neurol Sci. 2014  Nov 15;346(1-2):341-2.
  46. Naghashpour M, Jafarirad S, Amani R, Sarkaki A, Saedisomeolia A. Update on riboflavin and multiple sclerosis: a systematic review. Iran J Basic Med Sci. 2017 Sep;20(9):958-966
  47. Saedisomeolia A, Ashoori M. Riboflavin in Human Health: A Review of Current Evidences. Adv Food Nutr Res. 2018;83:57-81.
  48. Ghadirian P, Jain M, Ducic S, Shatenstein B, Morisset R. Nutritional factors in the aetiology of multiple sclerosis: a case-control study in Montreal, Canada. Int J Epidemiol. 1998 Oct;27(5):845-52.
  49. Bisaga GN, Odinak MM, Boĭko AN, Mel’nik IuB, Popova NF. Possibilities of treatment of multiple sclerosis exacerbations without corticosteroids: a role of metabolic and antioxidant therapy. Zh Nevrol Psikhiatr Im S S Korsakova 2011; 111:44-48. (Russian).
  50. Karpov SM, Shevchenko PP, Nazarova EO, Vyshlova IA, Dolgova IN. Cytoflavin in the complex therapy of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118(10):37-39.(Russian).
  51. Naghashpour M, Majdinasab N, Shakerinejad G, Kouchak M, Haghighizadeh MH, Jarvandi F, et al. Riboflavin supplementation to patients with multiple sclerosis does not improve disability status nor is riboflavin supplementation correlated to homocysteine. Int J Vitam Nutr Res 2013; 83:281-290.
  52. Nemazannikova N, Mikkelsen K, Stojanovska L, Blatch GL, Apostolopoulos V. Is there a Link between Vitamin B and Multiple Sclerosis? Med Chem. 2018 Feb 6;14(2):170-180.
  53. Miller A, Korem M, Almog R, Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci. 2005;233:93–7
  54. Nemazannikova N, Mikkelsen K, Stojanovska L, Blatch GL, Apostolopoulos V. Is there a Link between Vitamin B and Multiple Sclerosis? Med Chem. 2018 Feb 6;14(2):170-180.
  55. Mansueto P, Di Stefano L, D’Alcamo A, Carroccio A. Multiple sclerosis-like neurological manifestations in a coeliac patient: nothing is as it seems. BMJ Case Rep. 2012 Jul 4;2012.
  56. Sandyk R, Awerbuch GI. Vitamin B12 and its relationship to age of onset of multiple sclerosis. Int J Neurosci. 1993 Jul-Aug;71(1-4):93-9.
  57. Zhu Y, He ZY, Liu HN. Meta-analysis of the relationship between homocysteine, vitamin B₁₂, folate, and multiple sclerosis. J Clin Neurosci. 2011 Jul;18(7):933-8.
  58. Dardiotis E, Arseniou S, Sokratous M, Tsouris Z, Siokas V, Mentis AA, Michalopoulou A, Andravizou A, Dastamani M, Paterakis K, Bogdanos D, Brotis A. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2017 Oct;17:190-197.
  59. Pietro KJ, Jensen AM, Schumacher JR, Anderson JW. Vitamin B12 intake correlated to physical and mental improvements in multiple sclerosis specific quality of life. Int J Adv Nutr Health Sci. 2014;2:98-108.
  60. Booth CB, Lawyer T Jr, von Storch TJC. Vitamin B12 in the treatment of multiple sclerosis. JAMA. 1951;147:894.
  61. Kira J, Tobimatsu S, Goto I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis. Intern Med. 1994 Feb;33(2):82-6.
  62. Wade DT, Young CA, Chaudhuri KR, Davidson DL. A randomised placebo controlled  exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002 Sep;73(3):246-9.
  63. Kanevskaia SA, Kravets AS, Slesarenko EV, Shevchenko VI, Tkachenko NV. Folic  acid in the combined treatment of patients with disseminated sclerosis and chronic gastritis. Vrach Delo. 1990 Apr;(4):96-7. (Russian).
  64. Nozari E, Ghavamzadeh S, Razazian N. The Effect of Vitamin B12 and Folic Acid  Supplementation on Serum Homocysteine, Anemia Status and Quality of Life of Patients with Multiple Sclerosis. Clin Nutr Res. 2019 Jan 25;8(1):36-45.
  65. Peyro Saint Paul L, Debruyne D, Bernard D, Mock DM, Defer GL. Pharmacokinetics and pharmacodynamics of MD1003 (high-dose biotin) in the treatment of progressive multiple sclerosis. Expert Opin Drug Metab Toxicol. 2016;12(3):327-44.
  66. Sedel F, Challe G, Vignal C, et al. Biotin sensitive leukodystrophy. J Inherit Metab Dis. 2011;2011:S267.
  67. Sedel F, Papeix C, Bellanger A, Touitou V, Lebrun-Frenay C, Galanaud D, Gout O, Lyon-Caen O, Tourbah A. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2015 Mar;4(2):159-69.
  68. Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S, De Sèze J,  Debouverie M, Gout O, Clavelou P, Defer G, Laplaud DA, Moreau T, Labauge P, Brochet B, Sedel F, Pelletier J; MS-SPI study group. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler. 2016 Nov;22(13):1719-1731.
  69. Birnbaum G, Stulc J. High dose biotin as treatment for progressive multiple sclerosis. Mult Scler Relat Disord. 2017 Nov;18:141-143.
  70. Gifford JL, de Koning L, Sadrzadeh SMH. Strategies for mitigating risk posed by biotin interference on clinical immunoassays. Clin Biochem. 2019 Mar;65:61-63.
  71. Gironi M, Borgiani B, Mariani E, et al. Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res 2014; 2014: 961863
  72. Choi I, Lee P, Adany P, et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult Scler 2018; 24: 1029–1038.
  73. Salama M, Yuan TF, Machado S, Murillo-Rodríguez E, Vega JA, Menéndez-González  M, Nardi AE, Arias-Carrión O. Co-enzyme Q10 to treat neurological disorders: basic mechanisms, clinical outcomes, and future research direction. CNS Neurol Disord Drug Targets. 2013 Aug;12(5):641-64.
  74. Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr Neurosci. 2016;19(3):138-43.
  75. Moccia M, Capacchione A, Lanzillo R, Carbone F, Micillo T, Perna F, De Rosa A, Carotenuto A, Albero R, Matarese G, Palladino R, Brescia Morra V. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther Adv Neurol Disord. 2019 Feb 18;12:1756286418819074.
  76. Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Khodadadi B, Jazayeri S, Gohari MR, Aryaeian N. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci. 2015 May;18(4):169-76.
  77. Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, Shakouri SK. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for  central nervous system diseases: A review. Nutr Neurosci. 2019 May;22(5):306-316.
  78. Marracci GH, Jones RE, McKeon GP, Bourdette D. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;131:104–114.
  79. Morini M, Roccatagliata L, Dell’Eva R, et al. Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148:146–153.
  80. Fiedler SE, Yadav V, Kerns AR, Tsang C, Markwardt S, Kim E, Spain R, Bourdette D, Salinthone S. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects. Mol Neurobiol. 2018 Jul;55(7):6037-6049.
  81. Khalili M, Eskandari G, Ghajarzadeh M, Azimi A, Eghtesadi S, Sahraian MA, et al. Lipoic acid and multiple sclerosis: a randomized controlled clinical trial. Curr Top Nutraceutical Res. 2012;10(2):95–100.
  82. Khalili M, Azimi A, Izadi V, Eghtesadi S, Mirshafiey A, Sahraian MA, et al. Does lipoic acid consumption affect the cytokine profile in multiple sclerosis patients: a double-blind, placebocontrolled, randomized clinical trial. Neuroimmunomodulation. 2014;21(6):291–6.
  83. Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, et al. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci. 2014;17(1):16–20.
  84. Spain R, Powers K, Murchison C, Heriza E, Winges K, Yadav V et al. Lipoic acid in secondary progressive MS. Neurology: Neuroimmunology and NeuroInflammation. 2017;4(5).
  85. Loy BD, Fling BW, Horak FB, Bourdette DN, Spain RI. Effects of lipoic acid on  walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement Ther Med. 2018 Dec;41:169-174.
  86. Cunnane SC, Ho SY, Dore-Duffy P, Ells KR, Horrobin DF. Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis. Am J Clin Nutr. 1989 Oct;50(4):801-6.
  87. Wilson R, Tocher DR. Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids. 1991 Jan;26(1):9-15
  88. McNamara RK, Rider T, Jandacek R, Tso P. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and  schizophrenia and resembles multiple sclerosis. Psychiatry Res. 2014 Mar 30;215(3):560-7. doi: 10.1016/j.psychres.2013.12.022.
  89. Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res 2010; 88:2091–102
  90. Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res 2008;86:776–84
  91. Ramirez-Ramirez V, Macias-Islas MA, Ortiz GG, Pacheco-Moises F, Torres-Sanchez ED, Sorto-Gomez TE, Cruz-Ramos JA, Orozco-Avina G, Celis de la Rosa AJ. Efficacy of fish oil on serum of TNFα, IL1β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013;2013:709493.
  92. Shinto L, Marracci G, Baldauf-Wagner S, Strehlow A, Yadav V, Stuber L, Bourdette D. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids 2009;80:131–6
  93. Bates D, Cartlidge NE, French JM, Jackson MJ, Nightingale S, Shaw DA, Smith S, Woo E, Hawkins SA, Millar JH, et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989 Jan;52(1):18-22.
  94. Torkildsen O, Wergeland S, Bakke S, Beiske AG, Bjerve KS, Hovdal H, Midgard R, Lilleås F, Pedersen T, Bjørnarå B, Dalene F, Kleveland G, Schepel J, Olsen IC, Myhr KM. ω-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Arch Neurol. 2012 Aug;69(8):1044-51.
  95. Weinstock-Guttman B, Baier M, Park Y, Feichter J, Lee-Kwen P, Gallagher E, Venkatraman J, Meksawan K, Deinehert S, Pendergast D, Awad AB, Ramanathan M, Munschauer F, Rudick R. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids. 2005 Nov;73(5):397-404.
  96. Pantzaris MC, Loukaides GN, Ntzani EE, Patrikios IS. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: a randomised, double-blind, placebo-controlled proof-of-concept clinical trial. BMJ Open. 2013 Apr 17;3(4).
  97. Kouchaki E, Afarini M, Abolhassani J, Mirhosseini N, Bahmani F, Masoud SA, Asemi Z. High-dose ω-3 Fatty Acid Plus Vitamin D3 Supplementation Affects Clinical Symptoms and Metabolic Status of Patients with Multiple Sclerosis: A Randomized Controlled Clinical Trial. J Nutr. 2018 Aug 1;148(8):1380-1386.
  98. Shinto L, Marracci G, Mohr DC, Bumgarner L, Murchison C, Senders A, Bourdette  D. Omega-3 Fatty Acids for Depression in Multiple Sclerosis: A Randomized Pilot Study. PLoS One. 2016 Jan 22;11(1):e0147195.

 

Pietro KJ, Jensen AM, Schumacher JR, Anderson JW. Vitamin B12 intake correlated to physical and mental improvements in multiple sclerosis specific quality of life. Int J Adv Nutr Health Sci. 2014;2:98-108.

LEARNING ZONE

Developing the evidence for kinesiology-style manual muscle testing: A series of diagnostic test accuracy studies. Anne M. Jensen, Richard Stevens , Amanda Burls. Australasian Integrative Medicine Association Conference Abstracts, Sydney, Australia/ Advances in Integrative Medicine 2014, 1 (3): 158. https://doi.org/10.1016/j.aimed.2015.01.010.  

A double-blind, randomized study to assess the validity of applied kinesiology (AK) as a diagnostic tool and as a nonlocal proximity effect. Schwartz SA et al. Explore (NY). 2014 Mar-Apr;10(2):99-108. doi: 10.1016/j.explore.2013.12.002. Epub 2013 Dec 18.

Quality and reporting of diagnostic accuracy studies in TB, HIV and malaria: evaluation using QUADAS and STARD standards. Fontela PS et al. PLoS One. 2009 Nov 13;4(11):e7753. doi: 10.1371/journal.pone.0007753.

On the reliability and validity of manual muscle testing: a literature review

Scott Cuthbert and George J Goodheart, Jr. Chiropr Osteopat. 2007; 15: 4.

Published online 2007 Mar 6. doi: 10.1186/1746-1340-15-4.

RESEARCH

Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans

Author links open overlay panel. Abigail J.Johnson et al.  Cell Host and Microbe 2019, Volume 25, Issue 6, 12 June, 789-802.e5. https://doi.org/10.1016/j.chom.2019.05.005.

Daniel J Blum, Emmanuel During, Fiona Barwick, Polina Davidenko, Jamie M Zeitzer. 0009 Restless Leg Syndrome: Does It Start With A Gut Feeling? Sleep, 2019; 42 (Supplement_1): A4 DOI: 10.1093/sleep/zsz067.008.

High sensitivity and interindividual variability in the response of the human circadian system to evening light. Andrew J. K. Phillips, Parisa Vidafar, Angus C. Burns, Elise M. McGlashan, Clare Anderson, Shantha M. W. Rajaratnam, Steven W. Lockley, Sean W.Cain. Proceedings of the National Academy of Sciences Jun 2019, 116 (24) 12019-12024; DOI:10.1073/pnas.1901824116.

Kelsey E. McLimans, Bridget E Clark, Alexandra Plagman, Colleen Pappas, Brandon Klinedinst, Vellareddy Anantharam, Anumantha Kanthasamy, Auriel A Willette. Is CSF SOD1 a Biomarker of Tau but not Amyloid Induced Neurodegeneration in Alzheimer’s Disease? Antioxidants & Redox Signaling, 2019; DOI: 10.1089/ars.2019.7762.

Joint Analysis of Metabolite Markers of Fish Intake and Persistent Organic Pollutants in Relation to Type 2 Diabetes Risk in Swedish Adults.

Lin Shi et al. The Journal of Nutrition, nxz068, https://doi.org/10.1093/jn/nxz068

18 June 2019.

JEFF BLAND

 Lim SH, Fast L et al. Sickle cell vaso-occlusive crisis: It’s a gut feeling. J Transl Med 2016; 14: 334-39.

Zhang D, Chen G et al. Neutrophil ageing is regulated by the microbiome. Nature 2015 Sep 24; 525: 528-38.

Lim SH, Methe BA et al. Invasive non-typhoidal Salmonella in sickle cell disease in Africa: is increased permeability the missing link? J Transl Med 2018; 16: 239-46.

June 2019

NEWS

Butyrate, a metabolite of intestinal bacteria, enhances sleep. Éva Szentirmai et al.

Scientific Reports 2019, 9: 7035, Published May 7.

BEN BROWN – CFS 

  1. Campagnolo N, Johnston S, Collatz A, Staines D, Marshall-Gradisnik S. Dietary  and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: a systematic review. J Hum Nutr Diet. 2017 Jun;30(3):247-259.
  2. Galland L. Diet and inflammation. Nutr Clin Pract. 2010 Dec;25(6):634-40.
  3. Bulló M, Lamuela-Raventós R, Salas-Salvadó J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr  Top Med Chem. 2011;11(14):1797-810.
  4. McMillan L, Owen L, Kras M, Scholey A. Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite. 2011 Feb;56(1):143-7.
  5. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, Castle D, Dash S, Mihalopoulos C, Chatterton ML, Brazionis L, Dean OM, Hodge AM, Berk M. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017 Jan 30;15(1):23.
  6. Fernández JM, Rosado-Álvarez D, Da Silva Grigoletto ME, Rangel-Zúñiga OA, Landaeta-Díaz LL, Caballero-Villarraso J, López-Miranda J, Pérez-Jiménez F, Fuentes-Jiménez F. Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (Lond). 2012 Sep;123(6):361-73.
  7. Sathyapalan T, Beckett S, Rigby AS, Mellor DD, Atkin SL. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr J. 2010 Nov 22;9:55.
  8. Ortega R. Importance of functional foods in the Mediterranean diet. Public Health Nutr. 2006 Dec;9(8A):1136-40.
  9. Craig C. Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets. Med Hypotheses. 2015 Nov;85(5):690-3.
  10. Logan AC, Wong C. Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev. 2001 Oct;6(5):450-9.
  11. Catassi C, Bai JC, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J, Francavilla R, Elli L, Green P, Holtmeier W,  Koehler P, Koletzko S, Meinhold C, Sanders D, Schumann M, Schuppan D, Ullrich R,  Vécsei A, Volta U, Zevallos V, Sapone A, Fasano A. Non-Coeliac Gluten sensitivity: the new frontier of gluten related disorders. Nutrients. 2013 Sep 26;5(10):3839-53.
  12. Uhde M, Indart AC, Yu XB, Jang SS, De Giorgio R, Green PHR, Volta U, Vernon SD, Alaedini A. Markers of non-coeliac wheat sensitivity in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Gut. 2019 Feb;68(2):377-378.
  13. Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, Verna EC, Volta U, Alaedini A. Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut. 2016 Dec;65(12):1930-1937.
  14. Siniscalchi M, Iovino P, Tortora R, Forestiero S, Somma A, Capuano L, Franzese MD, Sabbatini F, Ciacci C. Fatigue in adult coeliac disease. Aliment Pharmacol Ther. 2005 Sep 1;22(5):489-94.
  15. Rowe PC, Marden CL, Jasion SE, Cranston EM, Flaherty MA, Kelly KJ. Cow’s milk  protein intolerance in adolescents and young adults with chronic fatigue syndrome. Acta Paediatr. 2016 Sep;105(9):e412-8.
  16. Yang TY, Kuo HT, Chen HJ, Chen CS, Lin WM, Tsai SY, Kuo CN, Kao CH. Increased  Risk of Chronic Fatigue Syndrome Following Atopy: A Population-Based Study. Medicine (Baltimore). 2015 Jul;94(29):e1211
  17. Berkovitz S, Ambler G, Jenkins M, et al. Serum 25-hydroxy vitamin D levels in chronic fatigue syndrome: a retrospective survey. Int J Vitam Nutr Res. 2009 Jul;79(4):250-4.
  18. Earl KE, Sakellariou GK, Sinclair M, Fenech M, Croden F, Owens DJ, Tang J, Miller A, Lawton C, Dye L, Close GL, Fraser WD, McArdle A, Beadsworth MBJ. Vitamin D status in chronic fatigue syndrome/myalgic encephalomyelitis: a cohort  study from the North-West of England. BMJ Open. 2017 Nov 8;7(11):e015296.
  19. Hoeck AD, Pall ML. Will vitamin D supplementation ameliorate diseases characterized by chronic inflammation and fatigue? Med Hypotheses. 2011 Feb;76(2):208-13.
  20. Shinchuk LM, Holick MF. Vitamin d and rehabilitation: improving functional outcomes. Nutr Clin Pract. 2007 Jun;22(3):297-304.
  21. Plotnikoff GA, Quigley JM. Prevalence of severe hypovitaminosis D in patients with persistent, nonspecific musculoskeletal pain. Mayo Clin Proc. 2003;78:1463–1470
  22. Knutsen KV, Brekke M, Gjelstad S, et al. Vitamin D status in patients with musculoskeletal pain, fatigue and headache: a cross-sectional descriptive study in a multi-ethnic general practice in Norway. Scand J Prim Health Care. 2010 Sep;28(3):166-71.
  23. Holick MF. Vitamin D deficiency: what a pain it is. Mayo Clin Proc. 2003 Dec;78(12):1457-9.
  24. Nowak A, Boesch L, Andres E, Battegay E, Hornemann T, Schmid C, Bischoff-Ferrari HA, Suter PM, Krayenbuehl PA. Effect of vitamin D3 on self-perceived fatigue: A double-blind randomized placebo-controlled trial. Medicine (Baltimore). 2016 Dec;95(52):e5353.
  25. Höck AD.  Divalent cations, hormones, psyche and soma: Four case reports. J Chronic Fatigue Syndr. 2000; 6(3/4):117-131.
  26. Witham MD, Adams F, McSwiggan S, Kennedy G, Kabir G, Belch JJ, Khan F. Effect  of intermittent vitamin D3 on vascular function and symptoms in chronic fatigue syndrome–a randomised controlled trial. Nutr Metab Cardiovasc Dis. 2015 Mar;25(3):287-94.
  27. Puri BK. Long-chain polyunsaturated fatty acids and the pathophysiology of myalgic encephalomyelitis (chronic fatigue syndrome). J Clin Pathol. 2007 Feb;60(2):122-4.
  28. Behan PO, Behan WM, Horrobin D. Effect of high doses of essential fatty acids on the postviral fatigue syndrome. Acta Neurol Scand. 1990;82(3):209–216.
  29. Warren G, McKendrick M, Peet M. The role of essential fatty acids in chronic fatigue syndrome. A case-controlled study of red-cell membrane essential fatty acids (EFA) and a placebo-controlled treatment study with high dose of EFA. Acta Neurol Scand. 1999;99(2):112–116.
  30. Puri BK. The use of eicosapentaenoic acid in the treatment of chronic fatigue  syndrome. Prostaglandins Leukot Essent Fatty Acids. 2004 Apr;70(4):399-401.
  31. Puri BK, Holmes J, Hamilton G. Eicosapentaenoic acid-rich essential fatty acid supplementation in chronic fatigue syndrome associated with symptom remission and structural brain changes. Int J Clin Pract. 2004 Mar;58(3):297-9.
  32. Heap LC, Peters TJ, Wessely S. Vitamin B status in patients with chronic fatigue syndrome. J R Soc Med. 1999 Apr;92(4):183-5.
  33. Jacobson W,  Saich T, Borysiewicz L,  et al. Serum  folate and chronic fatigue syndrome. Neurology. 1993;43:2645-7
  34. Reglund B, Andersson M, Abrahamsson L, et al.  Increased concentrations  of homocysteine in  the cerebrospinal  fluid in  patients with fibromyalgia  and chronic fatigue syndrome. Scand J Rheumatol  1997;26:301-7
  35. Forsyth LM, Preuss HG, MacDowell AL, et al.  Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol. 1999 Feb;82(2):185-91.
  36. Santaella ML, Font I, Disdier OM. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome. P R Health Sci J. 2004 Jun;23(2):89-93.
  37. Simpson LO. Myalgic encephalomyelitis. J R Soc Med. 1991 Oct;84(10):633.
  38. Simpson LO. Myalgic Encephalomyelitis (ME): A Haemorheological Disorder Manifested as Impaired Capillary Blood Flow. JOM. Vol. 12, No. 2, 1997; 69-76.
  39. Kaslow J, Rucker L, Onishi R. Liver extract-folic acid-cyanocobalamin vs  placebo for chronic fatigue syndrome. Arch Intern Med. 1989;149:2501-3
  40. Martin R, Ogston S, Evans J.  Effects of vitamin  and mineral supplementation on symptoms associated with chronic fatigue syndrome with Coxsackie B  antibodies. J Nutr Med. 1994;4: 11-23
  41. Brouwers FM, Van Der Werf S, Bleijenberg G, Van Der Zee L, Van Der Meer JW. The effect of a polynutrient supplement on fatigue and physical activity of patients with chronic fatigue syndrome: a double-blind randomized controlled trial. QJM. 2002 Oct;95(10):677-83.
  42. Maric D, Brkic S, Tomic S, Novakov Mikic A, Cebovic T, Turkulov V. Multivitamin mineral supplementation in patients with chronic fatigue syndrome. Med Sci Monit. 2014 Jan 14;20:47-53.
  43. Seelig M: Review and hypothesis: might patients with the Chronic Fatigue Syndrome have latent tetany of Magnesium deficiency. J Chronic Fatigue Syndr. 4: 77–108, 1998.
  44. Werbach MR. Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev. 2000 Apr;5(2):93-108.
  45. Manuel y Keenoy B, Moorkens G, et al. Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr. 2000 Jun;19(3):374-82.
  46. Cox IM, Campbell MJ, Dowson D. Red blood cell magnesium and chronic fatigue syndrome. Lancet. 1991 Mar 30;337(8744):757-60.
  47. Takahashi H, Imai K, Katanuma A, et al. A case of chronic fatigue syndrome who showed a beneficial  effect by intravenous administration of magnesium sulphate (Japanese). Arerugi. 1992 Nov;41(11):1605-10.
  48. Reuter SE, Evans AM. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome. Potential involvement of altered carnitine palmitoyltransferase-I activity. J Intern Med. 2011 Jul;270(1):76-84.
  49. Plioplys AV, Plioplys S. Amantadine and L-carnitine treatment of Chronic Fatigue Syndrome. Neuropsychobiology. 1997;35(1):16-23.
  50. Vermeulen RC, Scholte HR. Exploratory open label, randomized study of acetyl-  and propionylcarnitine in chronic fatigue syndrome. Psychosom Med. 2004 Mar-Apr;66(2):276-82.
  51. Maes M, Mihaylova I, De Ruyter M. Lower serum zinc in Chronic Fatigue Syndrome (CFS): relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord. 2006 Feb;90(2-3):141-7.
  52. Kilic M. Effect of fatiguing bicycle exercise on thyroid hormone and testosterone levels in sedentary males supplemented with oral zinc. Neuro Endocrinol Lett. 2007 Oct;28(5):681-5.
  53. Mariani E, Neri S, Cattini L, et al. Effect of zinc supplementation on plasma IL-6 and MCP-1 production and NK cell function in healthy elderly: interactive influence of +647 MT1a and -174 IL-6 polymorphic alleles. Exp Gerontol. 2008 May;43(5):462-71.
  54. Siwek M, Dudek D, Paul IA, et al. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord. 2009 Nov;118(1-3):187-95
  55. Bao B, Prasad AS, Beck FW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010 Jun;91(6):1634-41.
  56. Luckazer D (ed). Clinical Nutrtion: A Functional Approach. The Institute of Functional Medicine. 2004.
  57. Arick CT. Chiropractic Management of a Patient With Chronic Fatigue: A Case Report. J Chiropr Med. 2016 Dec;15(4):314-320.
  58. Maric D, Brkic S, Tomic S, Novakov Mikic A, Cebovic T, Turkulov V.

Multivitamin mineral supplementation in patients with chronic fatigue syndrome. Med Sci Monit. 2014 Jan 14;20:47-53.

Blood test

A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

  1. Esfandyarpour, A. Kashi, M. Nemat-Gorgani, J. Wilhelmy, and R. W. Davis

PNAS first published April 29, 2019 https://doi.org/10.1073/pnas.1901274116.

MUSHROOM NUTRITION

  1. Knopman DS, Jack CR Jr, Wiste HJ, Weigand SD, Vemuri P, Lowe VJ, Kantarci K, Gunter JL, Senjem ML, Mielke MM, Machulda MM, Roberts RO, Boeve BF, Jones DT, Petersen RC. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia. Neurology. pii: 10.1212/WNL.0000000000002979.  Jul 15 2016.
  2. Trovato A, Siracusa R, Di Paola R, Scuto M, Ontario ML, Bua O, Di Mauro P, Toscano MA, Petralia CC, Maiolino L, Serra A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun Ageing. 13:23. doi: 10.1186/s12979-016-0078-8. Jul 9 2016.
  3. Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: Astrocytes in Alzheimer’s disease and other age-associated dementias; a supporting player with a central role. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12338. Jul 21 2016.
  4. Mancuso C, Bates TE, Butterfield DA, Calafato S, Cornelius C, De Lorenzo A, Dinkova Kostova AT, Calabrese V. Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs. 16: 1921-1931. 2007.
  5. Cornelius C, Trovato Salinaro A, Scuto M, Fronte V, Cambria MT, Pennisi M,Bella R, Milone P, Graziano A, Crupi R, Cuzzocrea S, Pennisi G, Calabrese V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing. 10(1):41. doi: 10.1186/1742-4933-10-41. Oct 17 2013.
  6.       Yu YZ, Liu S, Wang HC, Shi DY, Xu Q, Zhou XW, Sun ZW, Huang PT. A novel recombinant 6Aβ15-THc-C chimeric vaccine (rCV02) mitigates Alzheimer’s disease-like pathology, cognitive decline and synaptic loss in aged 3 × Tg-AD mice. Sci Rep. 6:27175. doi: 10.1038/srep27175. Jun 3 2016.
  7. American Chemical Society. New Evidence Found Linking Herpes and Alzheimer’s. Science Daily. Retrieved July 26 2013, from www.sciencedaily.com/releases/2000/05/000512083302.htm. May 2000.
  8. University of Manchester. Cold Sore Virus Linked To Alzheimer’s Disease: New Treatment, Or Even Vaccine Possible. Science¬Daily. Retrieved July 26 2013, from www.sciencedaily.com/releas-es/2008/12/081207134109.htm. December 7 2008.
  9. Agostini S, Mancuso R, Baglio F, Cabinio M, Hernis A, Guerini FR, Calabrese E, Nemni R, Clerici M. Lack of evidence for a role of HHV-6 in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis. 49:229-235. 2015.
  10. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type I DNA is located within Alzheimer’s disease amyloid plaques. The Journal of Pathology. Volume 217. Issue 1, pp131-138. DOI: 10.1002/path.2449. 2009.
  11. Kulshreshtha A, Piplani P. Current pharmacotherapy and putative disease-modifying therapy for Alzheimer’s disease. Neurol Sci. [Epub ahead of print] Review. PubMed PMID: 27250365. Jun 1 2016.
  12. Mancuso R, Baglio F, Agostini S, Cabinio M, Laganà MM, Hernis A, Margaritella  N, Guerini FR, Zanzottera M, Nemni R, Clerici M. Relationship between herpes simplex virus-1-specific antibody titers and cortical brain damage in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci. 6:285. doi: 10.3389/fnagi.2014.00285. 2014.
  13. Wozniak MA, Frost AL, Preston CM, Itzhaki RF. Antivirals reduce the forma¬tion of key Alzheimer´s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One. 2011:6(10) e25152 doi 10 1371/ journal. pone.0025152. EPUB Oct 7 2011.
  14. Pandley JP. Immunoglobulin GM genese as functional risk and protective fac¬tors for the development of Alzheimer´s disease. J. Alzheimers Dis.17(4) 753-6 doi 10.3222/JAD-2009-1094. 2009.
  15. Wozniak MA, Itzhaki RF. Intravenous immunoglobulin reduces amyloid and abnormal tau formation caused by herpes simplex virus type 1. J Neuroimmunol. 2013 Apr 15:257 (1-2):7-12 doi 10. 1016/ jnmeuroim 2013.01.005 Epub Feb 4 2013.
  16. Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs OH, LaFerla FM. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 182(5);1740-9. May 2013.
  17.      Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC,Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates. PLoS Biol. 14(7):e1002512. doi:10.1371/journal.pbio.1002512. Jul 21 2016.
  18. Monro JA. Chronic Fatigue Immune Dysfunction Syndrome. Journal of Integrative Medicine. 8:101-108. 2004.
  19. Monro JA. Treatment of Cancer with Mushroom Products. Arch Env Health. 58:533-537. 2003.
  20. Silva Couto J, Pereira da Silva D. Evaluation of the Efficacy of Coriolus versicolor Supplementation in HPV Lesions (LSIL) . Poster presented at the 20th European Congress of Obstetrics and Gynecology, Lisbon, Portugal. March 4-8th 2008.
  21. Cornelius C, Cavallaro M, Cambria MT, Toscano MA, Calabrese V. Comparative Enzyme Analysis of Polyporus umbellatus, Agaricus blazei, Pleurotus ostreatus and Hericium erinaceus . Clinical Journal of Mycology Vol II. Pp4-7. 2009.
  22. Kulmann I, Minihane AM, Huebbe P, Nebel A , Rimbach G. Apolipoprotien E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Lipids Health Dis. 28.9.8 doi 10.1186/1476-511-9.6. January 2010.
  23. Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs OH, LaFerla FM. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 182(5);1740-9. May 2013.
  24. Trovato A, Siracusa R, Di Paola R, Scuto M,Fronte V, Koverech C, Luca M, Serra A, Toscano M.A., Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer´s disease pathogenesis. Neurotoxicology. 53:350-8. doi: 10.1016/j.neuro.2015.09.012. 2016.
  25. Trovato A, Siracusa R, Di Paola R, Scuto M, Ontario ML, Bua O, Di Mauro P, Toscano MA, Petralia CC, Maiolino L, Serra A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun Ageing. 13:23. doi: 10.1186/s12979-016-0078-8. Jul 9 2016.

And theoretical background from:
Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer´s disease pathogenesis.    Trovato A, Siracusa R, Di Paola R, Scuto M,Fronte V, Koverech C, Luca M, Serra A, Toscano M.A., Petralia A, Cuzzocrea S, Calabrese V. Neurotoxicology. 53:350-8. doi: 10.1016/j.neuro.2015.09.012. 2016.

Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis        Trovato A, Siracusa R, Di Paola R, Scuto M, Ontario ML, Bua O, Di Mauro P, Toscano MA, Petralia CC, Maiolino L, Serra A, Cuzzocrea S, Calabrese V.. Immun Ageing. 13:23. doi: 10.1186/s12979-016-0078-8. Jul 9 2016.

MENOPAUSE
Neurology, April 23, 2019; 92 (17). Reproductive period and risk of dementia in a diverse cohort of health care members. Paola Gilsanz et al. DOI: https://doi.org/10.1212/WNL.0000000000007326.

Dietary intake and age at natural menopause: results from the UK Women’s Cohort Study. Yashvee Dunneram, Darren C Greenwood, Victoria J Burley and Janet E Cade.

Journal of Epidemiology and Community Health, 30 April 2018, doi: 10.1136/jech-2017-209887.

Gail A. Greendale, et al. Changes in body composition and weight during the menopause transitionJCI Insight, 2019; 4 (5) DOI: 10.1172/jci.insight.124865.

Muhleisen, A. L., & Herbst-Kralovetz, M. (2016). Menopause and the vaginal microbiome. Maturitas91, 42-50. https://doi.org/10.1016/j.maturitas.2016.05.015.

Mitchell CM et al. 2017. Associations between improvement in genitourinary symptoms of menopause and changes in the vaginal ecosystem. Menopause.

Front. Microbiol., 14 February 2019 | https://doi.org/10.3389/fmicb.2019.00193

Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women. Karol Gliniewicz et al.

Microb Ecol. 2013 Apr;65(3):773-80. doi: 10.1007/s00248-012-0154-3. Epub 2012 Dec 19. The restoration of the vaginal microbiota after treatment for bacterial vaginosis with metronidazole or probiotics.

Ling Z et al.

Gregor Reid. “Has knowledge of the vaginal microbiome altered approaches to health and disease?” F1000Res. 2018; 7: 460. Published online 2018 Apr 13. doi: 10.12688/f1000research.13706.1.

FEMS Microbiol Lett. 2019 Feb 1;366(4). doi: 10.1093/femsle/fnz025.

Vaginal microbiota transplantation for the treatment of bacterial vaginosis: a conceptual analysis. Ma D et al.

RESEARCH

Beibei Yang, Jinbao Wei, Peijun Ju, Jinghong Chen. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic reviewGeneral Psychiatry, 2019; 32: e100056 DOI: 10. 1136/gpsych-2019-100056.

Anna M. Wang, Subechhya Pradhan, Jennifer M. Coughlin, Aditi Trivedi, Samantha L. DuBois, Jeffrey L. Crawford, Thomas W. Sedlak, Fredrick C. Nucifora, Gerald Nestadt, Leslie G. Nucifora, David J. Schretlen, Akira Sawa, Peter B. Barker. Assessing Brain Metabolism With 7-T Proton Magnetic Resonance Spectroscopy in Patients With First-Episode Psychosis. JAMA Psychiatry, 2019; 76 (3): 314 DOI: 10.1001/jamapsychiatry.2018.3637

Thomas W. Sedlak, Bindu D. Paul, Gregory M. Parker, Lynda D. Hester, Adele M. Snowman, Yu Taniguchi, Atsushi Kamiya, Solomon H. Snyder, Akira Sawa. The glutathione cycle shapes synaptic glutamate activity. Proceedings of the National Academy of Sciences, 2019; 116 (7): 2701 DOI: 10.1073/pnas.1817885116

Thomas W. Sedlak, Leslie G. Nucifora, Minori Koga, Lindsay S. Shaffer, Cecilia Higgs, Teppei Tanaka, Anna M. Wang, Jennifer M. Coughlin, Peter B. Barker, Jed W. Fahey, Akira Sawa. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular Neuropsychiatry, 2017; 3 (4): 214 DOI: 10.1159/000487639

Changwei Li, Jiang He, Shengxu Li, Wei Chen, Lydia Bazzano, Xiao Sun, Luqi Shen, Lirong Liang, Ye Shen, Xiaoying Gu, Tanika N Kelly. Novel Metabolites Are Associated With Augmentation Index and Pulse Wave Velocity: Findings From the Bogalusa Heart StudyAmerican Journal of Hypertension, 2019; DOI: 10.1093/ajh/hpz046

‘Training for a first-time marathon reverses vascular ageing’ presented during the Young Investigator Award session on Friday 3 May at EuroCMR 2019.

Fuehrer D, Fennessy C, Reese RJ. 2014. Runners With More Training Miles Finish Marathons Faster. Runners World. Available online at: https://www.runnersworld.com/run-the-numbers/runners-with-more-training-miles-finish-marathons-faster.

Jones S, D’Silva A, Bhuva A, et al. Improved Exercise-Related Skeletal Muscle Oxygen Consumption Following Uptake of Endurance Training Measured Using Near-Infrared Spectroscopy. Front Physiol. 2017;8:1018. doi: 10.3389/fphys.2017.01018.

Epigenomics. 2019 Feb;11(3):349-362. doi: 10.2217/epi-2018-0081. Epub 2019 Jan 23.

Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives.

Calcagno DQ et al.

Cynthia Larbey, Susan M. Mentzer, Bertrand Ligouis, Sarah Wurz, Martin K. Jones. Cooked starchy food in hearths ca. 120 kya and 65 kya (MIS 5e and MIS 4) from Klasies River Cave, South AfricaJournal of Human Evolution, 2019; 131: 210 DOI: 10.1016/j.jhevol.2019.03.015.

Ziad Al Nabhani, Sophie Dulauroy, Rute Marques, Clara Cousu, Shahed Al Bounny, François Déjardin, Tim Sparwasser, Marion Bérard, Nadine Cerf-Bensussan, Gérard Eberl. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the AdultImmunity, 2019; DOI: 10.1016/j.immuni.2019.02.014

Multipotent fetal-derived Cdx2 cells from placenta regenerate the heart. Sangeetha Vadakke-Madathil, Gina LaRocca, Koen Raedschelders, JesseYoon, Sarah J. Parker, Joseph Tripodi, Vesna Najfeld, Jennifer E. Van Eyk, Hina W. Chaudhry

Proceedings of the National Academy of Sciences, May 2019, 201811827; DOI:10.1073/pnas.1811827116.

Tamia A. Harris, Sureka Gattu, Daniel C. Propheter, Zheng Kuang, Shai Bel, Kelly A. Ruhn, Andrew L. Chara, Marshall Edwards, Chenlu Zhang, Jay-Hyun Jo, Prithvi Raj, Christos C. Zouboulis, Heidi H. Kong, Julia A. Segre, Lora V. Hooper. Resistin-like Molecule α Provides Vitamin-A-Dependent Antimicrobial Protection in the SkinCell Host & Microbe, 2019; DOI: 10.1016/j.chom.2019.04.004.

Desai T, Roberts M, Bottom L. Effects of Montmorency tart cherry supplementation on cardio-metabolic markers in metabolic syndrome participants: a pilot study. Journal of Functional Foods. 2019; 57: 286-298.

IN PRACTICE – Thalia Pellegrini

Cowling PEbringer RCawdell DIshii MEbringer A. C-reactive protein, ESR, and klebsiella in ankylosing spondylitis Ann Rheum Dis. 1980 Feb;39(1):45-9.

Ebringer AWilson C The use of a low starch diet in the treatment of patients suffering from ankylosing spondylitis Clinical Rheumatology 1996 Jan;15 Suppl 1:62-66.

Ebringer A, Rashid T, Wilson C,  The Link between Ankylosing Spondylitis, Crohn’s Disease, Klebsiella, and Starch Consumption Clin Dev Immunol. 2013; 2013: 872632.

 Zhang LZhang YJChen JHuang XLFang GSYang LJDuan YWang J. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review .Microb Pathog. 2018 Apr;117:49-54

The relationship between Klebsiella infection and ankylosing spondylitis Baillière’s Clinical Rheumatology Volume 3, Issue 2, August 1989, Pages 321-338

May 2019

WELCOME

“Nutritional epidemiology is a scandal. It should just go to the waste bin”:

https://www.cbc.ca/news/health/second-opinion-alcohol180505-1.4648331.

John Ioannidis second quote is here: https://newfoodeconomy.org/world-health-organization-drops-its-high-profile-endorsement-of-the-eat-lancet-diet. Report by Sam Bloch.

Why Most Published Research Findings Are False. John P. A. Ioannidis. PLoS Med. 2005 Aug; 2(8): e124. doi: 10.1371/journal.pmed.0020124.

Ng K et al. Effect of High-Dose vs Standard-Dose Vitamin D3 Supplementation on Progression-Free Survival Among Patients With Advanced or Metastatic Colorectal Cancer: The SUNSHINE Randomized Clinical Trial. JAMA. 2019 Apr 9;321(14):1370-1379. doi: 10.1001/jama.2019.2402.

NEWS

  1. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
  2. https://www.gov.uk/government/news/antimicrobial-resistance-uk-launches-5-year-action-plan-and-20-year-vision.

Hu XY et al. Andrographis paniculata (Chuān Xīn Lián) for symptomatic relief of acute respiratory tract infections in adults and children: A systematic review and meta-analysis. PLoS One. 2017 Aug 4;12(8):e0181780. doi: 10.1371/journal.pone.0181780.

Leveraging Human Microbiome Features to Diagnose and Stratify Children with Irritable Bowel Syndrome. Journal of Molecular Diagnostics 2019, in press.

Emily B. Hollister et al. doi: https://doi.org/10.1016/j.jmoldx.2019.01.006

Louise Saul, Iris Mair, Alasdair Ivens, Pamela Brown, Kay Samuel, John D. M. Campbell, Daniel Y. Soong, Nadine Kamenjarin, Richard J. Mellanby. 1,25-Dihydroxyvitamin D3 Restrains CD4 T Cell Priming Ability of CD11c Dendritic Cells by Upregulating Expression of CD31Frontiers in Immunology, 2019; 10 DOI: 10.3389/fimmu.2019.00600


BEN BROWN

  1. Jason LA, Evans M, Brown M, Porter N. What is fatigue? Pathological and nonpathological fatigue. PM R. 2010 May;2(5):327-31.
  2. Bested AC, Marshall LM. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health. 2015;30(4):223-49.
  3. Cairns R, Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med (Lond). 2005 Jan;55(1):20-31.
  4. Harvey SB, Wessely S. Chronic fatigue syndrome: identifying zebras amongst the horses. BMC Med. 2009 Oct 12;7:58.
  5. Accessed online at: http://www.cdc.gov/cfs/case-definition/index.html on 09-01-2013.
  6. Brurberg KG, Fønhus MS, Larun L, Flottorp S, Malterud K. Case definitions for  chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review. BMJ Open. 2014 Feb 7;4(2):e003973.
  7. Maclachlan L, Watson S, Gallagher P, Finkelmeyer A, Jason LA, Sunnquist M, Newton JL. Are current chronic fatigue syndrome criteria diagnosing different disease phenotypes? PLoS One. 2017 Oct 20;12(10):e0186885.
  8. Yancey JR, Thomas SM. Chronic fatigue syndrome: diagnosis and treatment. Am Fam Physician. 2012;86(8):741-746.
  9. Luyten P, Van Houdenhove B, Pae CU, Kempke S, Van Wambeke P. Treatment of chronic fatigue syndrome: findings, principles and strategies. Psychiatry Investig. 2008;5(4):209-212.
  10. Brown BI. Chronic fatigue syndrome: a personalized integrative medicine approach. Altern Ther Health Med. 2014 Jan-Feb;20(1):29-40.
  11. Van Den Eede F, Moorkens G, Van Houdenhove B, Cosyns P, Claes SJ. Hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. Neuropsychobiology. 2007;55(2):112-20.
  12. Papadopoulos AS, Cleare AJ. Hypothalamic-pituitary-adrenal axis dysfunction in chronic fatigue syndrome. Nat Rev Endocrinol. 2011 Sep 27;8(1):22-32.
  13. Heim C, Nater UM, Maloney E, Boneva R, Jones JF, Reeves WC. Childhood trauma and risk for chronic fatigue syndrome: association with neuroendocrine dysfunction. Arch Gen Psychiatry. 2009 Jan;66(1):72-80.
  14. Van Den Eede F, Moorkens G, Van Houdenhove B, Cosyns P, Claes SJ. Hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. Neuropsychobiology. 2007;55(2):112-20.
  15. Cleare AJ. The HPA axis and the genesis of chronic fatigue syndrome. Trends Endocrinol Metab. 2004 Mar;15(2):55-9.
  16. Nater UM, Youngblood LS, Jones JF, et al. Alterations in diurnal salivary cortisol rhythm in a population-based sample of cases with chronic fatigue syndrome. Psychosom Med. 2008;70:298–305.
  17. Panossian A, Wikman G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr Clin Pharmacol. 2009 Sep;4(3):198-219.
  18. Baschetti R. Chronic fatigue syndrome and licorice (letter). N Z Med J 108 (1995): 156–7.
  19. Methlie P, Husebye EE, Hustad S, Lien EA, Løvås K. Grapefruit juice and licorice increase cortisol availability in patients with Addison’s disease. Eur J Endocrinol. 2011 Nov;165(5):761-9. doi: 10.1530/EJE-11-0518.
  20. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use,  chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010 Jun;17(7):481-93
  21. Olsson EM, von Schéele B, Panossian AG. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009 Feb;75(2):105-12.
  22. Hartz AJ, Bentler S, Noyes R, Hoehns J, Logemann C, Sinift S, Butani Y, Wang W, Brake K, Ernst M, Kautzman H. Randomized controlled trial of Siberian ginseng  for chronic fatigue. Psychol Med. 2004 Jan;34(1):51-61.
  23. Nacul L, Lacerda E, Sakellariou D. Is there an association between exposure to chemicals and chronic fatigue syndrome? Review of the evidence. Bulletin of the IACFS/ME. 2009;17(1)
  24. Pacini S, Fiore MG, Magherini S, Morucci G, Branca JJ, Gulisano M, Ruggiero M. Could cadmium be responsible for some of the neurological signs and symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Med Hypotheses. 2012 Sep;79(3):403-7.
  25. Jay SJ. Tobacco use and chronic fatigue syndrome, fibromyalgia, and temporomandibular disorder. Arch Intern Med. 2000 Aug 14-28;160(15):2398, 2401.
  26. Dunstan RH, Donohoe M, Taylor W, Roberts TK, Murdoch RN, Watkins JA, McGregor  NR. A preliminary investigation of chlorinated hydrocarbons and chronic fatigue syndrome. Med J Aust. 1995 Sep 18;163(6):294-7.
  27. Racciatti D, Vecchiet J, Ceccomancini A, Ricci F, Pizzigallo E. Chronic fatigue syndrome following a toxic exposure. Sci Total Environ. 2001 Apr 10;270(1-3):27-31.
  28. Sears ME, Genuis SJ. Environmental determinants of chronic disease and medical approaches: recognition, avoidance, supportive therapy, and detoxification. J Environ Public Health. 2012;2012:356798. doi: 10.1155/2012/356798.
  29. Bland JS, Bralley JA. Nutritional upregulation of detoxification enzymes. J App Nutr. 44; 3-4. 1992
  30. Bland JS et al. A medical food supplemented detoxification program in the management of chronic health problems. Altern Ther Health and Med. 1995. Vol 1; 5: 62-71.
  31. MacIntosh A,  Ball K. The effects of a short program of detoxification in disease-free individuals. Altern Ther  Health and Med; Jul 2000; 6, 4; 70-76.
  32. Lamb JJ, Konda VR, Quig DW, Desai A, Minich DM, Bouillon L, Chang JL, Hsi A, Lerman RH, Kornberg J, Bland JS, Tripp ML. A program consisting of a phytonutrient-rich medical food and an elimination diet ameliorated fibromyalgia  symptoms and promoted toxic-element detoxification in a pilot trial. Altern Ther  Health Med. 2011 Mar-Apr;17(2):36-44.
  33. Richardson J. Four cases of pesticide poisoning, presenting as “ME,” treated with choline and ascorbic acid mixture. Journal of chronic fatigue syndrome.  2000;6(2):11-21
  34. Wojcik DP, Godfrey ME, Christie D, Haley BE. Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994-2006). Neuro Endocrinol Lett. 2006 Aug;27(4):415-23.
  35. Masuda A, Kihara T, Fukudome T, Shinsato T, Minagoe S, Tei C. The effects of repeated thermal therapy for two patients with chronic fatigue syndrome. J Psychosom Res. 2005 Apr;58(4):383-7.
  36. Crinnion WJ. Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant- induced and other chronic health problems. Altern Med Rev. 2011 Sep;16(3):215-25.
  37. Sperber AD, Dekel R. Irritable Bowel Syndrome and Co-morbid Gastrointestinal and Extra-gastrointestinal Functional Syndromes. J Neurogastroenterol Motil. 2010 Apr;16(2):113-9.
  38. Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr  Metab (Lond). 2010 Oct 12;7:79. doi: 10.1186/1743-7075-7-79.
  39. Logan AC, Venket Rao A, Irani D. Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med Hypotheses. 2003 Jun;60(6):915-23.
  40. Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, McGregor N, Stapleton DI, Butt HL, DE Meirleir KL. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009 Jul-Aug;23(4):621-8.
  41. Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement  of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord. 2007 Apr;99(1-3):237-40.
  42. Brown BI. Nutritional Management of Metabolic Endotoxemia: A Clinical Review. Altern Ther Health Med. 2017 Jul;23(4):42-54.
  43. Maes M, Leunis JC. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuro Endocrinol Lett. 2008 Dec;29(6):902-10.
  44. Singh PK, Chopra K, Kuhad A, Kaur IP. Role of Lactobacillus acidophilus loaded floating beads in chronic fatigue syndrome: behavioral and biochemical evidences. Neurogastroenterol Motil. 2012 Apr;24(4):366-e170
  45. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009 Mar 19;1(1):6. doi: 10.1186/1757-4749-1-6.
  46. Sullivan A, Nord CE, Evengård B. Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome. Nutr J. 2009 Jan 26;8:4. doi: 10.1186/1475-2891-8-4.
  47. Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, Shanahan F, Quigley EM. Bifidobacterium infantis 35624 modulates host inflammatory processes  beyond the gut. Gut Microbes. 2013 Jul-Aug;4(4):325-39.
  48. Wallis A, Ball M, Butt H, Lewis DP, McKechnie S, Paull P, Jaa-Kwee A, Bruck D. Open-label pilot for treatment targeting gut dysbiosis in myalgic encephalomyelitis/chronic fatigue syndrome: neuropsychological symptoms and sex comparisons. J Transl Med. 2018 Feb 6;16(1):24.
  49. Bansal AS, Bradley AS, Bishop KN, Kiani-Alikhan S, Ford B. Chronic fatigue syndrome, the immune system and viral infection. Brain Behav Immun. 2012 Jan;26(1):24-31.
  50. Vollmer-Conna U, Hickie I, Hadzi-Pavlovic D, Tymms K, Wakefield D, Dwyer J, Lloyd A. Intravenous immunoglobulin is ineffective in the treatment of patients with chronic fatigue syndrome. Am J Med. 1997 Jul;103(1):38-43.
  51. See DM, Tilles JG. alpha-Interferon treatment of patients with chronic fatigue syndrome. Immunol Invest. 1996 Jan-Mar;25(1-2):153-64.
  52. Lerner AM, Beqaj SH, Deeter RG, Fitzgerald JT. Valacyclovir treatment in Epstein-Barr virus subset chronic fatigue syndrome: thirty-six months follow-up.  In Vivo. 2007 Sep-Oct;21(5):707-13.
  53. Werbach MR. Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev. 2000 Apr;5(2):93-108.
  54. Maes M, Mihaylova I, De Ruyter M. Lower serum zinc in Chronic Fatigue Syndrome (CFS): relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord. 2006 Feb;90(2-3):141-7.
  55. Maes M, Mihaylova I, Leunis J. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuroendocrinol Lett 2005; 26(6):745–751
  56. Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation.  Curr Opin Clin Nutr Metab Care. 2009 Nov;12(6):646-52.
  57. Sijben JW, Calder PC. Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc Nutr Soc. 2007 May;66(2):237-59.
  58. Mikirova N, Hunninghake R. Effect of high dose vitamin C on Epstein-Barr viral infection. Med Sci Monit. 2014 May 3;20:725-32.
  59. See DM, Broumand N, Sahl L, Tilles JG. In vitro effects of echinacea and ginseng on natural killer and antibody-dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients. Immunopharmacology. 1997 Jan;35(3):229-35.
  60. Hudson JB. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J Biomed Biotechnol. 2012;2012:769896. doi: 10.1155/2012/769896.
  61. Pall ML, Satterlee JD. Elevated nitric oxide/peroxynitrite mechanism for the common etiology of multiple chemical sensitivity, chronic fatigue syndrome, and posttraumatic stress disorder. Ann N Y Acad Sci. 2001 Mar;933:323-9.
  62. Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin  Psychiatry. 2009 Jan;22(1):75-83.
  63. Klimas NG, Broderick G, Fletcher MA. Biomarkers for chronic fatigue. Brain Behav Immun. 2012 Nov;26(8):1202-10.
  64. Logan AC, Wong C. Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev. 2001 Oct;6(5):450-9.
  65. Singh A, Naidu PS, Gupta S, Kulkarni SK. Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome. J Med Food. 2002 Winter;5(4):211-20.
  66. Singal A, Kaur S, Tirkey N, Chopra K. Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice. J Med Food. 2005 Spring;8(1):47-52.
  67. Gupta A, Vij G, Sharma S, Tirkey N, Rishi P, Chopra K. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology. 2009;214(1):33-9.
  68. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Coenzyme  Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is  related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol Lett. 2009;30(4):470-6.
  69. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic  fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocrinol Lett. 2009;30(4):462-9.
  70. Cordero MD, Moreno-Fernández AM, deMiguel M, Bonal P, Campa F, Jiménez-Jiménez LM, Ruiz-Losada A, Sánchez-Domínguez B, Sánchez Alcázar JA, Salviati L, Navas P.  Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. Clin Biochem. 2009 May;42(7-8):732-5.
  71. Cordero MD, De Miguel M, Moreno Fernández AM, Carmona López IM, Garrido Maraver J, Cotán D, Gómez Izquierdo L, Bonal P, Campa F, Bullon P, Navas P, Sánchez Alcázar JA. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010;12(1):R17.
  72. Cordero MD, Cano-García FJ, Alcocer-Gómez E, De Miguel M, Sánchez-Alcázar JA.  Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q₁₀  effect on clinical improvement. PLoS One. 2012;7(4):e35677.
  73. Cordero MD, Alcocer-Gómez E, de Miguel M, Cano-García FJ, Luque CM, Fernández-Riejo P, Fernández AM, Sánchez-Alcazar JA. Coenzyme Q(10): a novel therapeutic approach for Fibromyalgia? case series with 5 patients. Mitochondrion. 2011 Jul;11(4):623-5.
  74. Cordero MD, Santos-García R, Bermejo-Jover D, Sánchez-Domínguez B, Jaramillo-Santos MR, Bullón P. Coenzyme Q10 in salivary cells correlate with blood cells in Fibromyalgia: improvement in clinical and biochemical parameter after oral treatment. Clin Biochem. 2012 Apr;45(6):509-1
  75. Castro-Marrero J, Cordero MD, Segundo MJ, Sáez-Francàs N, Calvo N, Román-Malo  L, Aliste L, Fernández de Sevilla T, Alegre J. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid Redox Signal. 2015 Mar 10;22(8):679-85.
  76. Castro-Marrero J, Sáez-Francàs N, Segundo MJ, Calvo N, Faro M, Aliste L, Fernández de Sevilla T, Alegre J. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome – A randomized, controlled, double-blind trial. Clin  Nutr. 2016 Aug;35(4):826-34.
  77. Fukuda S, Nojima J, Kajimoto O, Yamaguti K, Nakatomi Y, Kuratsune H, Watanabe  Y. Ubiquinol-10 supplementation improves autonomic nervous function and cognitive function in chronic fatigue syndrome. Biofactors. 2016 Jul 8;42(4):431-40.
  78. Belcaro G, Saggino A, Cornelli U, Luzzi R, Dugall M, Hosoi M, Feragalli B, Cesarone MR. Improvement in mood, oxidative stress, fatigue, and insomnia following supplementary management with Robuvit®. J Neurosurg Sci. 2018 Aug;62(4):423-427.
  79. Ippolito E, Belcaro G, Luzzi R, Hosoi M, Dugall M, Rohdewald P, Feragalli B, Cotellese R, Peterzan P. Robuvit®: improvement of fatigue in medical convalescence. J Sports Med Phys Fitness. 2018 May;58(5):678-683.
  80. Belcaro G, Cornelli U, Luzzi R, Cesarone MR, Dugall M, Feragalli B, Hu S, Pellegrini L, Ippolito E. Improved management of primary chronic fatigue syndrome with the supplement French oak wood extract (Robuvit®): a pilot, registry evaluation. Panminerva Med. 2014 Mar;56(1):63-72.
  81. Belcaro G, Cornelli U, Luzzi R, Ledda A, Cacchio M, Saggino A, Cesarone MR, Dugall M, Feragalli B, Hu S, Pellegrini L, Ippolito E. Robuvit® (Quercus robur extract) supplementation in subjects with chronic fatigue syndrome and increased  oxidative stress. A pilot registry study. J Neurosurg Sci. 2015 Jun;59(2):105-17.
  82. Galland L. Diet and inflammation. Nutr Clin Pract. 2010 Dec;25(6):634-40.
  83. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010 Mar;2(3):355-74.
  84. Almoznino-Sarafian D, Berman S, Mor A, Shteinshnaider M, Gorelik O, Tzur I, Alon I, Modai D, Cohen N. Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr. 2007 Jun;46(4):230-7.
  85. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of  disease. Exp Mol Pathol. 2007 Aug;83(1):84-92.
  86. Bains W. Treating Chronic Fatigue states as a disease of the regulation of energy metabolism. Med Hypothe